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Welfare Cost of Inflation in Standard New Keynesian Models

• At moderate levels of inflation, welfare costs are negligible and flat

Source: Nakamura et al. (2018)

• Current dilemma: Should the Fed stop at 3% or go all the way to 2% (Ball, 2014)? 1



Welfare Cost of Inflation in NK Models with Production Networks

• Standard NK model has one sector and no input-output linkages

• Christiano (2015): Roundabout production amplifies inflation cost

• This Paper:
• Result 1: Heterogeneous price stickiness also amplifies the cost of inflation

• Result 2: The two channels interact in a non-trivial way

• Result 3: Together, they amplify the cost of inflation by an order of magnitude
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What We Do

• Multi-sector production networks model with heterogeneous price stickiness

• Theoretically, decompose sources of welfare losses from inflation

• Quantitatively, show roles of price stickiness and network structure
• Using data on US I-O tables and sectoral price stickiness
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What We Find: Inflation Is ∼15 Times More Costly with Production Networks

(a) Nakamura et al. (2018)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
: (annualized)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

$

(< i = 4, ;  = 0, =  =-0.33333, A -1 =0)

Calibrated
Standard NK model

(b) Cobb-Douglas. τ = −1/(σ − 1)

4



Welfare Costs of Inflation in Units of Flex. Price Consumption (%)

• In a Cobb-Douglas economy with no steady-state distortions:
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πss Calibrated Std NK Ratio

1.0 0.0395 0.0027 14.9
1.5 0.0920 0.0060 15.3
2.0 0.1693 0.0107 15.8
2.5 0.2743 0.0168 16.3
3.0 0.4103 0.0243 16.9
3.5 0.5815 0.0333 17.5
4.0 0.7927 0.0436 18.2

Table
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Literature

• Optimal rate of inflation in monetary models
Schmitt-Grohé and Uribe (2010), Woodford (2010)

• Welfare cost of inflation in a round-about sticky price economy
Christiano (2015)

• Welfare cost of inflation in New Keynesian models
Nakamura et al. (2018)

• Steady-state distortions and aggregate productivity in production networks
Baqaee and Farhi (2020), Bigio and La’O (2020)
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Model



Model: Steady State Analysis of Afrouzi and Bhattarai (2023)

• Time is continuous

• n industries indexed by i ∈ [n] ≡ {1, . . . ,n}

• A measure of monopolistically competitive intermediate firms in each sector

• A final good producer in each sector packages and sells a sectoral good

• Sectoral goods consumed by households and used for production

• Objective: Steady-state welfare comparative statics w.r.t. inflation
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Model

• Household

max

∫ ∞

0
e−ρtU(Ct, Lt)dt

∑
i∈[n] Pi,tCi,t + Ḃt ≤ WtLt + itBt + Tt

Ct ≡ Φ(C1,t, . . . , Cn,t)

Pt ≡
∑

i∈[n] Pi,tCi,t/Ct

• Monetary Policy
controls {Mt = PtCt}t≥0:

Ṁt = πMt

• Final Good Producer

maxPi,tYi,t −
∫ 1

0
Pij,tYdij,tdj s.t.

Yi,t =
[∫ 1

0
(Ydij,t)

1−σ−1
i dj

] 1
1−σ−1

i
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Model–Intermediate Good Producers

• Production: Firm ij, j ∈ [0, 1] produces with a CRS production function

Ysij,t = Zi,tFi(Lij,t, Xij,1,t, . . . , Xij,n,t)
• Arbirtrary production structure with aggregate and sectoral shocks

• Pricing: In sector i, i.i.d. price changes arrive at Poisson rate θi > 0

• A firm ij that gets to change its price at time t maximizes

max
Pij,t

∫ ∞

0
θie−(θih+

∫ h
0 it+sds)[(1− τi)Pij,tD(Pij,t/Pi,t+h; Yi,t+h)︸ ︷︷ ︸

total revenue at time t

−Ci(Ysij,t+h;Pt+h, Zi,t+h)︸ ︷︷ ︸
total cost at time t

]dh

subject to Ysij,t+h ≥ D(Pij,t/Pi,t+h; Yi,t+h), ∀h ≥ 0

• Heterogeneous Calvo-type price stickiness across sectors
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Theoretical Results



Steady State Allocations and Sources of Inefficiencies

• Cost minimization of firms with sector i implies sectoral production function:

Yi =
Zi
Di
Fi(Li, Xi,1, . . . , Xi,n), Di ≡

∫ 1

0

(Pij
Pi

)−σi

dj ≥ 1

• Aggregation of relative prices implies that for x ≤ x∗, Pr(Pij/Pj ≤ x) ∝ x−
θi
π :

Di =
θi

θi − σiπ

(
1− σi − 1

θi
π

) σi
σi−1

= exp

{
σi
2

(
π

θi

)2}
+O(π3)

• Optimal pricing of firms implies

Pi =
σi

σi − 1
1

1− τi
M̄i(π)×MCi(W,P1, . . . ,Pn; Zi)

Baseline Today: Fiscal policy chooses τi(π) such that Pi = MCi
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Welfare Cost of Inflation

• Let C(π) and L(π) denote steady state consumption and labor with inflation π
• Define Λ(π) such that

U(C(π), L(π)) = U(e−Λ(π)C(0), L(0))

• Λ(π) depends on (1) changes in aggregate productivity and (2) labor stimulus

Proposition

Let Z ≡ C
L and µ ≡ WL/PC denote agg. prod. and labor share. Then:

∂
∂π
U(C,L)
Uc×C = ∂

∂π ln(Z) + (1− µ) ∂
∂π ln(L)

• If subsidies τi(π) are optimal or ρ→ 0, second term is zero.

• If U = ln(C)− v(L) then:

Λ(π) =
∫ π
0

∂
∂π U(C,L)
Uc×C dπ = ln(Z(0))− ln(Z(π)) 11



Welfare Cost of Inflation

• Cobb-Douglas undistorted economy

ln(Z) =
∑
i

λi ln(Zi)−
∑
i

λi ln(Di(π))

where (λi)i∈[n] = βᵀ(I+ A+ A2 + . . . ) is sector i’s Domar weight

Proposition

Let δi = θ−1i denote the average duration of price spells in sector i. Then:

Λ(π) =
∑
i

λi ln(Di(π)) =
π2

2
×
∑
i

σiλiδ
2
i +O(π3)

Today: σi = σ
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Welfare Cost of Inflation: Decomposition with σi = σ

• Standard 1 sector NK model (with roundabout production, λi = λ ≥ 1, δi = δ)

Λ(π) = σπ2

2 × λ× δ2

• Multisector NK model w/ het. price stickiness but w/o production networks:

Λ(π) = σπ2

2 ×
(
varβ(δi) + Eβ[δi]2

)
• Multisector NK model w/o het. price stickiness but w/ production networks:

Λ(π) = σπ2

2 × (
∑

i λi)× δ2

• Multisector NK model w/ het. price stickiness and production networks:

Λ(π) = σπ2

2 × (
∑

i λi)×
(
varλ(δi) + Eλ[δi]2

)
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Quantitative Results



Calibration

• Use the IO tables from BEA at disaggregated level (393 sectors) to construct:
• A: Production expenditure shares (under Cobb-Douglas technology)
• β: Consumption expenditure shares (under Cobb-Douglas consumption
aggregator)

• θi : Frequency of price adjustment, from Pasten et al. (2020)
• ψ : Inverse of the Frisch elasticity of labor supply
• ρ : Discount factor
• τ : Tax
• σi : Elasticity of substitution across varieties
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Calibration

• Consumption aggregator is a CES aggregator with elasticity of substitution ε

Ct ≡ Φ(C1,t, . . . , Cn,t) =

∑
i∈[n]

βε
−1

i C1−ε−1

i,t

 1
1−ε−1

(Cobb-Douglas when ε→ 1)
• Production function is a CES production function with elasticity of
substitution ηi

Fi(Lij,t, Xij,1,t, . . . , Xij,n,t) =

αη−1
i
i L1−η−1

i
i,t +

∑
i∈[n]

aη
−1
i
ij X1−η−1

i
ij,t

 1
1−η−1

i

(Cobb-Douglas when ηi → 1)
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Model Experiments

• Start with inelastic aggregate labor supply and then endogenegize it
• First a Cobb Douglas economy and then a general CES economy
• Address how non-vertical Phillips curve interacts with (flex-price
steady-state) distortions

• Various model counterfactuals
• No production networks but heterogeneous price stickiness across sectors
• Production networks but homogeneous price stickiness across sectors
• No production networks and homogeneous price stickiness across sectors
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Welfare Cost of Inflation
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Welfare Cost of Inflation at 4% Annual Inflation

πss Calibrated Std NK Ratio

1.0 0.0395 0.0027 14.9
1.5 0.0920 0.0060 15.3
2.0 0.1693 0.0107 15.8
2.5 0.2743 0.0168 16.3
3.0 0.4103 0.0243 16.9
3.5 0.5815 0.0333 17.5
4.0 0.7927 0.0436 18.2

• Standard NK model with average freq.:

Λ(π) =
σπ2

2
× δ2︸︷︷︸

=4.362=19

= 0.041%

• Standard NK model with average dur.:

Λ(π) =
σπ2

2
× δ2︸︷︷︸

=7.282=53

= 0.12%

• Model w/ prod. network and het. freq.:

Λ(π) =
σπ2

2
×

(∑
i

λi

)
︸ ︷︷ ︸

=4

×

varλ(δi)︸ ︷︷ ︸
=31.83

+ Eλ[δi]2︸ ︷︷ ︸
=62.57


︸ ︷︷ ︸

=0.82%

τ = 0
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Model with endogeneous labor supply

• Now move to endogenous labor supply
• Frisch elasticity of 2: ψ−1 = 2
• Welfare effects of inflation now have two sources:

• Productivity effects
• Labor stimulus effects

• Interacts with non-vertical long-run Phillips curve and distortions under
flexible prices
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Comparative Statics: ψ−1 = 2, Cobb-Douglas, ρ = 0.0034, τ = 0
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Comparative Statics: ψ−1 = 2, CES, ρ = 0.0034, τ = 0, ηi = ε = 2
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(a) CES. τ = −1/(σ − 1), η = ε = 2
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Comparative Statics: ψ−1 = 2, CES, ρ = 0.0034, τ = 0, η = ε = 2

πss Calibrated Basic Multi-Sector Ratio

1.0 0.001546 0.001759 0.878861
1.5 0.023775 0.004644 5.119135
2.0 0.062067 0.008889 6.982374
2.5 0.117958 0.014509 8.129850
3.0 0.193201 0.021522 8.976966
3.5 0.289802 0.029944 9.678089
4.0 0.410077 0.039794 10.304983

22



Conclusion



Conclusion

• Multi-sector sticky price model critical for quantitative evaluation of welfare
cost of inflation

• Production networks significantly amplify welfare cost of inflation

• Future work
• Idiosyncratic firm-level shocks
• Generalized hazard function/Menu costs
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Appendix



Firm expenditure function with CES

Let i index sector. Then, the labor share and the expenditure shares are given by

αi(p(π)) =
αi

αi +
∑

j∈[n] aij
(
Pj
W

)1−ηi

aij(p(π)) =
aijP

1−ηi
j

αiW1−ηi +
∑

j∈[n] aijP
1−ηi
j

Marginal Cost of firms in sector i:

MCi =
1
Zi

αiW1−ηi +
∑
j∈[n]

aijP
1−ηi
j

 1
1−ηi
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Prices

Let π be the steady state inflation rate. Then the sector imarkup (Pi/MCi) is given by

µi(π) ≡
σi

σi − 1
1

(1− τi)

ρ+ θi − (σi − 1)π
ρ+ θi − σiπ

[
1− (σi − 1)π

θi

] 1
σi−1

The equilibrium sector prices (Pi)i∈[n] satisfy

(
Pi
W
) =

µi(π)

Zi

αi +∑
j∈[n]

aij(
Pj
W
)1−ηi

 1
1−ηi
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Price Dispersion

Let π be the steady state inflation rate. Then, the price dispersion in sector i, Di is
given by

Di(π) =
θi

θi − σiπ

[
1− (σi − 1)π

θi

] σi
σi−1
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Household expenditure function with CES

The household’s consumption share of sector i is given by

βi(p(π)) =
βi(Pi/W)1−ε∑
j∈[n] βj(Pi/W)1−ε

Aggregate price index

P(π) ≡

∑
i∈[n]

βiP1−ε
i

 1
1−ε
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Aggregate productivity

LetM ≡ diag (µi(π)/Di(π))

Z(π) ≡ C
L
=

1[∑
i∈[n] βi(

Pi
W )

1−ε
] 1
1−ε

× 1
1′(I− A(p(π))′)(M− A(p(π))′)−1β(p(π))
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Welfare a la Lucas

U(C(π), L(π)) = U(e−ΛC(0), L(0))

In each economy: C(π) = Z(π)L(π), C(0) = Z(0)L(0), with U(C, L) = ln(C)− L
1+ 1
ψ−1

1+ 1
ψ−1

.

Also,

WL
PC

= α′M−1λ = 1′(I− A′)(M− A′)−1β [Labor share]

W
P

= CL
1

ψ−1 [Optimal intratemporal condition]

Remark: Flex price equilibrium = Zero SS inflation equilibrium
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Welfare a la Lucas

L(π) = α′(π)M−1(π)λ(π)

L(0) = α′(0)M−1(0)λ(0)

We calculate Λ such that

Λ + ln(Z(π)) + ln(L(π))− L(π)1+
1

ψ−1

1+ 1
ψ−1

= ln(Z(0)) + ln(L(0))− L(0)1+
1

ψ−1

1+ 1
ψ−1

That is, we find

Λ = ln

(
Z(0)
Z(π)

)
+

1
1+ 1

ψ−1

ln

(
α′(0)M−1(0)λ(0)
α′(π)M−1(π)λ(π)

)
+

α′(π)M−1(π)λ(π)

1+ 1
ψ−1

− α′(0)M−1(0)λ(0)
1+ 1

ψ−1
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Economy with complementarity

• Now consider a CES economy
• Complementarity in demand and production: η = ε = 0.8
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Comparative Statics: ψ−1 = 0, CES, η = ε = 0.8, ρ = 0, τ = −1/(σ − 1)
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Comparative Statics: ψ−1 = 0, CES, η = ε = 0.8, ρ = 0, τ = 0
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Model with endogeneous labor supply

• Now move to endogenous labor supply
• Frisch elasticity of 2: ψ−1 = 2
• Welfare effects of inflation now have two sources:

• Productivity effects
• Labor stimulus effects
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Comparative Statics: ψ−1 = 2, Cobb-Douglas, ρ = 0, τ = −1/(σ − 1)
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Economy with complementarity

• Now consider a CES economy
• Complementarity in demand and production: η = ε = 0.8
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Comparative Statics: ψ−1 = 2, CES, η = ε = 0.8, ρ = 0, τ = −1/(σ − 1)
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Comparative Statics: ψ−1 = 2, CES, η = ε = 0.8, ρ = 0, τ = 0
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Comparative Statics: ψ−1 = 2, Cobb-Douglas × CES, ρ = 0, τ = 0
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Non-vertical Philips curve

• If the long-run Phillips curve is not vertical, some quantitaitve differences in
results

• But qualitiative differences come about when comparing disorted vs.
undisorted economies (under flex-prices)
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Comparative Statics: ψ−1 = 0, Cobb-Douglas, ρ = 0.0034, τ = −1/(σ − 1)
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Comparative Statics: ψ−1 = 0, Cobb-Douglas, ρ = 0, τ = 0
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Comparative Statics: ψ = 0, Cobb-Douglas, ρ = 0, τ = −1/(σ − 1)
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Comparative Statics: ψ = 0, Cobb-Douglas, ρ = 0, τ = −1/(σ − 1)
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Comparative Statics: ψ = 0, Cobb-Douglas, ρ = 0, τ = 0
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Comparative Statics: ψ = 0, Cobb-Douglas, ρ = 0, τ = 0
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Comparative Statics: ψ = 0, Cobb-Douglas, ρ = 0.0034, τ = −1/(σ − 1)
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Comparative Statics: ψ = 0, Cobb-Douglas, ρ = 0.0034, τ = 0
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Comparative Statics: ψ = 0, CES, η = ε = 0.8, ρ = 0, τ = −1/(σ − 1)
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Comparative Statics: ψ = 0, CES, η = ε = 0.8, ρ = 0, τ = 0
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Comparative Statics: ψ = 0, CES, η = ε = 0.8, ρ = 0.0034, τ = −1/(σ − 1)
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Comparative Statics: ψ = 0, CES, η = ε = 0.8, ρ = 0.0034, τ = −1/(σ − 1)

0.5 1 1.5 2 2.5 3 3.5 4 4.5
: (annualized, %)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

10
0
#
$

(< i = 4, ;  = 0.0034, =  =-0.33333, A -1 =inf)

Calibrated
Horizontal
Homogenous FPA
Basic Multi-Sector

52



Comparative Statics: ψ = 0, CES, η = ε = 0.8, ρ = 0.0034, τ = 0
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Comparative Statics: ψ−1 = 0, CES, η = ε = 0.8, ρ = 0, τ = −1/(σ − 1)
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Comparative Statics: ψ−1 = 0, CES, η = ε = 0.8, ρ = 0, τ = 0
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Comparative Statics: ψ−1 = 2, Cobb-Douglas, ρ = 0, τ = −1/(σ − 1)
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Comparative Statics: ψ−1 = 2, Cobb-Douglas, ρ = 0, τ = 0
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Comparative Statics: ψ−1 = 2, CES, η = ε = 0.8, ρ = 0, τ = −1/(σ − 1)
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Comparative Statics: ψ−1 = 2, CES, η = ε = 0.8, ρ = 0, τ = 0
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Comparative Statics: ψ−1 = 0, Cobb-Douglas, ρ = 0, τ = 0

0.5 1 1.5 2 2.5 3 3.5 4 4.5
: (annualized, %)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10
0
#
$

(< i = 4, ;  = 0, =  =0, A -1 =0)

Calibrated
Horizontal
Homogenous FPA
Basic Multi-Sector

Back
60



Comparative Statics: ψ−1 = 2, Cobb-Douglas, ρ = 0, τ = 0
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Comparative Statics: ψ−1 = 0, CES, η = ε = 0.8, ρ = 0.0034, τ = −1/(σ − 1)
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Comparative Statics: ψ−1 = 0, CES, η = ε = 0.8, ρ = 0.0034, τ = 0
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Comparative Statics: ψ−1 = 0, Cobb-Douglas, ρ = 0.0034, τ = −1/(σ − 1)
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Comparative Statics: ψ−1 = 2, CES, ρ = 0.0034, τ = 0
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Comparative Statics: ψ−1 = 0, Cobb-Douglas, ρ = 0, τ = −1/(σ − 1)

πss Calibrated Basic Multi-Sector Ratio

1.0 0.039539 0.002662 14.852318
1.5 0.091962 0.006014 15.292148
2.0 0.169256 0.010734 15.768539
2.5 0.274258 0.016839 16.286762
3.0 0.410333 0.024347 16.853239
3.5 0.581520 0.033276 17.475897
4.0 0.792737 0.043642 18.164680

Back
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Comparative Statics: ψ−1 = 0, Cobb-Douglas, ρ = 0.0034, τ = 0

πss Calibrated Basic Multi-Sector Ratio

1.0 0.011167 0.002662 4.194599
1.5 0.046810 0.006014 7.784051
2.0 0.105196 0.010734 9.800472
2.5 0.188767 0.016839 11.209902
3.0 0.300397 0.024347 12.337974
3.5 0.443504 0.033276 13.328234
4.0 0.622200 0.043642 14.257033
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Comparative Statics: ψ−1 = 2, CES, ρ = 0.0034, τ = −1/(σ − 1), η = ε = 2

πss Calibrated Basic Multi-Sector Ratio

1.0 0.039758 0.002663 14.932468
1.5 0.092440 0.006014 15.370534
2.0 0.170020 0.010735 15.838630
2.5 0.275160 0.016840 16.339925
3.0 0.410950 0.024348 16.878446
3.5 0.580918 0.033277 17.457177
4.0 0.789181 0.043643 18.082539
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