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Abstract

This paper studies the implications of central bank credibility for long-run inflation
and inflation dynamics. We introduce central bank lack of commitment into a standard
non-linear New Keynesian economy with sticky-price monopolistically competitive firms.
Inflation is driven by the interaction of lack of commitment and the economic environment.
We show that long-run inflation increases following an unanticipated permanent increase
in the labor wedge or decrease in the elasticity of substitution across varieties. In the
transition, inflation overshoots and then gradually declines. Quantitatively, the inflation
response is large, as is the welfare loss from lack of commitment relative to inflation
targeting.
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1 Introduction

Inflation across advanced economies in the aftermath of the COVID-19 pandemic rose to
levels not seen since the early 1980s. This has brought about a resurgence of interest in the
subject of central bank credibility to the maintenance of low and stable inflation. These
recent macroeconomic developments additionally highlight the challenge in applying the most
commonly used quantitative macroeconomic models—which assume exogenous central bank
reaction functions and inflation targets—for understanding the post-pandemic environment.

In this paper, we approach the analysis of central bank credibility by developing a
framework where policy is not exogenous, but is instead dynamically chosen by a central
bank that maximizes social welfare in every date. We focus on the implications of the central
bank’s inability to make ex-ante commitments. Our analysis builds on the seminal work
of Barro and Gordon (1983) and Rogoff (1985), who study the implications of the central
bank’s inflation-output tradeoff for the economy. This work and most of the vast literature
that followed it, however, consider simple static settings or linearized dynamic environments.1

By their construction, these analyses do not inform how central bank credibility impacts
long-run inflation or transition dynamics.2

We build on this prior work by studying central bank credibility in a standard New
Keynesian model.3 In order to allow for an analysis of long-run inflation and transition
dynamics, we do not perform a log-linearization around the zero-inflation steady state
but instead examine the fully non-linear model. For tractability, we take a deterministic
environment, and we consider the impact of permanent shocks to the economy. The economy
is composed of monopolistically competitive firms with sticky prices: in every period, a
random fraction of firms have the ability to flexibly choose their price, while the remaining
firms are constrained to choosing their previous period’s price. Wages are fully flexible and
households make consumption, labor, and savings decisions. Firms and households optimize
taking into account current economic conditions and policies and their expectations of future
economic conditions and policies. As is standard in the literature, we allow for the existence
of an exogenous labor wedge that takes the form of a proportional positive or negative tax
on labor. This wedge captures statutory taxes on labor and other labor market distortions,
such as the pervasiveness of regulation and unionization.

1See, for example, Backus and Driffill (1985), Canzoneri (1985), Cukierman and Meltzer (1986), Athey,
Atkeson, and Kehoe (2005), and Halac and Yared (2020, 2022).

2Linearized environments are useful for considering transition dynamics around an assumed steady state;
however, such a state may not coincide with the actual steady state of the economy, which can only be
determined by analyzing the non-linear environment.

3See Clarida, Galí, and Gertler (1999), Woodford (2003), and Galí (2015). As we describe next, we
consider price stickiness with Calvo pricing (Calvo, 1983), but our results are identical under wage stickiness.
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Our economy admits two types of distortions. First, the existence of monopoly power
means that absent a sufficiently negative labor wedge, firms underproduce and underhire.
To examine the role of this distortion, we assume that the labor wedge is large enough that
underproduction arises under flexible prices. Second, the existence of sticky prices generates
price dispersion in the goods market (if inflation is non-zero), which causes labor misallocation,
with too much labor drawn to the production of low-price varieties and too little to the
production of high-price varieties. Our analysis highlights how monopoly distortions and
labor misallocation impact the inflation-output tradeoff and guide the conduct of monetary
policy.

Before describing our main findings, it is instructive to note that monetary policy in our
environment is not neutral in the long run. Different policy paths can lead to a continuum
of potential steady states. Comparing across hypothetical steady states, those with higher
inflation admit relatively higher price dispersion and labor misallocation, since the divergence
in prices between flexible-price firms (which raise prices by more under higher inflation)
and sticky-price firms is relatively larger. Moreover, steady states with higher inflation also
admit relatively lower monopoly distortions, since overhiring by sticky-price firms is relatively
higher.

We study central bank credibility by analyzing the Markov Perfect Competitive Equilibria
of our model, where central bank strategies and private sector beliefs are a function of
payoff-relevant variables only. In every period, flexible-price firms set prices, the central bank
sets the interest rate, and markets open and clear. The central bank lacks commitment and
freely chooses the interest rate that maximizes social welfare in every period, taking as given
the distribution of prices. Firms setting prices flexibly anticipate that the central bank lacks
commitment today and in the future when forming expectations about future policy.

We show that an equilibrium is characterized by two difference equations. The dynamic
path of inflation is characterized by an equation that is forward looking; i.e., a non-linear
Phillips curve with current inflation being a function of expectations of future inflation. The
dynamic path of price dispersion is characterized by an equation that is backward looking;
i.e., with current dispersion being a function of past dispersion. These equations yield that
there is a unique steady state, which allows us to analyze transition dynamics around such a
steady state. The tractable form of the equilibrium owes partly to the timing in our model,
where prices are chosen prior to the choice of interest rates. A central bank setting interest
rates at time t takes as predetermined the distribution of prices at time t, and therefore also
the continuation equilibrium at t+ 1 (since the equilibrium is Markov). Because the central
bank cannot change future welfare off the equilibrium path, it optimally chooses an interest

2



rate that maximizes static welfare conditional on the level of price dispersion.4 The result is
a policy that eliminates the monopoly distortion and sets the labor share to one,5 and an
equilibrium that can be simplified to a system of two equations.

Our main results are as follows. First, we show that long-run inflation is determined
by the interaction of the central bank’s lack of commitment and the economic environment.
Specifically, long-run inflation is higher the higher is the labor wedge and the lower is the
elasticity of substitution across varieties. To understand these comparative statics, consider
first the incentives of the central bank to cut interest rates off the equilibrium path. A rate
cut increases consumption at the cost of increased labor effort, so its marginal benefit is
increasing in monopoly distortions (which suppress labor) and decreasing in price dispersion
and labor misallocation (which reduce aggregate labor productivity).

Starting from a given steady state, suppose that there is a permanent increase in the labor
wedge or a permanent decrease in the elasticity of substitution across varieties (with these
changes being unanticipated). A central bank with commitment would be able to respond in
a way that preserves inflation stability. However, a central bank without commitment has
an incentive to undo the resulting increase in monopoly distortions by cutting interest rates
and stimulating output. Flexible-price firms anticipate this and rationally forecast higher
future labor demand and higher future real wages (relative to the commitment case), which
necessitate higher offsetting prices today. Over time, flexible-price firms thus increase prices,
leading to rising price dispersion. The economy converges to a new steady state once the
rise in dispersion reduces aggregate productivity sufficiently that the central bank’s benefit
from cutting interest rates vanishes. Therefore, as a result of the higher labor wedge or lower
elasticity of substitution across varieties, price dispersion and inflation are both higher in the
new steady state.

Our second main result is a characterization of the transition as the economy moves from
an initial steady state to one with higher inflation. We show that the transition features
inflation overshooting. Starting from a given steady state, consider a permanent increase
in the labor wedge or a permanent decrease in the elasticity of substitution across varieties.
Inflation overshooting emerges because of the evolution of central bank incentives as price
dispersion rises in the transition towards a higher-inflation steady state. The central bank sees
a relatively larger benefit to stimulating output early in the transition when price dispersion
and labor misallocation are low. Once price dispersion and labor misallocation rise sufficiently,

4Our results are unchanged if firms and the central bank move simultaneously, as in Barro and Gordon
(1983). However, if the central bank sets the interest rate before firms set prices, then off-equilibrium
expectations by firms can play an important role in equilibrium selection, complicating the analysis.

5In other words, average firm profits (net of labor taxes) across the economy equal zero, with some
sticky-price firms making negative profits and all flexible-price firms making positive profits.
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it is no longer as worthwhile to stimulate labor to generate additional consumption. Flexible-
price firms in turn realize that monetary stimulus will be larger earlier in the transition,
so they offset the ensuing higher wage costs with price increases that are also relatively
larger earlier in the transition. The implication of these transition dynamics is inflation
overshooting.

Our final main result shows that the quantitative magnitudes implied by our model
are large. Using standard parameterizations of the New Keynesian model, we evaluate the
response of the economy to a permanent increase in the labor wedge or a permanent decrease
in the elasticity of substitution across varieties. In both cases, inflation jumps up following
the shock and then gradually declines towards a new higher steady-state level. Nominal
interest rates jump up and gradually increase to a higher level, while real interest rates jump
down and gradually increase back to their original level.6 Output falls gradually as price
dispersion and labor misallocation increase in the transition. Nominal wage inflation rises
towards the new steady state, converging to the level of price inflation from below. These
dynamics underpin an eventual permanent reduction in the real wage.

We find that small changes in the labor wedge or the elasticity of substitution across
varieties have large impacts on the long-run level of inflation and the degree of inflation
overshooting. For example, in response to a 0.5 percent increase in the labor wedge starting
from a 2-percent-inflation steady state, inflation overshoots to 10.11 percent and eventually
converges to 8.76 percent. This overshooting is persistent: it takes 12 months for inflation
to decline within 25 basis points of its new steady-state level. We obtain similarly large
magnitudes for changes in the elasticity of substitution. Furthermore, we compare the
response of the economy under central bank lack of commitment to the response under
commitment to inflation targeting, and we find that the welfare loss from lack of commitment
is quantitatively large.

Our results have two important implications for the analysis of the post-pandemic inflation
in advanced economies. First, our results suggest that changes in the global economy can
affect long-run inflation through their interaction with central bank incentives. Consider for
instance a decrease in immigration which changes the composition of labor towards more
regulated labor sources (higher labor wedge), or a slowdown in globalization which increases
the market power of domestic firms (lower elasticity of substitution across varieties). Our
model says that if these changes in the global economy are permanent, then they can result
in permanently higher inflation. These changes reduce output and consumption and make it
more challenging for a central bank without commitment to maintain low inflation. Moreover,

6The higher steady-state level for nominal interest rates reflects the Fisherian effect, which is present in
the non-linear New Keynesian model.
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under this view, a second implication of our analysis is that the large spike in inflation
following the pandemic can be partially understood as a consequence of the private sector
anticipating the central bank’s response. Firms rationally anticipate that the central bank
would be more accommodative earlier in the transition (when the cost of price dispersion
is low) relative to later (when the cost of price dispersion is high), resulting in inflation
overshooting as the economy moves to a higher-inflation steady state.

Related Literature. Our paper fits into the literature on central bank credibility and
reputation pioneered by Barro and Gordon (1983) and Rogoff (1985).7 As discussed, our
departure from this literature is in analyzing the equilibrium of the fully non-linear New
Keynesian model. This departure allows us to examine the endogenous dynamic evolution
of the central bank’s inflation-output tradeoff as well as the quantitative implications of
central bank credibility. An approach that considers a Markovian equilibrium under lack of
commitment around a linearized (distorted) zero-inflation, zero-dispersion steady state (as
in Halac and Yared, 2022, for example) not only features no transition dynamics, but also
significantly overestimates the effect of permanent shocks on long-run inflation relative to the
non-linear model.8

Previous work has considered lack of commitment to monetary policy in non-linear
environments. For example, a large number of models of fiscal policy are concerned with
the central bank’s commitment to not inflating away public debt (e.g., Alvarez, Kehoe,
and Neumeyer, 2004; Aguiar, Amador, Farhi, and Gopinath, 2015). Dávila and Schaab
(2023) show that lack of commitment to monetary policy has distributional implications in
heterogeneous-agent economies.9 Our departure from these literatures is in considering the
dispersion cost that results from price stickiness in standard New Keynesian models, and in
examining how this dispersion cost dynamically affects the inflation-output tradeoff for the
central bank.

In this regard, we contribute to the literature that studies the central bank’s inflation-
output tradeoff under lack of commitment in non-linear settings. The focus of this literature
has been on determining conditions for equilibrium multiplicity under monetary discretion
(see, e.g., Albanesi, Chari, and Christiano, 2003; King and Wolman, 2004; Zandweghe and
Wolman, 2019). These considerations do not arise in our setting where we obtain a unique
equilibrium. We depart from this work by providing an analytical characterization of the

7See additionally the work cited in Footnote 1.
8The reason is that the linearized model underestimates the welfare costs of rising price dispersion due to

inflation.
9Their model has sticky prices with exogenous costs of price adjustment, as opposed to Calvo pricing as in

our framework. As a consequence, there is no price dispersion in their equilibrium.
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unique steady state and the transition dynamics of the non-linear model, and by analytically
studying how these depend on the economic environment.10

Finally, our paper also relates to the literature on optimal commitment policy in the non-
linear New Keynesian model (e.g., Benigno and Woodford, 2005; Yun, 2005). In our analysis,
we provide a novel recursive representation of the non-linear Phillips curve by defining a
new auxiliary variable which can itself be represented recursively. This variable captures the
passthrough of real wages to current inflation, holding future inflation expectations fixed.
The recursive representations allow us to characterize transition dynamics, and we conjecture
that they could be useful in future analyses of the non-linear New Keynesian model.

2 Environment

We consider a standard non-linear New Keynesian model (Clarida, Galí, and Gertler, 1999;
Woodford, 2003; Galí, 2015). There is a unit-mass of monopolistically competitive firms
that set prices under Calvo-style rigidity (Calvo, 1983): a random fraction of firms in every
period have the ability to flexibly choose their price, while the remaining fraction of firms are
constrained to choosing the same price as in the previous period. Wages are fully flexible
and households make consumption, labor, and savings decisions.11 Firms and households
optimize taking into account current economic conditions and policies and their expectations
of future economic conditions and policies.

In every period, flexible-price firms set prices, the central bank sets the interest rate, and
markets open and clear. A key feature of our environment is that the central bank lacks
commitment and freely chooses the interest rate that maximizes social welfare in every period,
taking as given the distribution of prices. Firms setting prices flexibly anticipate that the
central bank lacks commitment today and in the future when forming expectations about
future policy.

2.1 Households

At every date t ∈ {0, 1, 2, . . . }, the representative household chooses its consumption Cj,t
of each firm variety j ∈ [0, 1], its labor supply Lt, its holdings Bt of a risk-free nominal
government bond that pays interest it, and its holdings sj,t of shares of each firm j ∈ [0, 1]. For

10The model of Albanesi, Chari, and Christiano (2003) has sticky prices only within the period, while that
of King and Wolman (2004) has prices that are sticky across two periods. The framework in Zandweghe and
Wolman (2019) is the closest to ours with Calvo pricing across periods, but their timing is different and their
results under lack of commitment are numerical rather than analytical.

11Our results are unchanged if we instead consider a sticky wage model.
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each j, denote the firm’s variety price by Pj,t, its nominal share price by P S
j,t, and its nominal

profits by Xj,t. Then letting Wt denote the nominal wage, the representative household solves
the following problem:

max
Ct,Lt,Bt,(sj,t,Cj,t)j∈[0,1]

∞∑
t=0

βt

(
log(Ct)−

L1+ψ
t

1 + ψ

)
(1)

subject to∫ 1

0

Pj,tCj,tdj +Bt ≤ WtLt + (1 + it−1)Bt−1 +

∫ 1

0

sj,tXj,tdj +

∫ 1

0

(sj,t−1 − sj,t)P S
j,tdj − Tt,

Ct =

(∫ 1

0

C1−σ−1

j,t dj

) 1
1−σ−1

.

Ct denotes the aggregate consumption bundle and Tt is a lump sum tax at date t. We have
taken β ∈ (0, 1) to be the discount factor, σ > 1 is the elasticity of substitution across
varieties, and ψ > 1 is the inverse elasticity of labor supply.

The household’s optimization yields that the demand for variety j satisfies

Cj,t = Ct

(
Pj,t
Pt

)−σ
, (2)

where Pt =
(∫ 1

0
P 1−σ
j,t dj

) 1
1−σ . Thus, we can write

∫ 1

0
Pj,tCj,tdj = PtCt in the budget constraint

in program (1), and this means that households can choose their consumption bundle Ct as a
function of Pt before solving the subproblem of choosing the consumption Cj,t of each variety
j ∈ [0, 1] as a function of (Pj,t)j∈[0,1]. The intratemporal condition is

Wt

Pt
= CtL

ψ
t . (3)

The intertemporal condition is

1 = β(1 + it)
PtCt

Pt+1Ct+1

. (4)

The transversality conditions require that for each date t and firm j,12

lim
h→∞

1∏h
`=0(1 + it+`)

Ejt [Xj,t+1+h] = lim
h→∞

1∏h
`=0(1 + it+`)

it+hBt+h = 0. (5)

12This transversality condition combines a household optimality condition and a no-Ponzi condition in a
complete market environment that allows for Arrow-Debreu securities, including securities that pay off at a
future date an amount proportional to the profits of any firm conditional on any given history.

7



The expectation operator Ejt [·] operates over firm j’s future idiosyncratic shocks, which we
will discuss in the next section. No arbitrage for stocks requires P S

j,t = Xj,t+Ejt [P S
j,t+1]/(1+ it),

which combined with (5) yields

P S
j,t = Xj,t +

∞∑
h=0

1∏h
`=0(1 + it+`)

Ejt [Xj,t+1+h]. (6)

Combining (6) with the intertemporal condition for arbitrary horizon t+ h, we obtain that
the nominal share price of firm j satisfies13

P S
j,t =

∞∑
h=0

βh
PtCt

Pt+hCt+h
Ejt [Xj,t+h]. (7)

2.2 Firms

A firm selling variety j produces with technology Yj,t = Lj,t. Given the labor Lj,t demanded
by each firm j ∈ [0, 1], in every period t we have Lt =

∫ 1

0
Lj,tdj.

Firms set prices as in Calvo (1983). In every period, a random fraction 1− θ ∈ (0, 1) of
firms are able to flexibly change their prices; the remaining fraction θ must keep their previous
period’s price. The exogenous initial distribution of firm prices is given by {Pj,−1}j∈[0,1].
Firms commit to produce enough to meet demand given their price Pj,t, even if that means
making negative profits.

Firms are subject to a proportional payroll tax τ ∈ (0, 1), which we refer to as the labor
wedge. This wedge captures statutory taxes on labor and other labor market distortions, such
as the pervasiveness of regulation and unionization.14 We make the following assumption:

Assumption 1. The labor wedge satisfies τ > −1/σ.

This assumption implies that monopoly distortions arise in an economy with flexible
prices. As we will discuss in the next section, Assumption 1 guarantees that the labor wedge
is sufficiently large that monopoly distortions do not disappear in the steady state of our
economy.

Firm profits at any date t satisfy

Xj,t = Pj,tYj,t − (1 + τ)WtLj,t,

13Note that in equilibrium, all households hold equal portions of all firms, so
∫ 1

0
(sj,t−1 − sj,t)PSj,tdj = 0.

14Under this latter interpretation, −Tt can be thought of as measuring union profits.
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which combined with (7) implies

P S
j,t =

∞∑
h=0

βh
PtCt

Pt+hCt+h
Ejt [Pj,t+hYj,t+h − (1 + τ)Wt+hLj,t+h] . (8)

A firm that resets its price Pj,t at time t maximizes its share price P S
j,t given by (8), taking

into account that the price Pj,t will prevail at date t+h with probability θh. The flexible-price
firm’s problem can thus be represented as follows:

max
P ∗t

∞∑
h=0

(βθ)h
PtCt

Pt+hCt+h
[P ∗t − (1 + τ)Wt+h]Ct+h

(
P ∗t
Pt+h

)−σ
, (9)

where we have taken into account that the transversality condition implies that, for all t,

lim
h→∞

(βθ)h
PtCt

Pt+hCt+h
[P ∗t − (1 + τ)Wt+h]Ct+h

(
P ∗t
Pt+h

)−σ
= 0. (10)

2.3 Government

At every date t, the central bank sets the interest rate it to maximize social welfare which is
given by (1). We describe the central bank’s problem in Section 4.1.

The fiscal authority sets taxes Tt and debt Bt to satisfy its budget constraint:

(1 + it−1)Bt−1 = Bt + Tt + τWtLt. (11)

The exogenous initial level of government debt is given by B−1.

2.4 Order of Events

The order of events at a date t, given a distribution of prices Pj,t−1, is as follows:

1. Flexible-price firms choose price Pj,t = P ∗t . Sticky-price firms choose price Pj,t = Pj,t−1.
2. The central bank chooses monetary policy, i.e. the interest rate it.
3. Households choose consumption, labor, and savings Ct, Lt, Bt, (si,t, Cj,t)j∈[0,1].
4. The fiscal authority chooses fiscal policy, i.e. taxes Tt and debt Bt.

Observe that monetary policy is chosen after firms have chosen their prices. Hence, if
the central bank deviates from equilibrium policy, firms will no longer be optimizing during
the period of the deviation off the equilibrium path. The fact that fiscal policy is chosen at
the end of the period is for expositional simplicity and without loss given our equilibrium
definition which we describe in the next section.
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2.5 Equilibrium Definition

Our solution concept is Markov Perfect Competitive Equilibrium (MPCE), implying that
households, firms, and the government make decisions as a function of payoff-relevant variables
only. Note that because of the presence of lump sum taxes, our economy features Ricardian
Equivalence, which means that the level of debt Bt can be treated as payoff irrelevant and
can be set to 0 without loss of generality. As such, we assume that at the end of each period,
the fiscal authority chooses debt Bt = 0 and taxes Tt to balance its budget, both on and off
the equilibrium path.15

Formally, let Ωt−1 correspond to the distribution of prices across firms at date t − 1.
Conditional on Ωt−1, flexible-price firms choose price P ∗t which determines Ωt. Let Γ denote
the corresponding mapping, with Ωt = Γ (Ωt−1). Given Ωt, the central bank chooses monetary
policy it ≡ Ψ(Ωt), where Ψ is the central bank’s reaction function. Finally, given Ωt and it,
households choose consumption, labor, and savings

(
Ct, Lt, Bt, (sj,t, Cj,t)j∈[0,1]

)
≡ ω(Ωt, it),

where ω is the households’ reaction function. In equilibrium, Bt = 0 and sj,t = 1, since
households can be identically treated without loss of generality.

An MPCE is a collection of mappings {Γ,Ψ, ω} such that, at every date t and given
{Γ,Ψ, ω}, the mapping Γ(Ωt−1) satisfies flexible-price firm optimality, Ψ(Ωt) maximizes social
welfare, and ω(Ωt, it) satisfies household optimality.16

3 Competitive Equilibrium

Any MPCE is a competitive equilibrium, i.e., it satisfies firm and household optimality
given the central bank’s policy. In this section, we characterize the conditions that are
necessary and sufficient for a sequence of aggregate allocations and prices to constitute a
competitive equilibrium given a sequence of policies. We use these conditions to illustrate
the non-neutrality of monetary policy in the long run and how long-run inflation is related to
price dispersion and monopoly distortions in a hypothetical steady state. These results are
useful for our analysis in Section 4 and Section 5, where we study the central bank’s problem
and characterize equilibrium policy and the unique steady state of the economy.

15The set of continuation MPCE at a date t starting from any two values of debt is the same. Therefore,
the fiscal authority at the end of the period is indifferent over all values of Bt and can set debt to zero.
Without the Markov restriction, government debt could serve as a payoff-irrelevant coordination device to
select among different equilibria.

16Observe that an MPCE is a sustainable equilibrium, as defined in Chari and Kehoe (1990).
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3.1 Aggregate Production

Define price dispersion Dt ≥ 1 by17

Dt =

∫ 1

0

(
Pj,t
Pt

)−σ
dj.

Observe that Cj,t = Yj,t = Lj,t, where

Ct = Yt =

(∫ 1

0

Y 1−σ−1

j,t dj

) 1
1−σ−1

.

Thus, we can write

Lt =

∫ 1

0

Lj,tdj =

∫ 1

0

Cj,tdj =

∫ 1

0

Ct

(
Pj,t
Pt

)−σ
dj = CtDt,

which, given Ct = Yt, implies

Yt =
Lt
Dt

. (12)

This relationship shows that conditional on a level of labor Lt, higher price dispersion Dt

reduces aggregate production Yt and thus aggregate consumption Ct. The reason is that
households spend too much on low-price varieties and too little on high-price varieties, and
therefore too much labor is drawn to the production of low-price varieties and too little to
the production of high-price varieties.

Using Ct = Yt, we can rewrite the Euler equation (4) as

1 = β
1 + it
Πt+1

Yt
Yt+1

, (13)

where Πt+1 is the gross level of inflation:

Πt+1 =
Pt+1

Pt
. (14)

17We can show that Dt ≥ 1 with equality only when all prices are almost surely equal. To see this,
define the function f(X) ≡ X

σ
σ−1 and note that Dt = Ej [f((Pj,t/Pt)

1−σ)], where the expectation is taken
according to the Lebesgue measure over j ∈ [0, 1]. Now note that f(·) is strictly convex for σ > 1 and thus,
by Jensen’s inequality, we have Ej [f((Pj,t/Pt)

1−σ)] > f(Ej [(Pj,t/Pt)1−σ]), with equality when Pj,t/Pt = 1
almost surely with respect to the Lebesgue measure. Finally, note that by definition of the aggregate price,
Ej [(Pj,t/Pt)1−σ] = 1, so that Ej [f((Pj,t/Pt)

1−σ)] > f(1) = 1.
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Using (12), we can rewrite the intratemporal condition (3) as

Wt

Pt
= Dψ

t Y
1+ψ
t . (15)

This relationship shows that the real wage increases with output and with price dispersion.
The reason for the latter is that the higher is price dispersion, the more households end up
overworking to produce low-price varieties.

To facilitate future discussion, define the labor share µt by

µt =
WtLt
PtYt

.

The labor share is inversely related to monopoly profits and therefore captures the extent of
monopoly distortions. Using (12) and (15), we obtain

µt = (DtYt)
1+ψ . (16)

Holding output fixed, greater price dispersion results in higher real wages (to induce overwork-
ing on low-price varieties), thus increasing the labor share. Moreover, holding price dispersion
fixed, higher output results in higher real wages and higher labor, thus also increasing the
labor share.

3.2 Aggregate Price Dynamics

We next derive the dynamics of price dispersion, the Phillips curve, and a transversality
condition.

Dispersion Dynamics. Since a random fraction 1 − θ of firms are able to adjust their
prices in every period, the price at time t satisfies

P 1−σ
t = (1− θ)(P ∗t )1−σ + θP 1−σ

t−1 .

Substituting with the definition of gross inflation in (14) and rearranging terms yields

P ∗t
Pt

=

(
1− θΠσ−1

t

1− θ

) 1
1−σ

. (17)

Intuitively, this relationship says that the larger is the upward price adjustment from Pt to
P ∗t , the higher is the level of inflation Πt.
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The dynamics of price dispersion are given by

Dt = (1− θ)
(
P ∗t
Pt

)−σ
+ θ

(
Pt−1

Pt

)−σ
Dt−1,

or equivalently, substituting with (14) and (17),

Dt = (1− θ)
(

1− θΠσ−1
t

1− θ

) σ
σ−1

+ θΠσ
tDt−1. (18)

The initial level of dispersion D−1 is given by the initial distribution of prices {Pj,−1}j∈[0,1].
The relationship in (18) is backward looking, with dispersion at t being a positive function

of dispersion at t − 1. As for the effect of inflation on dispersion, there are two forces at
play. On the one hand, higher inflation causes sticky-price firms to be left further behind,
which raises dispersion (second term on the right-hand side of (18)). On the other hand,
higher inflation causes flexible-price firms to catch up to a higher price level, which reduces
dispersion (first term on the right-hand side of (18)). One can show that for non-negative
levels of inflation with Πt ≥ 1, the first force dominates, so higher inflation leads to higher
price dispersion.

Phillips Curve. The first-order conditions from the flexible-price firm’s problem in (9)
yield that at each date t,

P ∗t
Pt

=
σ

σ − 1

∑∞
h=0(βθ)h

(
Pt+h
Pt

)σ
(1+τ)Wt+h

Pt+h∑∞
h=0(βθ)h

(
Pt+h
Pt

)σ−1 .

We introduce an auxiliary variable δt defined by

δ−1
t ≡

∞∑
h=0

(βθ)h
(
Pt+h
Pt

)σ−1

.

This variable allows us to significantly simplify the analysis. Using (14), we can rewrite it
recursively as

δ−1
t = 1 + βθΠσ−1

t+1 δ
−1
t+1. (19)

Then substituting with δ−1
t and (15), the first-order conditions above can be rewritten as

P ∗t
Pt

=
σ

σ − 1
δt

∞∑
h=0

(βθ)h
(
Pt+h
Pt

)σ
(1 + τ)Dψ

t+hY
1+ψ
t+h ,

13



or, recursively,
P ∗t
Pt

=
σ(1 + τ)

σ − 1
δtD

ψ
t Y

1+ψ
t + βθ

δt
δt+1

Πσ
t+1

P ∗t+1

Pt+1

.

Finally, substituting with (14), (17), and (19) yields the following non-linear Phillips curve:

(
1− θΠσ−1

t

1− θ

) 1
1−σ

=
σ(1 + τ)

σ − 1
δtD

ψ
t Y

1+ψ
t + (1− δt)Πt+1

(
1− θΠσ−1

t+1

1− θ

) 1
1−σ

. (20)

The relationship in (20) is forward looking because flexible-price firms adjust their prices
taking into account the path of current and future marginal costs. Specifically, inflation
today is increasing in the expectation of real wages today (given by Dψ

t Y
1+ψ
t ) and in the

expectation of future inflation. Observe that δt, which captures the sensitivity of current
inflation to current real wages, has a useful interpretation of being related to the slope of the
Phillips curve.

Transversality Condition. Combining Equation (10) together with (14), (15), and (17),

and noting that PtCt
(

1−θΠσ−1
t

1−θ

) 1
1−σ

> 0, we can rewrite the transversality conditions as
requiring, for each date t,

lim
h→∞

βθ( h∏
`=1

Πt+`

)σ
h

h [(1− θΠσ−1
t

1− θ

) 1
1−σ 1∏h

`=1 Πt+`

− (1 + τ)Y 1+ψ
t+h D

ψ
t+h

]
= 0. (21)

Observe that if inflation converges and limh→∞Πt+h ≥ 1, then this condition can be satisfied
in the long run only if limh→∞Πt+h < (βθ)−1/σ.

3.3 Necessary and Sufficient Conditions

Our analysis thus far leads to a system of equations that must necessarily hold in each period
t in a competitive equilibrium. The next lemma shows that these conditions are not only
necessary but also sufficient for the construction of a competitive equilibrium.

Lemma 1. Given initial price distribution {Pj,−1}j∈[0,1] and a sequence of policies {it}∞t=0, a
sequence of allocations and prices {Lt, Yt, Dt, δt,Πt}∞t=0 is supported by a competitive equilib-
rium if and only if it satisfies conditions (12), (13), (18), (19), (20), and (21).

An implication of this lemma is that the dispersion of prices Dt−1 is a sufficient statistic
for the distribution of prices Ωt−1. In other words, the set of continuation MPCE at a date
t starting from any two price distributions with the same dispersion is the same. We can
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therefore refine our Markov restriction by replacing Ωt−1 with Dt−1 in our consideration of
household, firm, and central bank strategies.18

3.4 Long Run Monetary Non-Neutrality

A key observation in our environment is that monetary policy is not neutral in the long run.
To see why, consider a hypothetical steady state in which Lt, Yt, Dt, δt,Πt are constant under
a constant policy it. Equations (18)-(20) can be combined to yield the following steady-state
conditions:

D =
1− θΠσ−1

1− θΠσ

(
1− θΠσ−1

1− θ

) 1
σ−1

, (22)

µ

D1+ψ
=

σ − 1

σ(1 + τ)

(
1− θΠσ−1

1− θ

) 1+ψ
1−σ
(

1− θΠσ

1− θΠσ−1

)ψ
1− βθΠσ

1− βθΠσ−1
, (23)

where we have taken into account that the steady-state labor share µ satisfies µ = (DY )1+ψ.
The transversality condition (21) requires Π < (βθ)−1/σ. The next lemma considers

hypothetical steady states that satisfy the stronger condition Π < θ−1/σ, as these will be the
relevant steady states when we study equilibrium policy in the next section.

Lemma 2. Given a fixed gross inflation level Π ∈ [1, θ−1/σ), there are unique values {D,µ}
of price dispersion and labor share that satisfy the steady-state conditions (22)-(23). Moreover,
D and µ are both strictly increasing in Π.

Steady states with higher inflation admit higher price dispersion and lower monopoly
distortions (higher labor shares). Higher inflation results in a larger divergence in prices
between flexible-price firms (which raise prices by more) and sticky-price firms. This results in
higher price dispersion and labor misallocation. At the same time, higher inflation increases
overhiring by sticky-price firms. This overhiring increases the labor share and reduces
monopoly distortions. We note that there are two subtle competing forces behind this last
comparative static. On the one hand, high inflation means that sticky-price firms will be
overproducing and overhiring, thus contributing to an increase in the labor share. On the
other hand, high inflation means that flexible-price firms will anticipate that in the future
they will overproduce and overhire if unable to change their prices. These firms increase their
prices to counteract that future possibility, thus contributing to a decrease in the labor share.
Because of discounting, however, this second anticipatory force is always dominated by the

18Without the Markov restriction, the distribution of prices could serve as a payoff-irrelevant coordination
device to select among different equilibria.
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first force through sticky-price firms.
Two observations regarding potential steady states are useful to keep in mind for evaluating

the impact of the central bank’s lack of commitment in the next sections. First, note that As-
sumption 1 implies that monopoly distortions are present in a zero-inflation and zero-dispersion
steady state (i.e., from (22)-(23), if Π = 1, then D = 1 and µ = (σ − 1)/[σ(1 + τ)] < 1). This
assumption means that there is a tradeoff between reducing price dispersion and reducing
monopoly distortions in this economy, and this guides the dynamic inflation-output tradeoff
of the central bank.

Second, note that our environment does not pin down transition dynamics for inflation.
Specifically, consider a hypothetical transition from an initial steady state with inflation Π to
one with inflation Π′ > Π.19 There are multiple potential transition paths between the steady
states which are consistent with the conditions in Lemma 1. One potential transition path
admits inflation immediately jumping from Π to Π′, with Dt and µt (through Yt) evolving
according to (18)-(20). Other transition paths may admit both temporary and permanent
changes in inflation. The implication is that economic forces do not directly drive inflation
dynamics. Any inflation dynamics that emerge in our model are instead driven by the
interaction of economic forces with the central bank’s lack of commitment which determines
the path of policy.

4 Equilibrium Policy

Thus far, we have defined conditions for a competitive equilibrium and characterized the
economy under different hypothetical steady states. We have also illustrated the potential
for multiple paths between hypothetical steady states. In this section, we characterize the
policy chosen by a central bank without commitment at every date, and we show how this
policy path determines the system of equations defining the steady state of the economy and
transition dynamics.

4.1 Central Bank Problem

At every date t, the central bank sets the interest rate it to maximize social welfare which is
given by (1). Given a distribution of prices Ωt implying dispersion Dt, and substituting with

19The exercise is to take the economy in a given steady state and consider what happens following an
unanticipated change in policy that leads the economy on a transition path towards a new steady state.
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(12), we can write social welfare at t recursively as follows:

V (Dt) = log(Yt)−
(DtYt)

1+ψ

1 + ψ
+ βV (Dt+1), (24)

where we have taken into account that the Markov structure of the equilibrium implies that
welfare depends only on the dispersion of prices. Observe that from the perspective of the
central bank, the price distribution Ωt at t, which determines the price level Pt and dispersion
Dt, is predetermined. Furthermore, because of the Markov structure, it follows that the price
distribution Ωt+1 at t + 1 is also predetermined from the perspective of the central bank
at t and is equal to Ωt+1 = Γ (Ωt), since firms at t + 1 will set their prices taking as given
the prevailing distribution Ωt. This means that the central bank at date t cannot influence
future dispersion Dt+1 or the value of V (Dt+1). Moreover, the central bank choosing interest
rates at t takes Pt+1 (and therefore Πt+1) and Yt+1 as given. From the Euler equation (13), it
follows that the central bank can directly choose Yt by choosing it without affecting future
variables (off the equilibrium path).

Taking this into account, the derivative of (24) with respect to Yt is

1

Yt
−D1+ψ

t Y ψ
t . (25)

A rate cut by the central bank increases consumption (the first term in (25)) at the cost
of increased labor effort (the second term in (25)). The marginal benefit of a rate cut is
decreasing in price dispersion Dt which reduces aggregate labor productivity by raising labor
misallocation. Moreover, for Yt < D−1

t , the marginal benefit of a rate cut is higher the lower
is output Yt, since lower output (caused by monopoly distortions) is associated with a larger
gap between the marginal rate of substitution and the marginal product of labor.

Setting (25) to zero, the central bank’s first-order condition yields

Yt = D−1
t . (26)

The central bank chooses interest rates to undo all monopoly distortions and to close the gap
between the marginal rate of substitution and the marginal product of labor. Using (16),
this means that the central bank sets the labor share µt to 1.

We make three remarks regarding the central bank’s policy. First, note that the central
bank does not internalize how firms’ anticipation of its policy at t impacts the distribution of
prevailing prices at t, which impacts price dispersion Dt. This price distribution is determined
by firm decisions made in all periods prior to t. This feature of our dynamic environment
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captures the classic commitment problem addressed in the static models of Barro and Gordon
(1983) and Rogoff (1985).20

Second, note that substitution of the central bank’s first-order condition (26) into the
Euler equation yields a policy function

1 + it =
1

β
Πt+1Yt+1Dt. (27)

This central bank reaction function—which emerges from dynamic optimization on and off the
equilibrium path—shares several properties with the exogenous Taylor rules that are typically
considered when evaluating quantitative monetary models. In particular, the interest rate is
increasing in future expected inflation and in future expected output. It also reacts to the
degree of price dispersion today, and this stems from the central bank’s marginal benefit of
cutting interest rates in (25).21 Specifically, holding future expectations fixed, higher price
dispersion reduces labor productivity by generating labor misallocation. This reduces the
benefit to the central bank of stimulating the economy to boost consumption. We will see
in the next section that this is important when evaluating the evolution of central bank
incentives along the equilibrium path.

Finally, note that the optimal discretionary policy of the central bank—which sets the
labor share to 1—is independent of the underlying price-setting model. This means that our
analysis can be extended to other environments with sticky prices such as menu-cost models
or models with rational inattention, where steady-state inflation and inflation dynamics can
be studied under lack of commitment.

4.2 System of Equations

An MPCE is characterized by combining the conditions in Lemma 1 (specifically (18)-(20))
with the central bank’s first-order condition (26). This yields a system of two equations
defining the dynamics of price dispersion Dt and inflation Πt:

Dt = (1− θ)
(

1− θΠσ−1
t

1− θ

) σ
σ−1

+ θΠσ
tDt−1, (28)

20Moreover, note that while (19) and (20) hold along the equilibrium path, they need not hold off the
equilibrium path if the central bank deviates, since in that case firms would have chosen their prices without
the correct anticipation of policy.

21An interesting avenue for future work is to consider how this framework is different from others in
addressing issues of potentially unstable inflation expectations and implementation (e.g., Woodford, 2003;
Atkeson, Chari, and Kehoe, 2010; Cochrane, 2011; Galí, 2015). As in Atkeson, Chari, and Kehoe (2010),
the central bank in our model responds to an off-equilibrium increase in inflation and dispersion by raising
interest rates sufficiently that an individual flexible-price firm would actually want to engage in lower price
increases off the equilibrium path.
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(
1− θΠσ−1

t

1− θ

) 1
1−σ

=
σ(1 + τ)

σ − 1
δtD

−1
t + (1− δt)Πt+1

(
1− θΠσ−1

t+1

1− θ

) 1
1−σ

, (29)

where δt is a function of {Πt+h}∞h=1 as defined in Equation (19), and where {Dt,Πt}∞t=0 must
satisfy the transversality condition in (21) given (26).

5 Main Results

Evaluating the dynamics around the steady state of our economy is challenging given the
non-linear nature of the difference equations in (28)-(29). To present our main results, we
consider the continuous-time limit of our model.22 We derive this limit in Appendix A, where
we introduce a generalized version of the model for an arbitrary time step dt and take the
limit as dt→ 0. Section 5.1 below describes the system of equations defining an MPCE in
the continuous-time limit. We then characterize the steady state of our economy and the
transition dynamics around the steady state in Section 5.2 and Section 5.3. We perform
comparative statics, highlighting how changes in the economic environment impact the steady
state and the transition path between steady states. Finally, in Section 5.4, we explore the
quantitative implications of our model.

5.1 Continuous-Time Limit

Let λ ≡ − log(θ) and ρ ≡ − log(β), and define πt ≡ d
dt

log(Pt) as the instantaneous rate of
inflation at time t. Using (28)-(29) together with (19), Appendix A shows that the dynamics
of price dispersion and inflation in the continuous-time limit of our model are given by

Ḋt = λ

(
1− σ − 1

λ
πt

) σ
σ−1

+ (σπt − λ)Dt, (30)

π̇t = −λσ(1 + τ)

σ − 1

(
1− σ − 1

λ
πt

) σ
σ−1 δt

Dt

+ (δt − πt)[λ− (σ − 1)πt], (31)

where δ̇t = δ2
t + [(σ−1)πt− (ρ+λ)]δt, and where {Dt, πt}∞t=0 must satisfy the continuous-time

version of the transversality condition in (21) given (26):

lim
h→∞

e[−(ρ+λ)+σ
h

∫ h
0 πt+`d`]h

[(
1− σ − 1

λ
πt

) 1
1−σ

e−
∫ h
0 πt+`d` − 1 + τ

Dt+h

]
= 0. (32)

22Taking the continuous-time limit is not necessary to perform comparative statics of the steady state, but
it does facilitate the analysis of transition dynamics.
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5.2 Steady State

Our first main result establishes that there is a unique steady state in which price dispersion
Dt and inflation πt are constant and satisfy the system of equations (30)-(31) together with
the transversality condition in (32).23 We define Dss (τ, σ) and πss (τ, σ) as the values of price
dispersion and inflation in the steady state conditional on the labor wedge τ and the elasticity
of substitution across varieties σ, and we study their comparative statics. Let us define

τ(σ) =

∞ if σ ≤ 2

1
σ2−2σ

otherwise.

We obtain the following result:24

Proposition 1. There is a unique steady state {Dss (τ, σ) , πss (τ, σ)}. Moreover,
1. Dss (τ, σ) and πss (τ, σ) are both strictly increasing in the labor wedge τ .
2. Dss (τ, σ) is strictly decreasing in the elasticity of substitution σ for τ < τ(σ), and

πss (τ, σ) is strictly decreasing in σ for all τ .

This proposition states that long-run price dispersion and inflation are higher the higher
is the labor wedge τ and the lower is the elasticity of substitution across varieties σ (the
latter holding for dispersion provided that τ < τ(σ)). To understand these comparative
statics, consider the incentives of the central bank starting from a given steady state. The
central bank chooses a constant interest rate to set the labor share to 1. Any consumption
benefit from stimulating output beyond that of the steady state is exactly outweighed by the
cost of labor effort needed to do so. Now consider what happens following an unanticipated
permanent increase in τ or an unanticipated permanent decrease in σ. A central bank with
commitment would be able to respond to these changes in a way that preserves the level of
inflation; however, this is not incentive compatible under lack of commitment.

As an illustration, take the limiting case of Assumption 1 and suppose the economy begins
in a steady state in which τ = −1/σ. From (30)-(31) with Ḋt = π̇t = δ̇t = 0, the steady state
admits zero price dispersion with D = 1 and zero inflation with π = 0, and the labor share
satisfies µ = 1. Suppose that τ permanently increases. A central bank with commitment
could preserve the levels of price dispersion and inflation by keeping nominal interest rates

23The system of equations (30)-(31) admits two solutions, but only one of them satisfies transversality.
24We show in the proof of Proposition 1 that steady-state inflation satisfies πss (τ, σ) < λ/σ, which

corresponds to Πss (τ, σ) < θ−1/σ in discrete time, as assumed in Lemma 2.
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fixed forever. From Equation (23), the labor share would permanently decrease to satisfy

µ =
σ − 1

σ(1 + τ)

under the new higher level of τ .25

For a central bank without commitment, this policy which stabilizes price dispersion and
inflation is not incentive compatible. The reason is that it entails a reduction in the labor
share, and the central bank has an incentive to undo the increase in monopoly distortions by
stimulating output. If firms naively anticipated inflation stability, the central bank’s best
response would be to surprise markets by cutting interest rates.26

Flexible-price firms however are not naive. In equilibrium, they rationally forecast the
monetary stimulus and the higher future labor demand and higher future real wages that
ensue (relative to the commitment case). They also expect further inflation in the future.
These expected future changes necessitate higher offsetting prices today. Over time, sequential
price increases by flexible-price firms result in rising price dispersion. Eventually, the rise in
dispersion reduces aggregate productivity sufficiently to offset the central bank’s benefit from
cutting interest rates, leading to a new steady state. Therefore, we obtain that both long-run
price dispersion and inflation are higher if the labor wedge τ is higher. Furthermore, observe
that steady-state output and the real wage (which are equal to each other) are lower under a
higher labor wedge.

The intuition for a shock that permanently reduces the elasticity of substitution σ is
similar. In this case we establish the comparative static on long-run price dispersion under a
positive upper bound on the labor wedge τ if σ > 2. The reason is that σ affects the law of
motion of dispersion in (30); if τ > τ(σ), in principle dispersion could increase with σ. The
comparative static on long-run inflation however is unambiguous: a reduction in σ increases
monopoly distortions, and the central bank’s policy always leads to an increase in long-run
inflation in response.

5.3 Transition Dynamics

Our second main result concerns the transition dynamics between steady states. We study
an economy that transitions from an initial steady state to one with higher inflation following

25Analogous logic applies if σ decreases starting from τ = −1/σ. More generally, the same reasoning applies
with respect to the feasibility and the incentive incompatibility of inflation stabilization beginning from a
positive-inflation steady state with τ > −1/σ. The only caveat in that case is that changes in σ require
transition dynamics in dispersion and the labor share to support inflation stabilization.

26Formally, from the central bank’s policy function (27), a reduction in Yt+1 (due to the reduction in the
labor share) holding Πt+1 and Dt fixed requires a reduction in it.
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an unanticipated permanent shock. We show that inflation overshoots along the transition
path to the new steady state.

Proposition 2. Take the economy at steady state {Dss (τ, σ) , πss (τ, σ)} at a time tss.
1. Consider the transition to steady state {Dss (τ ′, σ) , πss (τ ′, σ)} following an unantici-

pated shock that permanently increases the labor wedge to τ ′ > τ . There exists t′ ≥ tss

such πt > πss (τ ′, σ) for all t > t′.
2. Consider the transition to steady state {Dss (τ, σ′) , πss (τ, σ′)} following an unanticipated

shock that permanently decreases the elasticity of substitution to σ′ < σ given τ < τ̄(σ).
There exists t′ ≥ tss such πt > πss (τ, σ′) for all t > t′.

Proposition 2 considers an unanticipated permanent shock that increases the labor wedge
τ or reduces the elasticity of substitution across varieties σ. From Proposition 1 we know that
long-run price dispersion and inflation increase in response to the shock. What Proposition 2
tells us is that inflation in the transition increases by more than in the long run; that is,
transition dynamics involve inflation overshooting. The proof of this result evaluates the
three-dimensional phase diagram for price dispersion Dt, inflation πt, and the auxiliary
variable δt along a transition where Dt rises towards a higher steady-state level. Below,
we provide a heuristic description by considering a two-dimensional representation of the
three-dimensional phase diagram, keeping the value of δt fixed at its steady-state level. This
modified phase diagram is depicted in Figure 1.

The π̇t = 0 locus in Figure 1 is a representation of the non-linear Phillips curve in (31).
This locus is downward sloping: higher inflation is sustained by lower price dispersion in a
steady state, since lower levels of dispersion increase output and real wages, necessitating
higher price increases by firms. Inflation increases if dispersion is above the locus (real wages
decline, so higher future inflation sustains the current inflation level), and it decreases if
dispersion is below the locus (real wages increase, so lower future inflation sustains the current
inflation level).

The Ḋt = 0 locus in Figure 1 is a representation of the dispersion dynamics equation
in (30). This locus is upward sloping: higher inflation is required to sustain higher price
dispersion in a steady state, with the main forces being as discussed in our derivation of
dispersion dynamics in Section 3.2. Price dispersion increases if inflation is above the locus,
and it decreases if inflation is below the locus.

The intersection of the π̇t = 0 and Ḋt = 0 loci represents the steady state. As depicted in
Figure 1, we show that the steady state admits a unique saddle path, and along this saddle
path inflation and price dispersion evolve in opposite directions. For intuition, recall the
scenario described in the previous section: take an economy with zero inflation (π = 0) and
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Figure 1: Phase Diagram for Inflation and Price Dispersion

D

π

Ḋ = 0
π̇ = 0
Saddle Path

Notes: This figure illustrates the phase diagram of the dynamic economy in the dispersion-inflation (D,π)
plane, holding δ fixed. The Ḋ = 0 locus is upward sloping and the π̇ = 0 locus is downward sloping. The
intersection point is the steady state when the fixed δ is at its steady-state level. The flows of D and π are
depicted by the black arrows in the different regions of the plane. The directions of these flows indicate that
any transition dynamics to the steady state should be along a saddle path with a negative slope.

zero dispersion (D = 1), where this dispersion level is strictly below steady-state. While
a central bank with commitment could preserve zero inflation and zero dispersion forever,
a central bank without commitment would want to take advantage and cut interest rates
to stimulate wages and boost output, so as to reduce monopoly distortions. Therefore,
the economy must gradually transition to a new steady state with positive inflation and
dispersion. Along the transition path, the central bank sees a relatively larger benefit to
stimulating output early in the transition when dispersion and labor misallocation are low;
once these rise sufficiently, it is no longer as worthwhile to stimulate labor to generate
additional consumption. Flexible-price firms in turn realize that monetary stimulus will
be larger earlier in the transition, so they offset the ensuing higher wage costs with price
increases that are also relatively larger earlier in the transition. The implication is rising
price dispersion and declining inflation along the transition path.

To understand the inflation overshooting result in Proposition 2, Figure 2 depicts the
response to an unanticipated permanent increase in the labor wedge τ in the phase diagram.
This shock does not affect the Ḋt = 0 locus but shifts upward the π̇t = 0 locus: by (31), a
higher level of price dispersion is needed to preserve a given level of inflation so as to offset
the higher real wage costs due to the increase in τ . The new steady state following the shock
is shown at the crossing point of the two loci, associated with higher inflation and higher
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price dispersion than in the initial steady-state crossing point.

Figure 2: Transition Dynamics for Unanticipated Increase in Labor Wedge

ju
m
p

converge

D

π
Ḋ = 0
π̇ = 0
Saddle Path

Notes: This figure illustrates the transition dynamics of dispersion and inflation following an unanticipated
permanent increase in the labor wedge τ . The shock shifts the π̇ = 0 locus upwards while leaving the Ḋ = 0
locus unchanged. Inflation jumps on impact to move the economy to its new saddle path, after which D
increases and π declines towards their new steady-state levels. The transition involves inflation overshooting.

Figure 2 shows that the transition to the new steady state involves inflation overshooting:
in the figure, when τ increases, inflation immediately jumps upward and then gradually
declines towards its new steady-state level. This overshooting emerges because of the evolution
of central bank incentives as price dispersion rises along the transition path. As discussed
above, the central bank has a higher incentive to stimulate the economy earlier in the
transition when dispersion is low, and this results in high inflation early in the transition.
Over time, as dispersion rises, the central bank’s incentive to stimulate the economy declines,
and so does inflation.

Transition dynamics following an unanticipated permanent decrease in the elasticity of
substitution σ are similar to those above (given τ < τ̄(σ), as stated in Proposition 2). In
this case, both loci in Figure 1 shift upward, and inflation overshoots in the transition to
the new steady state. Moreover, transition dynamics are analogous if either the labor wedge
τ permanently decreases or the elasticity of substitution σ permanently increases. In both
cases, starting from a given steady state, inflation overshoots downward and then increases
towards a new steady state with lower inflation.
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5.4 Quantitative Implications

In this section, we study the quantitative implications of our model. We use a standard
parameterization of the New Keynesian model and simulate a discrete-time economy in which
every time period corresponds to a month. We take a discount factor β = (1.02)−1/12 to
target a steady-state annual real interest rate of 2 percent. The probability that a firm has
sticky prices is set at θ = 0.86 to target an average duration of price stickiness of 7 months
(e.g., Nakamura and Steinsson, 2008). The elasticity of substitution across varieties is set at
σ = 7, in line with previous research on the cost of inflation (e.g., Coibion, Gorodnichenko,
and Wieland, 2012). The inverse elasticity of labor supply is set at ψ = 2.5, which is in the
range of estimates in the literature (e.g., Chetty, Guren, Manoli, and Weber, 2011).27 Finally,
for the labor wedge, we specify τ = −0.1427 to target a steady-state annual inflation rate
of 2 percent under central bank lack of commitment.28 Table 1 summarizes our choice of
parameters.

Table 1: Parameters

Parameter Value Target

Discount factor, β (1.02)−1/12 2% annual real interest rate

Fraction of sticky-price firms, θ 0.86 Nakamura and Steinsson (2008)

Elasticity of substitution, σ 7 Coibion, Gorodnichenko, and Wieland (2012)

Inverse Frisch elasticity, ψ 2.5 Chetty, Guren, Manoli, and Weber (2011)

Labor wedge, τ −0.1427 2% annual inflation without commitment

Starting from the steady state of the economy given the parameter values in Table 1,
Figure 3 considers the transition to a new steady state following an unanticipated permanent
shock that increases the labor wedge τ by 0.5 percent. The figure displays the transition
paths of price dispersion, real output, the price inflation rate, the nominal wage growth rate,
the nominal interest rate, and the real interest rate, where the monthly values for the latter
four variables are represented in annualized form.

In line with our analytical results, Figure 3 shows that inflation overshoots following the
shock by immediately jumping up from its initial 2 percent level (not shown in the figure
given the scale) and then gradually declining towards its new higher steady-state level. The
nominal interest rate jumps up and continues to increase throughout the transition, while

27Observe that this choice has no bearing on our findings under lack of commitment, since ψ does not enter
the dynamic equations characterizing our economy. This value only affects the findings under commitment to
inflation targeting and the estimates of welfare that we discuss at the end of this section.

28This value is uniquely pinned down given the comparative statics in Proposition 1.
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Figure 3: Response to Unanticipated Increase in Labor Wedge
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Notes: This figure shows the transition dynamics following an unanticipated permanent increase in the labor
wedge from τ = −0.1427 to τ = −0.1420 (a 0.5% increase). Both inflation and interest rates are annualized
(annual inflation = e12πt − 1). The initial steady state is calibrated to correspond to an annual inflation rate
of 2%, not shown in the figure given the scale.

the real interest rate jumps down (since the central bank initially stimulates the economy to
weather the shock) and then gradually returns to its original level. Along the transition path,
output gradually falls as price dispersion and labor misallocation increase. Nominal wage
inflation jumps up initially in tandem with price inflation, and it then gradually converges to
a permanently higher level. Note that wage inflation is below price inflation; these dynamics
underpin the permanent long-run decline in the real wage.

The quantitative impact of the shock on inflation is large. We find that following a 0.5
percent increase in the labor wedge, the steady-state inflation rate increases from 2 percent to
8.76 percent. Moreover, we find that the shock has a large impact on the degree of inflation
overshooting. Following the 0.5-percent labor wedge shock, the inflation rate rises to 10.11
percent on impact, above its new steady-state level of 8.76 percent. This overshooting is
persistent: it takes 12 months for the inflation rate to decline within 25 basis points of the
new steady-state level.

The dynamics in Figure 3 are markedly different from those that would arise under
inflation targeting, namely if the central bank was committed to maintaining a 2 percent
inflation level in every period. Under inflation targeting, the central bank would keep real
and nominal interest rates fixed so as to preserve the level of inflation. Following the shock
to the labor wedge, output would immediately decline and would remain at a permanently
lower level. Price dispersion would not change in response to the shock.
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Figure 4: Response to Unanticipated Decrease in Elasticity of Substitution
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Notes: This figure shows the transition dynamics following an unanticipated permanent decrease in the
elasticity of substitution from σ = 7 to σ = 6.97 (a 0.5% decrease). Both inflation and interest rates are
annualized (annual inflation = e12πt − 1). The initial steady state is calibrated to correspond to an annual
inflation rate of 2%, not shown in the figure given the scale.

Figure 4 presents an analogous exercise to that in Figure 3 by considering the impact
of an unanticipated permanent shock that decreases the elasticity of substitution σ by 0.5
percent. The economic response is similar as in the case of a positive labor wedge shock,
and is in line with our analytical results. Starting from its initial 2 percent level (not shown
in the figure given the scale), inflation overshoots on impact when σ decreases, and it then
gradually declines to a permanently higher steady-state level. The quantitative impact is
large for reasons analogous to those under a labor wedge shock. As for the contrast with the
dynamics that would arise under inflation targeting, things are different when the shock is to
σ rather than τ . The reason is that the change in the elasticity of substitution σ directly
affects the dynamic relationship between price dispersion and inflation. If the central bank
was committed to maintaining a 2 percent inflation level in every period, then following a
decrease in σ steady-state price dispersion would decline,29 and the real and nominal interest
rates would evolve so as to facilitate the transition of the economy to the lower dispersion
level.

The exercises above provide a framework for evaluating the welfare benefits of inflation
targeting relative to our central bank’s policy under lack of commitment. Given an unantic-
ipated permanent shock, the benefit of inflation targeting over the no-commitment policy

29This is because greater differentiation across varieties means that relative price differences are a less
important source of misallocation.
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Table 2: Inflation Targeting versus No Commitment

Scenario
Welfare under

Targeting

Welfare under

No Commitment

Welfare

Difference

Labor wedge shock 0.981 0.922 0.059

Elasticity of substitution shock 0.981 0.921 0.060

Notes: The table reports welfare expressed in consumption-equivalent terms relative to an identical economy
with flexible prices. That is, we compute, right after each shock, how much a household would require in
consumption to be indifferent between living in an economy with sticky prices and inflation targeting/no
commitment and living in an economy with flexible prices where consumption and its implied labor supply
are forever constant at the offered level.

is that it reduces the misallocation cost of long-run price dispersion in the economy. The
benefit of the no-commitment policy is that it reduces the short-run and long-run costs of
rising monopoly distortions. We compare welfare under each regime in Table 2, where welfare
is expressed in consumption-equivalent terms relative to an identical economy with flexible
prices. The table considers the two scenarios studied in Figure 3 and Figure 4, namely an
unanticipated permanent 0.5 percent increase in the labor wedge and decrease in the elasticity
of substitution.

We find that in both scenarios, welfare under inflation targeting is strictly higher than
under lack of commitment. Moreover, the welfare gains from inflation targeting are substantial,
at about 6 percent in consumption-equivalent terms. In other words, the long-run price
dispersion costs under lack of commitment far outweigh the benefits from reducing monopoly
distortions, and the high discount factor β implies that these costs enter prominently in the
welfare calculation. The analysis suggests that there can be significant benefits to institutions
that enhance commitment to inflation targeting.

The large quantitative impact of shocks, both on inflation dynamics and on welfare relative
to inflation targeting, is a robust feature of our model. It emerges because the steady-state
labor share is relatively insensitive to inflation; much of the positive effect of inflation on
the labor share via sticky-price firms is offset by the negative effect via forward-looking
flexible-price firms.30 In fact, note that standard calibrations of the New Keynesian model
take high values of β and low values of θ. This means that in response to monetary stimulus,
there is a large number 1− θ of flexible-price firms which raise prices significantly to protect
against potentially overhiring in the future, and this puts downward pressure on the labor
share.31 As a result, a central bank without commitment—which seeks to keep the labor share

30See the discussion following Lemma 2 in Section 3.4.
31A low value of θ also implies that flexible-price firms place a low probability on the likelihood of not
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from declining—ends up increasing inflation substantially in response to a small increase in
the labor wedge or a small reduction in the elasticity of substitution.

To see this formally, consider the long-run Phillips curve, derived by combining steady-
state equations (22) and (23) to express the relationship between the long-run labor share µ
and long-run inflation Π:32

µ =
σ − 1

σ(1 + τ)

[
1 + (1− β)

θΠσ−1(Π− 1)

(1− θΠσ)(1− βθΠσ−1)

]
. (33)

If the discount factor β is close to 1, then the term in brackets on the right-hand side of
(33) is relatively insensitive to Π. Thus, in this case, the labor share µ does not respond
significantly to inflation and we obtain an almost vertical long-run Phillips curve. As a
consequence, small changes in the labor wedge τ or the elasticity of substitution σ require
large changes in inflation Π to keep the labor share µ unchanged in (33). This explains the
large quantitative magnitudes in our model.

There are several implications that follow from this discussion. First, any changes to
parameters or to the underlying price-setting mechanism which result in a flatter long-run
Phillips curve would imply smaller quantitative magnitudes in our model. Second, such
changes would also imply a lower value of commitment to inflation targeting, since the central
bank’s lack of commitment would then have a smaller effect on equilibrium inflation and
price dispersion. Finally, changes that yield a flatter long-run Phillips curve would also imply
meaningful economic benefits from long-run inflation, indicating that inflation targeting at
too low an inflation rate would be costly for society.

6 Concluding Remarks

In this paper, we introduced central bank lack of commitment into a standard non-linear
New Keynesian model with monopolistically competitive firms and sticky prices. We charac-
terized long-run inflation and studied transition dynamics as the economy responds to an
unanticipated permanent shock that increases the labor wedge or decreases the elasticity
of substitution across varieties. While a central bank with commitment would be able to
keep inflation unchanged, inflation stabilization is not incentive compatible for a central bank
without commitment. The private sector anticipates central bank accommodation following
the shock, and inflation overshoots before declining to a permanently higher level. These

being able to adjust prices in the future. While this implies a low anticipatory channel for each individual
flexible-price firm, this effect is offset by the fact that a low θ implies a large share of flexible-price firms.

32We express these in discrete time for expositional symmetry with the discussion in Section 3.4, but the
same point can be made using the continuous-time representation.
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effects are quantitatively large, as is the welfare loss from lack of commitment relative to
inflation targeting.

Our framework is useful in interpreting the inflationary spike that has befallen advanced
economies in the aftermath of the COVID-19 pandemic. Many questions have emerged
regarding the causes of this inflation and whether central banks will ultimately be successful
in bringing inflation back down to historic levels. Our analysis suggests that the types
of shocks that impacted post-pandemic advanced economies—a decrease in immigration
which changed the composition of labor towards more regulated labor sources (higher labor
wedge) and the supply chain disruptions which increased the market power of domestic firms
(lower elasticity of substitution)—do not raise inflation on their own. These shocks raise
inflation through their interaction with the central bank’s lack of commitment to inflation
stabilization. Moreover, inflation can overshoot in response to these shocks as the private
sector rationally anticipates the central bank’s response. Our results suggest that if these
shocks are permanent, then central banks are unlikely to be able to bring inflation back down
to historic norms. This is true in our model as long as the central bank operates with full
discretion as opposed to a strict commitment to inflation targeting.

Our analysis leaves a number of avenues for future research. First, while we have examined
the canonical New Keynesian model with Calvo pricing, our approach can be applied to
other models of price setting, such as menu-cost models. The optimal policy of the central
bank without commitment—which sets the labor share to 1—is invariant to the details of
the underlying price-setting model, and future research can use our approach to explore
how inflation dynamics might change under different models. Second, by focusing on the
stable steady state, we have ignored broader issues involving equilibrium implementation
and off-equilibrium inflation stability. A natural question concerns the extent to which lack
of commitment on and off the equilibrium path increases or decreases the scope for off-
equilibrium inflation stability in our framework. Finally, our model abstracts from monetary
and fiscal interactions by assuming lump sum taxes and Ricardian equivalence. It would be
interesting to relax the assumption of Ricardian equivalence and study how central bank lack
of commitment interacts with fiscal lack of commitment. Since our analytical framework does
not assume a long-run level of debt (as it is not linearized), it can facilitate such an analysis.
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Appendix A Continuous-Time Limit

In this appendix, we solve the discrete-time model for an arbitrary time step of length dt and
derive the continuous-time limit as dt→ 0. For completeness, we first reiterate the derivations
of the discrete-time model for a given dt, where dt = 1 corresponds to the derivations in the
main text.

Time now runs at increments of dt, so that t ∈ Tdt ≡ {0, dt, 2dt, . . .}. Letting ρ ≡ − log(β),
the household’s problem for a given dt is given by

max
Ct,Lt,Bt,(sj,t,Cj,t)j∈[0,1]

∑
t∈Tdt

e−ρt

(
log(Ct)−

L1+ψ
t

1 + ψ

)
dt

subject to∫ 1

0

Pj,tCj,tdjdt+Bt ≤ WtLtdt+ (1 + it−dtdt)Bt−dt +

∫ 1

0

sj,tXj,tdtdj +

∫ 1

0

(sj,t−dt − sj,t)P S
j,tdj − Ttdt,

Ct =

(∫ 1

0

C1−σ−1

j,t dj

) 1
1−σ−1

.

Note that this expression of the problem redefines Cj,t, Ct, Lt, Xj,t and Tt as rates of
consumption, labor supply, profits, and lump-sum taxes per dt.

The implied demand for varieties j ∈ [0, 1], the definition of the aggregate price Pt, the
price dispersion measure Dt, and the intratemporal labor supply condition are all identical to
those in the main text because they follow from static decisions that are not affected by the
time step dt. To reiterate these, we have

Cj,t = Ct

(
Pj,t
Pt

)1−σ

,∀j, Pt =

(∫ 1

0

P 1−σ
j,t dj

) 1
1−σ

, Dt =

∫ 1

0

(
Pj,t
Pt

)−σ
dj,

Wt

Pt
= CtL

ψ
t .

Moreover, under the assumptions in the main text—in particular, the fact that firms produce
with Yj,t = Lj,t and always produce enough to meet their demand—we can still use the labor
market clearing conditions to derive the aggregate production function of the economy as

Lt =

∫ 1

0

Lj,tdj =

∫ 1

0

Cj,tdj = Ct

∫ 1

0

(
Pj,t
Pt

)−σ
dj = CtDt =⇒ Ct =

Lt
Dt

,

where Dt is defined as the price dispersion measure similar to the main text.
The Euler equations for nominal bonds and stocks, however, are affected by the time step
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and are given by

1

PtCt
= e−ρdt(1 + itdt)

1

Pt+dtCt+dt

,

P S
j,t = Xj,tdt+

1

1 + itdt
P S
j,t+dt,∀j.

Rearranging these, we obtain the following expressions:33

Ṗt
Pt

+
Ċt
Ct

= it − ρ, Ṗ S
j,t = itP

S
j,t −Xj,t, ∀j ∈ [0, 1]

where for any variable Xt, we define Ẋt as their rate of change over time, i.e., Ẋt ≡ dXt/dt.
Integrating the Euler equation for stocks forward and assuming no bubbles gives us the
household’s valuation of firms at time t:

P S
j,t =

∫ ∞
0

e−
∫ h
0 it+sdsXj,t+hdh =

∫ ∞
0

e−ρh
PtCt

Pt+hCt+h
Xj,t+hdh.

We will use this valuation to rewrite the optimization problem of a firm that gets the
opportunity to reset its price. Before we do so, we have to adjust the frequency of price
changes such that the probability of changing prices is independent of the choice of dt. To
this end, let θdt be the probability of not getting the opportunity to adjust the price at an
interval of length dt. This defines a consistent distribution of price adjustment frequency for
different values of dt such that for any interval length T , the probability of not adjusting the
price is θT , independent of dt. With T = 1, this corresponds to the model in the main text
where dt = 1. With dt→ 0, it corresponds to a Poisson process where the arrival rate of price
adjustment opportunities is λ ≡ − log(θ). We obtain a well-defined limit: under the Poisson
arrival rate of λ, the implied distribution of time between price changes is exponential with
scale λ. Accordingly, the probability of not adjusting the price in a period of length T is
e−λT = elog(θ)T = θT .

Now, for a given dt, a flexible-price firm’s problem for choosing its reset price is given by
maximizing the net present value of its profits in the history where it is stuck with the price
it chooses at date t:

max
P ∗t

∑
h∈Tdt

e−(ρ+λ)h PtCt
Pt+hCt+h

[P ∗t − (1 + τ)Wt+h]Ct

(
P ∗t
Pt+h

)−σ
dt.

33These expressions follow from dividing the equations above by dt and taking the limit as dt→ 0.
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The first-order condition for P ∗t is

∑
h∈Tdt

e−(ρ+λ)h PtCt
Pt+hCt+h

Ct+hP
σ
t+h

[
P ∗t −

σ(1 + τ)

σ − 1
Wt+h

]
dt = 0,

which, following the main text, can be simplified and rewritten as

P ∗t
Pt

=
σ(1 + τ)

σ − 1

∑
h∈Tdt e

−(ρ+λ)h
(
Pt+h
Pt

)σ
Wt+h

Pt+h
dt∑

h∈Tdt e
−(ρ+λ)h

(
Pt+h
Pt

)σ−1

dt
. (A.1)

We can again define the auxiliary variable δt as the inverse of the denominator in (A.1), which
can be written recursively as

δ−1
t ≡

∑
h∈Tdt

e−(ρ+λ)h

(
Pt+h
Pt

)σ−1

dt = dt+ e−(ρ+λ)dt

(
Pt+dt

Pt

)σ−1

δ−1
t+dt. (A.2)

Similarly, we can write (A.1) recursively as

P ∗t
Pt

=
σ(1 + τ)

σ − 1

Wt

Pt
δtdt+ e−(ρ+λ)dt

(
Pt+dt

Pt

)σ
δt
δt+dt

P ∗t+dt

Pt+dt

(A.3)

=
σ(1 + τ)

σ − 1

Wt

Pt
δtdt+ (1− δtdt)

Pt+dt

Pt

P ∗t+dt

Pt+dt

,

where the second line follows from substituting (A.2) in (A.3).
Next, we can derive the aggregate price as

P 1−σ
t =

∫ 1

0

P 1−σ
i,t dj = e−λdt(P ∗t )1−σ + (1− e−λdt)P 1−σ

t−dt,

where we have used the property that the set of firms with sticky prices are a random sample
of the population at each instant. This equation implies the following relationship between
relative reset price and gross inflation rate:

1 = (1− e−λdt)

(
P ∗t
Pt

)1−σ

+ e−λdt

(
Pt
Pt−dt

)σ−1

.

Defining πt ≡ 1
dt

log(Pt/Pt−dt) as the rate of inflation at time t, we can rewrite this equation
as

P ∗t
Pt

=

[
1− e[(σ−1)πt−λ]dt

1− e−λdt

] 1
1−σ

,

35



which is the equivalent of Equation (17) in the main text once we set dt = 1 and plug θ = e−λ.
Moreover, using this equation, combined with the intratemporal labor supply condition and
the aggregate production function Ct = Yt = Lt/Dt, Equations (A.2) and (A.3) become

δ−1
t = dt+ e[(σ−1)πt+dt−(ρ+λ)]dtδ−1

t+dt, (A.4)[
1− e[(σ−1)πt−λ]dt

1− e−λdt

] 1
1−σ

=
σ(1 + τ)

σ − 1
Y 1+ψ
t Dψ

t δtdt+ (1− δtdt)eπt+dtdt

[
1− e[(σ−1)πt+dt−λ]dt

1− e−λdt

] 1
1−σ

,

(A.5)

which are the equivalents of Equations (19) and (20) in the main text, respectively.
We next write the equation for the price dispersion dynamics. By random selection of

price-setters at any given t, we can write this equation as

Dt =

∫ 1

0

(
Pi,t
Pt

)−σ
dj = (1− e−λdt)

(
P ∗t
Pt

)−σ
+ e−λdt

(
Pt
Pt−dt

)σ ∫ 1

0

(
Pi,t−dt

Pt−dt

)−σ
dj

= (1− e−λdt)

[
1− e[(σ−1)πt−λ]dt

1− e−λdt

] σ
σ−1

+ eσπtdt−λdtDt−dt. (A.6)

Finally, we can write the central bank’s problem with a general time step as follows:

V (Ωt) = max
Dt,Lt

{
log(Dt)−

L1+ψ
t

1 + ψ
+ e−ρdtV (Ωt+dt)

}
subject to Yt =

Lt
Dt

,

which gives the same optimal policy as in the main text, Yt = 1/Dt. This policy implies that
the real wage from the intratemporal labor supply condition is given by

Wt

Pt
= YtL

ψ
t = Y 1+ψ

t Dψ
t =

1

Dt

.

Plugging this optimal policy into Equation (A.5) and taking the limit as dt → 0 in
Equations (A.4) to (A.6), we obtain the continuous-time analogs of the equations that
characterize Dt, πt and δt, as presented in the main text:

Ḋt = λ

(
1− σ − 1

λ
πt

) σ
σ−1

+ (σπt − λ)Dt,

π̇t = −λσ(1 + τ)

σ − 1

(
1− σ − 1

λ
πt

) σ
σ−1 δt

Dt

+ (δt − πt)[λ− (σ − 1)πt],

δ̇t = δ2
t + [(σ − 1)πt − (ρ+ λ)]δt.
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Appendix B Proofs

B.1 Proof of Lemma 1

Take an initial price distribution {Pj,−1}j∈[0,1] and a sequence of policies {it}∞t=0. The argu-
ments in the text show that if a sequence of allocations and prices {Lt, Yt, Dt, δt,Πt}∞t=0 is
supported by a competitive equilibrium, then it satisfies conditions (12), (13), (18), (19),
(20), and (21). This proves the necessity claim.

To prove the sufficiency claim, suppose that a sequence {Lt, Yt, Dt, δt,Πt}∞t=0 satisfies
conditions (12), (13), (18), (19), (20), and (21) given {Pj,−1}j∈[0,1] and {it}∞t=0. The set
{Pj,−1}j∈[0,1] defines P−1, and we can define Pt = Πt−1Pt−1 recursively. Let Pj,t = Pj,t−1 if firm
j cannot change prices at t, and Pj,t = P ∗t if the firm can change prices at t, where P ∗t is given
by (17). Define Wt according to (15) and let Bt = 0 at all dates with Tt chosen to satisfy
(11). Letting Ct = Yt, define Cj,t according to (2), and let Yj,t = Lj,t = Cj,t. Additionally, let

Xj,t = [Pj,t − (1 + τ)Wt]Ct

(
Pj,t
Pt

)−σ
,

define P S
j,t according to (6), and let sj,t = 1 so that the representative household holds a share

of every firm j ∈ [0, 1]. The household’s problem (1) is concave and yields a unique solution.
It can be verified that the values of

{
Ct, Lt, Bt, (sj,t, Cj,t)j∈[0,1]

}∞
t=0

satisfy all optimality
conditions of the household’s problem, with the transversality condition being verified below.
The firm’s problem (9) is concave and yields a unique solution. It can be verified that the
values of {P ∗t , Yj,t, Lj,t}

∞
t=0 satisfy all optimality conditions of the firm’s problem. Therefore,

we conclude that the sequence {Lt, Yt, Dt, δt,Πt}∞t=0 supports a competitive equilibrium.
We next verify the transversality condition. Consider the date-t price of an Arrow-Debreu

security that pays a coupon equal to firm j’s profits at date t+ h for h > 0. There are three
cases to consider. First, suppose the firm’s price has always been sticky. Then the probability
of arriving at such a history at t+ h from the perspective of date t is θh and the price that
the firm is charging at t+ h is Pj,−1. Appealing to the intertemporal condition, we can write
the limiting price of the Arrow-Debreu security at date t as h→∞ as

lim
h→∞

βhθh
PtCt

Pt+hCt+h
[Pj,−1 − (1 + τ)Wt+h]Ct+h

(
Pj,−1

Pt+h

)−σ
= 0, (B.1)

where transversality requires that this price go to zero.
Second, suppose the firm’s price has been sticky since date ` for 0 ≤ ` ≤ t. Then the

probability of arriving at such a history at t+ h from the perspective of date t is θh and the
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price that the firm is charging at t+ h is P ∗` . The transversality condition in this case is

lim
h→0

βhθh
PtCt

Pt+hCt+h
[P ∗` − (1 + τ)Wt+h]Ct+h

(
P ∗`
Pt+h

)−σ
= 0. (B.2)

Finally, suppose the firm’s price has been sticky since date ` > t. Then the probability of
arriving at such a history at t + h from the perspective of date t is (1− θ) θt+h−` and the
price that the firm is charging at t+ h is P ∗` . The transversality condition in this case is

lim
h→0

βh (1− θ) θt+h−` PtCt
Pt+hCt+h

[P ∗` − (1 + τ)Wt+h]Ct+h

(
P ∗l
Pt+h

)−σ
= 0. (B.3)

To verify that (B.2) and (B.3) are satisfied, note that we can multiply (B.2) by β−`θ−`P`C`/PtCt
without changing its limit as h→∞, which means that satisfaction of (B.2) is equivalent to

lim
h→0

βh−`θh−`
P`C`

Pt+hCt+h
[P ∗` − (1 + τ)Wt+h]Ct+h

(
P ∗`
Pt+h

)−σ
= 0. (B.4)

Similarly, we can multiply (B.3) by (1− θ)−1 θ−tP`C`/PtCt without changing its limit as
h → ∞, which means that satisfaction of (B.3) is also equivalent to (B.4). Moreover,

observe that given (14), (15), and (17), and noting that PtCt
(

1−θΠσ−1
t

1−θ

)−σ
> 0, it follows that

satisfaction of (21) implies satisfaction of (B.4). Hence, (B.2) and (B.3) are both satisfied.
We are left to verify that (B.1) is also satisfied. We can multiply (B.1) by P σ

j,−1/PtCt

without changing its limit as h→∞, which means that satisfaction of (B.1) is equivalent to

lim
h→∞

βhθhP σ
h

[(
Pj,−1

P−1

)
P−1

Ph
− (1 + τ)

Wh

Ph

]
= 0.

Under the constructed equilibrium, this limit can be rewritten as

lim
h→∞

βθ( h∏
`=0

Π`

)σ
h

h [(Pj,−1

P−1

)
1∏h

`=0 Π`

− (1 + τ)Y ψ
h D

1+ψ
h

]
= 0. (B.5)

There are two possible cases. Suppose first that limh→∞

[
βθ
(∏h

`=0 Π`

)σ
h

]h
= 0. Then

note that by (B.4) for ` = 0, the second bracket stays finite as h→∞. Hence, in this case,
(B.5) and thus (B.1) are satisfied.

Suppose next that limh→∞

[
βθ
(∏h

`=0 Π`

)σ
h

]h
6= 0. Then satisfaction of (B.4) for ` = 0
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implies

lim
h→∞

[
P ∗0
P0

1∏h
`=0 Π`

− (1 + τ)Y ψ
h D

1+ψ
h

]
= 0.

It follows that if (B.5) is not satisfied, then we must have

lim
h→∞

[
P ∗0
P0

1∏h
`=0 Π`

− (1 + τ)Y ψ
h D

1+ψ
h −

(
Pj,−1

P−1

)
1∏h

`=0 Π`

− (1 + τ)Y ψ
h D

1+ψ
h

]
6= 0,

or, equivalently,

lim
h→∞

{[
P ∗0
P0

−
(
Pj,−1

P−1

)
P0

P1

]
1∏h

`=0 Π`

}
6= 0.

But this means that 1∏h
`=0 Π`

does not approach zero as h → ∞, which contradicts the

assumption that limh→∞

[
βθ
(∏h

`=0 Π`

)σ
h

]h
6= 0. Hence, (B.5) and thus (B.1) are satisfied.

B.2 Proof of Lemma 2

Consider first price dispersion D. Equation (22) defines D as a function of Π in the steady
state. Differentiating this equation yields

∂

∂Π
D = θσDΠσ−2

(
− 1

1− θΠσ−1
+

Π

1− θΠσ

)
= θσDΠσ−2 Π− 1

(1− θΠσ−1)(1− θΠσ)
.

This expression is strictly positive for Π ∈ (1, θ−1/σ), including D itself (which is a function
of Π per Equation (22)). Thus, D is strictly increasing in Π for Π ∈ [1, θ−1/σ).

Consider next the labor share µ. Raising Equation (22) to the power of 1 + ψ and
substituting in Equation (23) yields

µ =
σ − 1

σ(1 + τ)

1− θΠσ−1

1− θΠσ

1− βθΠσ

1− βθΠσ−1

=
σ − 1

σ(1 + τ)

[
1 +

(1− β)θΠσ−1(Π− 1)

(1− θΠσ)(1− βθΠσ−1)

]
.

Note that the fraction inside the brackets is strictly positive for Π ∈ (1, θ−1/σ) and is equal to
zero for Π = 1. Thus, µ ≥ (σ − 1)/[σ(1 + τ)], with equality only when Π = 1. Differentiating
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this equation yields

∂

∂Π
µ =

[
µ− σ − 1

σ(1 + τ)

] [
σ − 1

Π
+

1

Π− 1
+
σθΠσ−1

1− θΠσ
+

(σ − 1)βθΠσ−2

1− βθΠσ−1

]
.

This expression is strictly positive for Π ∈ (1, θ−1/σ). Thus, µ is strictly increasing in Π for
Π ∈ [1, θ−1/σ).

B.3 Proof of Proposition 1

Uniqueness. In the steady-state, Ḋt = π̇t = δ̇t = 0. Setting these to zero and dropping
the time subscript, we obtain the following system of equations:

(δ − π)[λ− (σ − 1)π] = λ
σ(1 + τ)

σ − 1

(
1− σ − 1

λ
π

) σ
σ−1 δ

D
, (B.6)

(λ− σπ)D = λ

(
1− σ − 1

λ
π

) σ
σ−1

, (B.7)

δ = ρ+ λ− (σ − 1)π. (B.8)

Substituting the last two equations into the first one yields

(ρ+ λ− σπ)[λ− (σ − 1)π] =
σ(1 + τ)

σ − 1
(λ− σπ)[ρ+ λ− (σ − 1)π],

which can be rewritten as

ρ(σ − 1)

1 + στ
π = (λ− σπ)[ρ+ λ− (σ − 1)π]. (B.9)

Since this is a quadratic equation, there are at most two steady-state values of π that solve it.
Rather than solving for these roots explicitly, observe that the left-hand side of the equation
is a linear increasing function of π, while the right-hand side has two zeros, one at π = λ

σ
and

another at π = ρ+λ
σ−1

. Since λ
σ
< ρ+λ

σ−1
, we need to consider three regions:

1. π < λ
σ
: In this region, the right-hand side of (B.9) is positive. The two sides intersect

at a point where both are positive, so the quadratic has at least one root π ∈ (0, λ
σ
).

2. λ
σ
≤ π ≤ ρ+λ

σ−1
: In this region, the right-hand side of (B.9) is negative while the left-hand

side is strictly positive. Thus, there cannot be a solution here.
3. π > ρ+λ

σ−1
: In this region, the right-hand side of (B.9) is positive and grows quadratically

from 0, whereas the left-hand side grows linearly from a positive number. The two
sides intersect at a point where both are positive, so the quadratic has at least one root
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π ∈ (ρ+λ
σ−1

,∞).
Since a quadratic cannot have more than two roots, we conclude that the roots found in the
first and third regions above are unique within their regions.

Finally, note that the root π > ρ+λ
σ−1

violates the natural bound on inflation implied by
sticky prices π < λ

σ−1
and thus cannot be a steady state. Therefore, the unique steady state

is the one found in the first region, π ∈ (0, λ
σ
).

Comparative Statics. It follows from the proof of uniqueness above that steady-state
inflation πss(τ, σ) solves

ρ(σ − 1)

1 + στ
πss(τ, σ) = (λ− σπss(τ, σ))[ρ+ λ− (σ − 1)πss(τ, σ)], (B.10)

where the value of πss(τ, σ) is the root of this quadratic equation in the interval (0, λ
σ
). Given

this value, we can then derive steady-state price dispersion Dss(τ, σ) using Equation (B.7):

Dss(τ, σ) =
λ

λ− σπss(τ, σ)

(
1− σ − 1

λ
πss(τ, σ)

) σ
σ−1

. (B.11)

Part 1. Consider first πss(τ, σ). Differentiating (B.10) with respect to τ yields[
σ

λ− σπss(τ, σ)
+

σ − 1

ρ+ λ− (σ − 1)πss(τ, σ)
+

1

πss(τ, σ)

]
∂

∂τ
πss(τ, σ) =

σ

1 + στ
.

All the terms in the bracket on the left-hand side are positive given πss(τ, σ) ∈ (0, λ
σ
). The

right-hand side is also positive by Assumption 1. Thus, ∂
∂τ
πss(τ, σ) > 0 and πss(τ, σ) is

strictly increasing in τ .
Consider next Dss(τ, σ). From (B.11), we see that Dss(τ, σ) depends on τ only through

πss(τ, σ). Thus,

∂

∂τ
Dss(τ, σ) =

∂

∂πss(τ, σ)
Dss(τ, σ)× ∂

∂τ
πss(τ, σ)

=
σDss(τ, σ)πss(τ, σ)

(λ− σπss(τ, σ))[λ− (σ − 1)πss(τ, σ)]

∂

∂τ
πss(τ, σ).

All the terms involved are positive given πss(τ, σ) ∈ (0, λ
σ
). Thus, ∂

∂τ
Dss(τ, σ) > 0 and

Dss(τ, σ) is strictly increasing in τ .
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Part 2. Consider first πss(τ, σ). Differentiating (B.10) with respect to σ yields[
σ − 1

ρ+ λ− (σ − 1)πss(τ, σ)
+

σ

λ− σπss(τ, σ)
+

1

πss(τ, σ)

]
∂

∂σ
πss(τ, σ) (B.12)

=−
[

1 + τ

(σ − 1)(1 + στ)
+

πss(τ, σ)

λ− σπss(τ, σ)
+

πss(τ, σ)

ρ+ λ− (σ − 1)πss(τ, σ)

]
.

Using πss(τ, σ) ∈ (0, λ
σ
) and Assumption 1, we can conclude that all the terms inside the

brackets on both sides are positive. Thus, by the negative sign on the right-hand side,
∂
∂σ
πss(τ, σ) < 0 and πss(τ, σ) is strictly decreasing in σ.
Consider next Dss(τ, σ). Observe that Dss(τ, σ) depends on σ both directly through

aggregation, and indirectly through πss(τ, σ) as the central bank’s optimal policy changes
πss(σ, τ) when σ varies. Accordingly, we will investigate the total derivative of Dss(τ, σ) by
decomposing it into these direct and indirect effects of σ:

∂

∂σ
Dss(τ, σ) =

∂

∂σ
Dss(τ, σ)

∣∣
πss(τ,σ)

+
∂

∂πss(τ, σ)
Dss(τ, σ)

∣∣
σ
× ∂

∂σ
πss(τ, σ). (B.13)

To derive the first term on the right-hand side, we use (B.11) to obtain

∂

∂σ
Dss(τ, σ)

∣∣
πss(τ,σ)

=
Dss(τ, σ)

(σ − 1)2

(
1− 1

1− σ−1
λ
πss(τ, σ)

− log

(
1− σ − 1

λ
πss(τ, σ)

))
+Dss(τ, σ)

[
πss(τ, σ)

λ− σπss(τ, σ)
− πss(τ, σ)

λ− (σ − 1)πss(τ, σ)

]
.

As for the partial derivative of Dss(τ, σ) with respect to πss(τ, σ), holding σ fixed, we use
(B.11) to obtain

∂

∂πss(τ, σ)
Dss(τ, σ)

∣∣
σ

=Dss(τ, σ)

[
σ

λ− σπss(τ, σ)
− σ

λ− (σ − 1)πss(τ, σ)

]
.

Substituting these into (B.13) yields

∂

∂σ
Dss(τ, σ) =

Dss(τ, σ)

(σ − 1)2

1 <0︷ ︸︸ ︷(
1− 1

1− σ−1
λ
πss(τ, σ)

− log

(
1− σ − 1

λ
πss(τ, σ)

))
+Dss(τ, σ)

(
σ
∂

∂σ
πss(τ, σ) + πss(τ, σ)

)
︸ ︷︷ ︸

2

[
1

λ− σπss(τ, σ)
− 1

λ− (σ − 1)πss(τ, σ)

]
︸ ︷︷ ︸

3 >0

.
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It is straightforward to show that 1 is strictly negative for πss(τ, σ) ∈ (0, λ
σ
).34 Moreover,

3 is strictly positive for πss(τ, σ) ∈ (0, λ
σ
). Thus, a sufficient condition for ∂

∂σ
Dss(τ, σ) to be

strictly negative is that 2 is negative. We next show that this holds under τ < τ̄(σ). Using
(B.12), we have

2 = −

σ(1 + τ)

(σ − 1)(1 + στ)
+

σπss(τ, σ)

λ− σπss(τ, σ)
+

σπss(τ, σ)

ρ+ λ− (σ − 1)πss(τ, σ)
σ − 1

ρ+ λ− (σ − 1)πss(τ, σ)
+

σ

λ− σπss(τ, σ)
+

1

πss(τ, σ)

+ πss(τ, σ)

=

− σ(1 + τ)

(σ − 1)(1 + στ)
− πss(τ, σ)

ρ+ λ− (σ − 1)πss(τ, σ)
+ 1

σ − 1

ρ+ λ− (σ − 1)πss(τ, σ)
+

σ

λ− σπss(τ, σ)
+

1

πss(τ, σ)

.

The denominator is positive for πss(τ, σ) in (0, λ
σ
). We show that the numerator is negative for

τ < τ̄(σ). To see this, note that the fraction involving πss(τ, σ) is negative, so it is sufficient
to show that

− σ(1 + τ)

(σ − 1)(1 + στ)
+ 1 < 0 ⇐⇒ (σ − 2)στ < 1.

Now note that under τ < τ̄(σ) and Assumption 1, we have

1 < σ < 2 =⇒ (σ − 2)στ < (2− σ) < 1,

σ ≥ 2 =⇒ (σ − 2)στ < (σ − 2)στ̄(σ) = (σ − 2)σ
1

σ(σ − 2)
= 1.

Hence, given τ < τ̄(σ) and σ > 1, we obtain 2 < 0. It follows that ∂
∂σ
Dss(τ, σ) < 0 and

Dss(τ, σ) is strictly decreasing in σ for all τ < τ̄(σ).

B.4 Proof of Proposition 2

To prove this proposition, we will rely on the Stable Manifold and the Hartman-Grobman
theorems (Perko, 2001, pages 107 and 120, respectively). These two theorems relate the
dynamics of a non-linear dynamical system to its local linearized dynamics around a fixed
point (in our case, the unique steady state). To make use of their predictions, we rewrite
our dynamical system involving the variables πt, Dt and δt in the following form. Let

34To see this, note that πss(τ, σ) ∈ (0, λσ ) implies that 1− σ−1
λ πss(τ, σ) ∈ ( 1

σ , 1). Moreover, note that the
function f(x) ≡ 1− 1/x− log(x) is strictly increasing in x ∈ (0, 1) (as f ′(x) = 1/x2 − 1/x > 0, x ∈ (0, 1)), so
that ∀x ∈ ( 1

σ , 1) : f(x) < f(1) = 0.
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Xt ≡ (πt, Dt, δt). Then the non-linear dynamical system implied by the model can be
characterized by a function f : R3 → R3 defined as

Ẋt = f(Xt) ≡


−λσ(1+τ)

σ−1

(
1− σ−1

λ
πt
) σ
σ−1 δt

Dt
+ (δt − πt)[λ− (σ − 1)πt]

λ
(
1− σ−1

λ
πt
) σ
σ−1 + (σπt − λ)Dt

δ2
t + [(σ − 1)πt − (ρ+ λ)]δt

 ,

where the unique steady state that we characterized is a fixed point of this system.
Note that f(·) is a smooth function; importantly, it is continuously differentiable, which

implies that the flows of the system are also continuous. In order to understand the dynamics
of the system and how the transition to a new steady state happens, we need to first
characterize the nature of the unique steady state for the above system. To do this, we can
apply the Hartman-Grobman theorem, which states that if the eigenvalues of the Jacobian
of the function f evaluated at the fixed point have non-zero real parts, then there exists
a neighborhood N around the fixed point of the system where the flows of the non-linear
system are topologically conjugate to the flows of the linearized system. We will apply this
theorem in the following way. First, we will show that the fixed point is a saddle point of the
linearized system. Then verifying the assumptions of the Hartman-Grobman theorem, we
will conclude from topological conjugacy that the steady state is also a saddle point of the
non-linear system.

To show that the steady state is a saddle point of the linearized system, we first need
to compute the Jacobian of f at the steady state. Letting Xss = (πss, Dss, δss) denote the
steady state under a certain set of parameters, note that

0 = Ẋss = f(Xss) =⇒


ρ(σ−1)
1+στ

πss = (λ− σπss)[ρ+ λ− (σ − 1)πss]

Dss = λ
λ−σπss

(
1− σ−1

λ
πss
) σ
σ−1

δss = ρ+ λ− (σ − 1)πss

, (B.14)

and, letting Df denote the Jacobian of f evaluated at Xss, we have

Df =


∂
∂π
f1

∂
∂D
f1

∂
∂δ
f1

∂
∂π
f2

∂
∂D
f2

∂
∂δ
f2

∂
∂π
f3

∂
∂D
f3

∂
∂δ
f3

 ,
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where all the partial derivatives are evaluated at Xss and are given by

∂
∂π
f1 = σ2(1+τ)

σ−1

(
1− σ−1

λ
πss
) 1
σ−1 δss

Dss
− [λ− (σ − 1)πss]− (σ − 1)(δss − πss)

= ρ− πss, (using Equation (B.14))
∂
∂D
f1 = λσ(1+τ)

σ−1

(
1− σ−1

λ
πss
) σ
σ−1 δss

D2
ss

= ρπss+(λ−σπss)δss
Dss

,

∂
∂δ
f1 = −1+στ

σ−1
(λ− σπss) + πss = πss

δss
[λ− (σ − 1)πss],

∂
∂π
f2 = −σ

(
1− σ−1

λ
πss
) 1
σ−1 + σDss = σDss

πss
λ−(σ−1)πss

,

∂
∂D
f2 = σπss − λ,

∂
∂δ
f2 = 0,

∂
∂π
f3 = (σ − 1)δss,

∂
∂D
f3 = 0,

∂
∂δ
f3 = 2δss + (σ − 1)πss − (ρ+ λ) = δss.

To show that the Hartman-Grobman theorem applies, we need to show that Xss is a
hyperbolic fixed point—i.e., all the eigenvalues of Df have non-zero real parts. To calculate
the eigenvalues of Df , we need to compute the roots of its characteristic polynomial:

det (Df − ηI) = 0,

where any η that solves this polynomial is an eigenvalue of the Jacobian. The characteristic
polynomial is given by:

det (Df − ηI) =

( ∂
∂π
f1 − η)( ∂

∂D
f2 − η)( ∂

∂δ
f3 − η)− ∂

∂D
f1

∂
∂π
f2

(
∂
∂δ
f3 − η

)
− ∂

∂δ
f1

∂
∂π
f3

(
∂
∂D
f2 − η

)
,

where we have used ∂
∂δ
f2 = ∂

∂D
f3 = 0. Plugging in the derived values for other partial

derivatives, we obtain the following cubic polynomial:

det (Df − ηI)

= (ρ− πss − η)(σπss − λ− η)(δss − η)− σπss(ρ+ λ− σπss)(δss − η)

− (σ − 1)πss(λ− (σ − 1)πss)(σπss − λ− η).

We now need to compute the roots of this cubic equation. One could use the general formula
for roots of a cubic but that requires some tedious algebra. An easier path is to guess and
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verify that one of the roots is ρ.35 To verify this guess observe that at η = ρ,

det (Df − ρI) = (σ − 1)πss(σπss − λ− ρ)(δss − ρ)− (σ − 1)πss(δss − ρ)(σπss − λ− ρ) = 0.

Thus, the characteristic polynomial is divisible by ρ− η. Using this fact, we can factorize the
characteristic polynomial as

det(Df − ηI) = (ρ− η) [η2 − ρη − (ρ+ λ)λ+ σ(σ − 1)π2
ss] ,

where the rest of the eigenvalues are the roots of the quadratic equation η2 − ρη − (ρ+ λ)λ+

σ(σ − 1)π2
ss = 0. Therefore, the eigenvalues of the Jacobian at the steady state are

η =


η1 ≡ ρ

η2 ≡ ρ
2

+
√(

ρ
2

+ λ
)2 − σ(σ − 1)π2

ss

η3 ≡ ρ
2
−
√(

ρ
2

+ λ
)2 − σ(σ − 1)π2

ss

.

We can make the following observations about these eigenvalues. First, all of them are real.
To see this, we just need to confirm that the term inside the square root is always positive.
This follows from ρ > 0 and the fact that πss ∈ (0, λ/σ) under Assumption 1:(ρ

2
+ λ
)2

− σ(σ − 1)π2
ss > λ2 − σ2π2

ss = (λ− σπss)(λ+ σπss) > 0.

A second observation is that the first two eigenvalues are strictly positive (which is straight-
forward to confirm from the observation above) and the third one is negative. To verify the
latter, note that

ρ

2
−
√(ρ

2
+ λ
)2

− σ(σ − 1)π2
ss < 0 ⇐⇒

(ρ
2

)2

<
(ρ

2
+ λ
)2

− σ(σ − 1)π2
ss

⇐⇒ 0 < λ2 + ρλ− σ(σ − 1)π2
ss,

and the last inequality holds since

λ2 + ρλ− σ(σ − 1)π2
ss > λ2 − σ2π2

ss = (λ− σπss)(λ+ σπss) > 0.

Therefore, the Jacobian Df has two strictly positive eigenvalues and one strictly negative
35There is an economic intuition for this guess. We know that at ρ = 0, the Phillips curve of the economy

is fully vertical, which implies that ρ = 0 is a bifurcation point for the system. So the behavior of the system
should switch at ρ = 0, making it reasonable to guess that ρ is one of its eigenvalues.
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eigenvalue. This implies that the fixed point Xss is a hyperbolic fixed point and is a saddle
point for the linearized dynamical system. Thus, the Hartman-Grobman theorem applies
and we can conclude that the fixed point is also a saddle point for the non-linear system.

Since all eigenvalues are distinct, the three eigenvectors associated with them are linearly
independent and span R3. Thus, these eigenvalues imply that the dynamics of the linearized
system are stable along the eigenspace spanned by the negative eigenvalue (which is one-
dimensional as we show below) and unstable along the eigenspace associated with the two
positive eigenvalues. Now, to study the convergence of the non-linear dynamics, we appeal
to the Stable Manifold Theorem. When applied to our setting, this theorem states that
in an open neighborhood around the fixed point Xss where the function f is continuously
differentiable (which is the case for our system), there exists a one-dimensional differentiable
manifold S tangent to the stable subspace of the linear system such that for all t ≥ 0, X ∈ S,

lim
t→∞

φt(X) = Xss,

where φt(X) denotes the flow of the non-linear system starting from X at time t = 0 (i.e.,
φ0(X) = X) and evolves according to the non-linear dynamics. Therefore, we have established
that in an open neighborhood N of the fixed point Xss, the non-linear dynamics converge
to the fixed point Xss along a stable manifold S that is one-dimensional and tangent to the
one-dimensional eigenspace of the linearized system at the fixed point. It then suffices to
characterize the direction of convergence along the stable eigenspace of the linearized system.
To this end, consider the linear dynamics around the fixed point Xss:

Ẋt = Df (Xt −Xss) .

Let ψt(X) denote the flow of this linearized system starting from some X ∈ R3. Since the
eigenvectors of Df are linearly independent, we can write this flow as

ψt(X) = α1,X(t)v1 + α2,X(t)v2 + α3,X(t)v3,

where v1, v2, and v3 are eigenvectors of Df that correspond to eigenvalues η1, η2, and η3

respectively. Furthermore, since ψ0(X) = X, αi,X(0) for i = 1, 2, 3 are given by the projection
of X on the eigenvectors of Df . Also, note that since ψt(Xss) = Xss, αi,Xss(t) is constant
over time, and we use ᾱi to refer to it. Plugging this decomposition into the linearized system
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yields

3∑
i=1

α̇i,X(t)vi = Df
3∑
i=1

(αi,X(t)− ᾱi)vi =
3∑
i=1

ηi(αi,X(t)− ᾱi)vi.

Therefore, for i = 1, 2, 3,

α̇i,X(t) = ηi(αi,X(t)− ᾱi) =⇒ αi,X(t)− ᾱi = (αi,X(0)− ᾱi)eηit,

which implies

ψt(X) = Xss +
3∑
i=1

(αi,X(0)− ᾱi)eηitvi.

Note that since the vi’s are linearly independent, ψt(X) is convergent if and only if α1,X(0)−
ᾱ1 = α2,X(0)− ᾱ2 = 0 (since η1 > 0 and η2 > 0). This identifies the stable eigenspace of the
linearized system as the span of v3 shifted to cross Xss; that is,

lim
t→∞

ψt(X) = Xss ⇐⇒ X ∈ Xss + span(v3)

⇐⇒ ψt(X)−Xss = keη3tv3 for some k ∈ R.

Given that v3 = (v3,1, v3,2, v3,3) is an eigenvector associated with the negative eigenvalue η3,
and normalizing v3,1 = 1, we have

∂

∂π
f2 +

(
∂

∂D
f2 − η3

)
v3,2 = 0 =⇒ v3,2 =

∂
∂π
f2

η3 − ∂
∂D
f2

,

∂

∂π
f3 +

(
∂

∂δ
f3 − η3

)
v3,3 = 0 =⇒ v3,3 =

∂
∂π
f3

η3 − ∂
∂δ
f3

.

For a given k ∈ R, let ψt(X) −Xss = (DL
t −Dss, π

L
t − πss, δLt − δss) denote the flow of

the linearized system towards the steady state. We show that along the transition path, if
DL
t converges to Dss from below, then πLt converges to πss from above and vice versa. To see

this, note that

πLt − πss
DL
t −Dss

=
v3,1

v3,2

=
η3 − ∂

∂D
f2

∂
∂π
f2

=
η3 − σπss + λ

σDssπss
[λ− (σ − 1)πss].

In the expression above, σDssπss > 0 and λ − (σ − 1)πss > 0 as πss ∈ (0, λ/σ). Thus, to
conclude that the ratio has a negative sign, we need to show that η3 − σπss + λ < 0. To see
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that this is indeed the case, note that

η3 + λ− σπss < 0 ⇐⇒ λ− σπss +
ρ

2
<

√(ρ
2

+ λ
)2

− σ(σ − 1)π2
ss

⇐⇒
(ρ

2
+ λ
)2

+ σ2π2
ss − (2λ+ ρ)σπss <

(ρ
2

+ λ
)2

− σ(σ − 1)π2
ss

⇐⇒ 2σπss − 2λ− ρ− πss < 0,

and the last inequality holds since πss ∈ (0, λ/σ). Hence, linearized dynamics are such that

κ ≡ πLt − πss
DL
t −Dss

< 0.

Finally, let φt(X)−Xss = (Dt−Dss, πt−πss, δt−δss) denote the flow of the non-linear system
starting from an X on the one-dimensional stable manifold so that limt→∞ φt(X) = Xss.
Since the stable manifold is tangent to the stable subspace of the linearized system, for
sufficiently small ε > 0 such that ε+ κ < 0, there exists t̄ ≥ 0 such that for all t > t̄,

πt − πss
Dt −Dss

∈ (κ− ε, κ+ ε) =⇒ πt − πss
Dt −Dss

< 0.

Hence, there exists t̄ ≥ 0 such that, after time t̄, if Dt of the non-linear system converges to
Dss from below, then πt of the non-linear system converges to πss from above and vice versa.

To conclude the proof of Proposition 2, consider a change in the parameters of the model
that leads to an increase in Dss, as is the case in both parts 1 and 2 of the proposition.
First note that since our non-linear system is continuously differentiable, Dt (along with πt
and δt) have continuous paths along the transition. Moreover, since Dt is backward-looking,
it is also continuous at t = 0 (i.e., limt→0Dt = D0, unlike πt and δt which jump to the
stable manifold to accommodate convergence to the steady state). Thus, it has to be that
conditional on converging to the new steady state, Dt is a continuous function of time with
D0 < Dss = limt→∞Dt.

If along the transition path Dt never crosses Dss, then Dt −Dss < 0 for all t. This means
that there exists t̄ ≥ 0 such that πt − πss > 0 for all t > t̄.

Suppose instead that Dt crosses Dss along the transition path to possibly converge to Dss

from above. If this was possible, then there would be two paths for convergence starting from
Dss: one that increases and then converges back to Dss from above, and another that starts
at Dss and stays at Dss forever. However, in this case, the equilibrium cannot be Markov.
Therefore, the only possibility of convergence in a Markov equilibrium is that Dt converges
to Dss from below, and thus πt converges to πss from above.
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