
OVERREACTION IN EXPECTATIONS: EVIDENCE AND THEORY∗

Hassan Afrouzi
Columbia

Spencer Y. Kwon
Harvard

Augustin Landier
HEC Paris

Yueran Ma
Chicago Booth

David Thesmar
MIT Sloan

February 7, 2023

Abstract
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1 Introduction

A growing body of research using survey data shows that survey expectations exhibit signif-

icant biases. Across different settings, however, the biases seem to vary. For instance, some

studies document substantial overreaction, whereas others find less overreaction or some

degree of underreaction.1 Why do biases in expectations vary across settings? This paper

presents new empirical evidence on how expectation biases vary with the persistence of the

data generating process (DGP) and the forecast horizon. Based on the empirical findings,

we then examine theoretical frameworks of expectation formation.

To cleanly document the biases in expectations, we begin with a large-scale randomized

forecasting experiment. Our experimental approach allows us to address three important

limitations for studying expectations using survey data. First, we can control forecasters’

information sets, which are not observable to the econometrician in survey data. Second,

we know and can specify the DGP, whereas the DGP is difficult for the econometrician to

pin down in survey data. Finally, we can also control forecasters’ payoff functions, whereas

forecasters could have considerations other than accuracy in survey data.

In our experiment, participants make forecasts of simple AR(1) processes. They are ran-

domly assigned to a condition with a given AR(1) process, where the persistence ρ is drawn

from {0, 0.2, 0.4, 0.6, 0.8, 1}; the mean is zero, and the conditional volatility is 20. Participants

observe 40 past realizations at the beginning and then make forecasts for another 40 rounds.

In each round, participants observe a new realization and report one- and two-period-ahead

forecasts. In follow-up experiments, we also elicit five- and ten-period-ahead forecasts.

We document three empirical facts. First, even though the process is simple and stable,

rational expectations are strongly rejected in our data. In particular, forecasts in the data

display significant overreaction to recent observations: the forecasts are systematically too

high when the past realization is high, and vice versa. This feature is robust and it does not

depend on whether participants know the process is AR(1), which we show using a sample

1For overreaction in expectations, see De Bondt and Thaler (1990), Amromin and Sharpe (2013), Green-
wood and Shleifer (2014), Gennaioli, Ma and Shleifer (2016), Bordalo, Gennaioli, La Porta and Shleifer (2019),
Bordalo, Gennaioli, Ma and Shleifer (2020c), Barrero (2021), among others for evidence from forecasts of finan-
cial market and macroeconomic outcomes. For underreaction, see Abarbanell and Bernard (1992), Bouchaud,
Krueger, Landier and Thesmar (2019), and Ma, Ropele, Sraer and Thesmar (2020) for evidence from forecasts
of companies’ near-term earnings.
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of MIT students who understand AR(1) processes.

Second, we find that forecasts display more overreaction when the process is more tran-

sitory. This result echoes the patterns Bordalo et al. (2020c) observe in survey data. In the ex-

periment, however, we can measure the degree of overreaction more precisely. Specifically,

we calculate the persistence implied by participants’ forecasts (i.e., the regression coefficient

of the forecast Ftxt+1 on xt) and compare it with the actual persistence of the process. In

our setting, the gap between the implied persistence and the actual persistence provides a

clear measure of overreaction. We find that the implied persistence is close to one when the

process is a random walk. When the actual persistence decreases, the implied persistence

decreases but less than one for one, so the gap between implied and actual persistence is

larger when the process is more transitory. For instance, the implied persistence is 0.85 when

the actual persistence is 0.6 and 0.45 when the actual process is i.i.d. (i.e., more overreaction

when the process persistence is lower).

Third, we find that overreaction is stronger for longer-horizon forecasts. The forecast-

implied persistence (per period) is higher for long-horizon forecasts than for short-horizon

forecasts, based on forecasts the same participants made for the same AR(1) process.2 Ac-

cordingly, biases arising from forecasters using a given incorrect value of the persistence

parameter (e.g., Gabaix, 2018) are not sufficient to account for the behavior of forecasts

across different horizons. Our finding aligns with the evidence in Giglio and Kelly (2018),

who show that affine asset pricing models using a given process persistence cannot simul-

taneously account for the price movements of short-maturity and long-maturity claims, and

the long end implies much higher persistence.

We then examine how well commonly-used expectations models explain the empirical

evidence. The older adaptive or extrapolative models generate forecast-implied persistence

that does not vary much with the actual persistence, so overreaction in these models is too

strong for transitory processes. Some recent models such as sticky and noisy information

models (Mankiw and Reis, 2002; Woodford, 2003) do not generate overreaction, and oth-

ers such as constant gain learning of the process (Evans and Honkapohja, 2001) generate

implied persistence that aligns too much with the actual persistence, so overreaction is too

2For general forecast horizons, we compute the implied persistence per period by taking the regression
coefficient of the forecast Ftxt+h on xt and raising it to the 1/h-th power.
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weak for transitory processes.

Taken together, the evidence of overreaction points to models where positive shocks

bring to mind higher outcomes that get overweighted in expectations (e.g. Bordalo, Gen-

naioli and Shleifer, 2018). Moreover, for transitory shocks to generate overreaction (like what

we observe in the data), it is important to allow biases to affect the assessment of the more

persistent aspects of the process. Although the standard specification of diagnostic expecta-

tions in Bordalo, Gennaioli and Shleifer (2018) does not generate overreaction to transitory

shocks since higher future outcomes are not more likely given transitory shocks, Bordalo et

al. (2019) feature diagnostic agents who erroneously attribute part of the transitory shock to

a more persistent component of the process. Relatedly, da Silveira and Woodford (2019) and

Nagel and Xu (2022) model overreaction through biases about the long-run mean.

Building on this insight, we find that a parsimonious way to account for the evidence is

to allow recent observations to influence the assessment of the long-run mean of the process

(i.e., the most persistent aspect). Based on the psychological foundations of how information

comes to mind, we present a tractable model that microfounds the degree of overreaction,

yields closed-form solutions that are easy to estimate in the data, and generates additional

testable predictions. In the model, agents form beliefs about the long-run mean of the pro-

cess using recent data along with additional information obtained by costly information

processing. We draw on two findings from the psychology literature and in particular the

field of working memory. First, among available information, agents use a subset that is in a

state of “heightened activation” (Baddeley and Hitch, 1993; Cowan, 1998, 2017a). We refer to

the information with heightened activation as “on top of mind.” Second, information with

heightened activation consists of recent data, which is automatically incorporated due to the

recency effect (i.e., “the enhanced retention of the final item"), and additional task-relevant

data processed with a cost (Hitch, Hu, Allen and Baddeley, 2018). Our model nests the ratio-

nal benchmark in the frictionless limit where all information is on top of mind. Otherwise,

the model delivers partial dependence of the long-run mean assessment on the recent obser-

vation. Accordingly, forecasts display overreaction, and overreaction is stronger when the

process is less persistent and the forecast horizon is longer.

We take our model to the data by minimizing the mean squared error with respect to all

one-period-ahead forecasts in our baseline experiment (we test other models in the litera-
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ture in the same way). We calculate the implied persistence in the experimental data and the

value generated by the model. The implied persistence based on our model closely matches

that in the data for all values of ρ. We then use the model estimated on one-period-ahead

forecasts to compute the implied persistence for long-horizon forecasts as non-targeted mo-

ments. For forecast horizons of two, five, and ten covered by our experiments, our model

closely matches the degree of overreaction observed in the data for each values of ρ.

We also design additional experiments to test the mechanisms of the model. To exam-

ine overreaction in the long-run mean belief, we perform experiments where in each round

participants enter their long-run mean assessment into a box, by responding to the ques-

tion“what do you think is the long-run average of this process?” Participants also make

long-horizon forecasts about xt+10 in each round, so we can compare the consistency be-

tween the long-run mean beliefs and the xt+10 forecasts.

We find that the long-run mean assessment has a significant positive loading on the most

recent observation. We also find that the long-run mean assessment helps explain the xt+10

forecast. To examine whether overreaction is influenced by the extent to which the latest

information is on top of mind, we perform experiments where we draw participants’ focus

away from the most recent observation. In one condition, we require participants to click on

the realization ten periods ago before they can make new forecasts in each round; in another

condition, we draw a red line at zero in the experimental interface. In both conditions, the

degree of overreaction decreases relative to the baseline.

Literature Review. Our work is related to three branches of literature. First, our empir-

ical findings complement recent studies using survey data discussed in the first paragraph,

which document strong overreaction in some settings and weaker overreaction or underre-

action in others. As mentioned before, while analyses using survey data are highly valuable,

they face major obstacles given that researchers do not know forecasters’ information sets,

payoff functions, and the DGP. A key contribution of our paper is implementing a large-

scale experiment to cleanly connect biases in expectations with both the properties of the

underlying process and the forecast horizon.

Second, we contribute to experimental studies of forecasts (see Assenza, Bao, Hommes

and Massaro (2014) for a survey). Prior work on forecasting stochastic processes includes

Hey (1994), Frydman and Nave (2016) and Beshears, Choi, Fuster, Laibson and Madrian
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(2013); we provide an extensive review of this literature in Table A.1. Most closely related,

Reimers and Harvey (2011) also document that the forecast-implied persistence is higher

than the actual persistence for transitory processes, which indicates the robustness of this

phenomenon, but they do not analyze the term structure of forecasts or test models of ex-

pectations. Overall, relative to existing research, our experiments have a large scale, a wide

range of settings, and diverse demographics; we also collect the term structure of forecasts.

In addition, we use the data to investigate a number of commonly-used models, while prior

studies tend to focus on testing a particular type of model.

Finally, we use our data to shed further light on models of expectation formation, high-

lighting how biases in the assessment of the long-run mean can be a parsimonious way to ac-

count for key empirical facts. Some modeling techniques we use are related to the literature

on noisy perception and rational inattention (Woodford, 2003; Sims, 2003). This literature

has focused on frictions in perception of new information. Instead, our model emphasizes

frictions in exploiting past information, which is key for generating overreaction. Another

set of models postulate that forecasters use an incorrect value of the persistence ρ (Gabaix,

2018; Angeletos, Huo and Sastry, 2021). We find that a given “mistaken" ρ cannot simultane-

ously account for the degree of overreaction in short-term and long-term forecasts. If using

an incorrect ρ is the main bias, overreaction will dissipate for long-term forecasts, which is

not the case in the data.

Several recent models examine the role of memory in belief formation, which also fea-

ture frictions in exploiting past information. Bordalo, Gennaioli and Shleifer (2020b), Bor-

dalo, Coffman, Gennaioli, Schwerter and Shleifer (2020a), and Bordalo, Conlon, Gennaioli,

Kwon and Shleifer (2023) build on representativeness (Kahneman and Tversky, 1972) and

associative recall (Kahana, 2012). Wachter and Kahana (2019) present a retrieved-context

theory of beliefs to model associative recall.3 The most closely related analysis in this area

is da Silveira, Sung and Woodford (2020), which generalizes earlier work by da Silveira and

Woodford (2019). They present a dynamic model of optimally noisy memory where past in-

formation is summarized by a memory state formed before each period; when the memory

3In addition, Nagel and Xu (2022) and Neligh (2022) study applications of memory decay. In empirical
analyses, Enke, Schwerter and Zimmermann (2020) experimentally test how associative recall affects beliefs.
Hartzmark, Hirshman and Imas (2021) and D’Acunto and Weber (2020) also find evidence consistent with
memory playing a role in decision making.
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is imprecise, the agent optimally puts more weight on the latest observation, which gener-

ates overreaction. In our model, the overweighting of recent information can be related to

memory constraints, but it can also arise from other frictions in information processing that

lead to heightened activation and disproportionate focus on recent information (see, e.g.,

Baddeley and Hitch, 1993; Spillers, Brewer and Unsworth, 2012; Cowan, 2017a), which we

discuss in more detail in Section 5.1.

Although we focus on overreaction given our empirical findings, we provide an exten-

sion of our model in Online Appendix IA5 which accommodates underreaction by intro-

ducing noisy signals to the belief formation process. These noisy signals can play a role in

survey data (Coibion and Gorodnichenko, 2012, 2015; Kohlhas and Walther, 2021), but are

unlikely to be first-order in our simple forecasting experiment. In this extension, the relative

degree of overreaction is still stronger when the process is less persistent, consistent with

our evidence and findings from field data in Section 2.1. Meanwhile, the average level of the

bias can be over- or underreaction, depending on the noisiness of signals.4

The rest of the paper proceeds as follows. Section 2 discusses stylized facts from sur-

vey data and the limitations of these analyses, which motivate our experiment. Section 3

describes the experiment. Section 4 presents our main empirical facts that overreaction is

stronger for less persistent processes and longer forecast horizons. It also analyzes whether

commonly-used models align with the evidence. Section 5 presents our model and shows

that the model fits the data well. Section 6 provides additional results for the mechanism of

the model and performs robustness checks of model assumptions. Section 7 concludes.

2 Motivating Facts

To motivate our experimental investigation, we first present stylized facts from survey fore-

casts and discuss their limitations.
4Recent experiments by Fan, Liang and Peng (2021) show that participants underreact in inferring, e.g.,

whether a company is good or bad after observing a positive stock return signal, consistent with previous
results surveyed by Benjamin (2019). However, participants overreact in forecasting the stock return in the
next period with the same signal. They find that underreaction in the inference problem may arise because
the signal appears less similar to the inference problem than the forecasting one, and rephrasing the inference
question to be more similar to the signal can lead to overreaction. The perceived noise of the signal in our
underreaction extension can accommodate such perceived similarity between the signal and the problem.
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2.1 Variations in Overreaction: Evidence from Survey Forecasts

A major challenge for analyzing expectations using survey forecast data is that the true DGP

and forecasters’ information sets are both unknown. Taking inspiration from Coibion and

Gorodnichenko (2015), Bordalo et al. (2020c) observe that one idea is to capture belief up-

dating using forecast revisions by individual forecasters: revisions should incorporate news

that a forecaster responds to and should be part of the information set. When a forecaster

overreacts to information, revisions at the individual level would overshoot (e.g., upward

forecast revisions would predict realizations below forecasts). The empirical specification is

the following, which regresses forecast errors on forecast revisions in a panel of quarterly

individual-level forecasts:

xt+h − Fi,txt+h︸ ︷︷ ︸
forecast error

= a + b (Fi,txt+h − Fi,t−1xt+h)︸ ︷︷ ︸
forecast revision

+vit, (2.1)

where Fi,txt+1 is the forecast of individual i of outcome xt+h. For each series, we obtain a

coefficient b (henceforth the “error-revision coefficient”). When overreaction is present, b

should be negative, and vice versa (Bordalo et al., 2020c).

Bordalo et al. (2020c) analyze professional forecasts of 22 series of macroeconomic and

financial variables. They find that the error-revision coefficient b is generally negative, and

it is more negative for processes with lower persistence. They interpret this pattern as an

indication that overreaction tends to be stronger when the actual process is more transitory.

In Figure I, Panel A, we use Survey of Professional Forecasters (SPF) data and replicate this

finding. Here we use the simple one-period-ahead forecasts, namely h = 1. The y-axis

shows the coefficient b for different series, and the x-axis shows the autocorrelation of each

series as a simple measure of persistence. We see that the coefficient b is more negative (i.e.,

overreaction is stronger) when the actual series is less persistent.

In Figure I, Panel B, we also document similar results using analysts’ forecasts of firms’

sales from the Institutional Brokers’ Estimate System (IBES). Again we use one-period-ahead

forecast, namely h = 1. We normalize both actual sales and projected sales using lagged

sales, and the frequency is quarterly. Results are very similar if we use an annual frequency,
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or using earnings forecasts instead of sales forecasts.5 We run one regression in the form of

Equation (2.1) for each firm i to obtain coefficient bi. We also compute the autocorrelation of

the actual sales growth process ρi. Figure I, Panel B, shows a binscatter plot of the average

bi in twenty bins of ρi. Here the key fact remains: the coefficient bi is more negative when

the actual sales process of the firm is less persistent. Nonetheless, the average level of bi

is positive (indicating underreaction), consistent with Bouchaud et al. (2019). In contrast,

Bordalo et al. (2019) find negative error-revision coefficients (pointing to overreaction) when

analyzing analyst forecasts about long-term growth instead of near-term cash flows, which

suggests the forecast horizon may affect the degree of overreaction as well.

2.2 Challenges in Field Data

Although these results from survey data are intriguing, they can be difficult to interpret

unequivocally for several reasons.

First, the error-revision regressions have limitations. To begin, it is difficult to estimate b

precisely for transitory processes when expectations are close to rational. In this case, revi-

sions are close to zero, so the regression coefficient is not well estimated. As an illustration,

in Figure A.1, Panel A, we show the error-revision coefficient b from simulations where we

simulate forecasters under diagnostic expectations (Bordalo et al., 2018, 2020c) for AR(1) pro-

cesses with different levels of persistence. By construction, the simulated coefficient (shown

by the solid line) is on average similar to theoretical predictions in the diagnostic expecta-

tions model (Bordalo et al., 2020c). Meanwhile, the dashed lines show that the confidence

intervals become very wide when the process persistence is below 0.5.6 The intuition in this

example is that the variance of the right-hand-side variable, the forecast revision, goes to

zero for i.i.d. processes when expectations are close to rational (see discussion on asymp-

5Earnings forecasts have several complications relative to sales forecasts. First, earnings forecasts primarily
take the form of earnings-per-share (EPS), which may change if firms issue/repurchase shares, or have stock
splits/reverse splits. This requires us to transform EPS forecasts to implied forecasts about total firm earnings,
which could introduce additional measurement error. Second, the definition of earnings firms use for EPS
can be informal (“pro forma" earnings, instead of formal net income according to the Generally Accepted
Accounting Principles (GAAP). As a result, matching earnings forecasts properly with actual earnings can be
more challenging. In comparison, sales forecasts are directly about total sales of the firm, and the accounting
definition of sales is clear (based on GAAP).

6For AR(1) processes, the diagnostic forecast is Eθ
t xt+1 = Etxt+1 + ρεt, where Etxt+1 is the rational forecast,

ρ is the AR(1) persistence, and εt is the news in period t. When the process is i.i.d., the diagnostic forecast
becomes the same as the rational forecast, and the error-revision coefficient is not well-defined.
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FIGURE I

Forecast Error on Forecast Revision Regression Coefficients

In Panel A, we use SPF data on macroeconomic forecasts and estimate a quarterly panel regres-
sion using each individual j’s forecasts for each variable xi: xi,t+1 − Fi,j,txi,t+1 = a + bi(Fi,j,txi,t+1 −
Fi,j,t−1xi,t+1) + vi,j,t, where the left-hand-side variable is the forecast error and the right-hand-side
variable is the forecast revision for each forecaster j. The y-axis plots the regression coefficient bi for
each variable, and the x-axis plots the autocorrelation of the variable. The variables include quarterly
real GDP growth, nominal GDP growth, GDP price deflator inflation, CPI inflation, unemployment
rate, industrial production index growth, real consumption growth, real nonresidential investment
growth, real residential investment growth, real federal government spending growth, real state and
local government spending growth, housing start growth, unemployment rate, 3-month Treasury
yield, 10-year Treasury yield, and AAA corporate bond yield. In Panel B, we use IBES data on an-
alyst forecasts of firms’ sales and estimate a quarterly panel regression using individual analyst j’s
forecasts for each firm i’s sales xi,t+1 − Fi,j,txi,t+1 = a + bi(Fi,j,txi,t+1 − Fi,j,t−1xi,t+1) + vi,j,t, where the
left-hand-side variable is the forecast error and the right-hand-side variable is the forecast revision
for each forecaster j. The y-axis plots the regression coefficient bi, and the x-axis plots the autocorre-
lation of firm i’s sales. For visualization, we group firms into twenty bins based on the persistence
of their sales, and present a binscatter plot. Both actual and projected sales are normalized by lagged
book assets.
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totic standard errors in Online Appendix IA2.1).

Estimation issues aside, the error-revision coefficient b is not necessarily a direct met-

ric for the degree of overreaction (i.e., how much subjective beliefs over-adjust relative to

the rational benchmark). This empirical coefficient does not directly map into a structural

parameter, and its interpretation can be model dependent.7 In addition, the error-revision

coefficient b can be subject to the critique that if the forecast Ftxt+h is measured with noise,

the regression coefficient b could be mechanically negative, given that Ftxt+h affects both the

right side (forecast revision) and the left side (forecast error) of the regression. Ultimately,

as explained earlier, one important reason for using the error-revision regression in survey

forecast data is that researchers do not observe forecasters’ information sets, and forecast

revision can be used to capture information they respond to. If the information set is clear,

however, then we can directly analyze forecasts and errors using components of the infor-

mation sets.

Second, the DGP can be difficult to pin down in survey data. Many models assume

the DGP to be AR(1), and the interpretation of the regression coefficients (such as Equation

(2.1)) can change if the DGP is not AR(1). For instance, Bordalo et al. (2020c) show that

the regression specification in Equation (2.1) no longer holds and a modified specification

is required if the DGP is AR(2). However, econometricians may not be able to statistically

differentiate whether a process is AR(1) or ARMA with longer lags in finite sample (Fuster,

Laibson and Mendel, 2010).

These challenges in the field data show that complementary experimental analyses would

be useful. Accordingly, we implement a large-scale forecast experiment where the fore-

casting environment is simple and the DGP is clearly defined, which allows us to measure

over/underreaction precisely. The experiments also allow us to randomly assign partic-

ipants into different conditions, so we can cleanly document the properties of subjective

forecasts in different settings.

In the experiment, for AR(1) processes a straightforward way to measure the degree of

over/underreaction is to examine the sensitivity of subjective forecasts to realized observa-

7In particular, since the forecast revision in period t is the change between the subjective forecast from t− 1
to t (Ftxt+h − Ft−1xt+h), its size and variance are affected by the past forecast (Ft−1xt+h), so the magnitude of
the error-revision coefficient b can be path dependent.
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tions. We can regress the forecast Ftxt+h on xt to obtain the forecast-implied persistence for

horizon h, ρs,h, and then calculate ρs
h = ρ1/h

s,h as the implied one-period persistence of the

horizon h forecasts. We can compare the implied persistence ρs
h with the actual persistence

ρ of the process. When ρs
h > ρ, there is overreaction, in the sense that the forecast displays

excess sensitivity to the latest observation xt (i.e., when xt is high, the forecast tends to be too

high, and vice versa). Relative to the error-revision coefficient, the magnitude of the implied

persistence (ρs
h) is easier to interpret as a measure of overreaction: the gap between ρs

h and ρ

directly captures how much more forecasts respond to recent observations relative to the ra-

tional benchmark.8 In addition, this approach does not face the econometric complications

that apply to the error-revision coefficient we discussed above, as the variance of the right-

hand-side variable (namely the past realization) is always well-defined (it does not vanish

to zero as ρ decreases). Figure A.1, Panel B, presents simulations of the implied persistence

(with h = 1) and shows this approach is reliable for all levels of persistence.

We explain the experimental design in the next section. Our experiments focus on AR(1)

processes for three reasons based on the previous discussion. First, the rational benchmark

is clear in this setting. Second, we can precisely measure the degree of over-/under-reaction

relative to the benchmark. Third, most models of expectations formation also focus on

AR(1), so we can compare our findings with their predictions.

3 Experiment Design

We design a simple forecasting experiment, where the DGP is an AR(1) process:

xt+1 = (1− ρ)µ + ρxt + εt. (3.1)

The experiment begins with a consent form, followed by instructions and tests. Participants

first observe 40 past realizations of the process. Then, in each round, participants make fore-

8There is an approximate relationship between the error-revision coefficient and ζ(ρ, h) = (ρs
h)

h/ρh. Specif-

ically, 1/(1 + b) = Var(FR)
Cov(FE+FR,FR) , where FR and FE refer to forecast revision and forecast error, respectively. If

we set Ft−1xt+h as a constant, then this coefficient is the same as ζ(ρ, h). Accordingly, a negative error-revision
coefficient, often interpreted as evidence of overreaction, implies ζ(ρ, h) > 1, i.e., overreaction of the subjective
belief to the latest observation.

11



casts and observe the next realization, for 40 rounds. After the prediction task, participants

answer some basic demographic questions.

Each participant is only allowed to participate once. Participants include both individ-

uals across the US from Amazon’s online Mechanical Turk platform (MTurk) and MIT un-

dergraduates in Electrical Engineering and Computer Science (EECS). For MTurk, we use

HITs titled “Making Statistical Forecasts.”9 For MIT students, we send recruiting emails to

all students with a link to the experimental interface.

3.1 Experimental Conditions

There are four main sets of experiments, which we describe below and summarize in Table

A.2 in the Online Appendix.

Experiment 1 (Baseline, MTurk). Experiment 1 is our baseline test, conducted in Febru-

ary 2017 on MTurk. We use six values of ρ: {0, 0.2, 0.4, 0.6, 0.8, 1}. The volatility of ε is 20.

The constant µ is zero. Participants are randomly assigned to one value of ρ. Each par-

ticipant sees a different realization of the process. At the beginning, participants are told

that the process is a “stable random process." In each round, after observing realization xt,

participants predict the value of the next two realizations Ftxt+1 and Ftxt+2. The previous

period forecast of xt+1, Ft−1xt+1, is reported as a grey dot (so that the forecaster remembers

the past forecast).10 Figure A.2 provides a screenshot of the prediction page. There are 207

participants in total and about 30 participants per value of ρ.

Experiment 2 (Long Horizon, MTurk). Experiment 2 investigates longer horizon fore-

casts. We assign participants to conditions identical to Experiment 1, except that we collect

forecasts of xt+1 and xt+5 (instead of xt+2), with ρ ∈ {0.2, 0.4, 0.6, 0.8}. Experiment 2 was

conducted in June 2017 on MTurk. There are 128 participants in total.

9The MTurk platform is commonly used in experimental studies (Kuziemko, Norton, Saez and Stantcheva,
2015; D’Acunto, 2020; Cavallo, Cruces and Perez-Truglia, 2017; DellaVigna and Pope, 2017, 2018). It offers
a large subject pool and a more diverse sample compared to lab experiments. Prior research also finds the
response quality on MTurk to be similar to other samples and to lab experiments (Casler, Bickel and Hackett,
2013; Lian, Ma and Wang, 2018).

10This feature is present in most of our conditions, but it has no effect on our core results. In Online Ap-
pendix Table A.4, we report the forecast-implied persistence (regression of Ftxt+1 on xt) for conditions with
and without the grey dot. We see no difference in the results among these conditions.
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Experiment 3 (Describe DGP, MIT EECS). In Experiment 3, we study whether provid-

ing more information about the DGP affects forecasts. To make sure that participants have

a good understanding of the AR(1) formulation, we perform this test among MIT under-

graduates in Electrical Engineering and Computer Science (EECS). Experiment 3 was con-

ducted in March 2018 and there are 204 participants. We use the same structure as in Exper-

iment 1, with AR(1) persistence ρ ∈ {0.2, 0.6}. For each persistence level, the control group

is the same as Experiment 1, and the process is described as “a stable random process.”

For the treatment group, we describe the process as “a fixed and stationary AR(1) process:

xt = µ + ρxt−1 + et, with a given µ, a given ρ in the range [0,1], and et is an i.i.d. random

shock.” Thus there are 2× 2 = 4 conditions in total, and participants are randomly allocated

to one of them. At the end of the experiment, we further ask students questions testing their

prior knowledge of AR(1) processes. We do not disclose the values of µ and ρ, since the ob-

jective of our study is to understand how people form forecasting rules; directly providing

the values of µ and ρ would make this test redundant.

Experiment 4 and 5 (Additional Test, MTurk). In Experiment 4 and 5, we perform addi-

tional tests explained in more detail in Section 6.1 and Section 6.2. Participants are randomly

assigned into a given condition and a given level of ρ. As before, there are about 30 partic-

ipants for each treatment condition and level of ρ. Experiment 4 was conducted in March

2021 on MTurk and Experiment 5 was conducted in June 2022 on MTurk.

3.2 Payments

We provide fixed participation payments as well as incentive payments that depend on the

performance in the prediction task. For the incentive payments, participants receive a score

for each prediction that increases with the accuracy of the forecast (Dwyer, Williams, Bat-

talio and Mason, 1993; Hey, 1994): S = 100×max(0, 1− |∆|/σ), where ∆ is the difference

between the prediction and the realization, and σ is the volatility of the noise term ε. This

loss function ensures that a rational participant will optimally choose the rational expecta-

tion, and it ensures that payments are always non-negative. A rational agent would expect
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to earn a total score of about 2,800.11 We calculate the cumulative score of each participant,

and convert it to dollars. The total score is displayed on the top left corner of the prediction

screen.

For experiments on MTurk (Experiments 1, 2, 4, and 5), the base payment is $1; the

conversion ratio from the score to dollars is 600, which translates to incentive payments

of about $5 for rational agents. For experiments with MIT students (Experiment 3), the

base payment is $5; the conversion ratio from the score to dollars is 240, which translates to

incentive payments of about $12 for rational agents.

3.3 Summary Statistics

Table A.3 shows participant demographics and other experimental statistics. Overall, MTurk

participants are younger and more educated than the U.S. population. The mean duration

of the experiment is about 18 minutes, and the hourly compensation is in the upper range of

tasks on MTurk. As expected, MIT EECS undergrads are younger. Their forecast duration

and overall forecast scores are similar to the MTurk participants.

4 Main Empirical Findings

In this section, we present the main findings from our experiments. In Section 4.1, we present

the key empirical facts. In Section 4.2, we then analyze whether commonly-used models of

expectations are in line with these facts.

As mentioned in Section 2, the error-revision regression approach has limitations for

accurately measuring the degree of overreaction. In our experiment, a natural and more

precise alternative measure of the degree of overreaction is the persistence implied by the

forecast. Specifically, denote ρs,h as the coefficient in the regression:

Fitxt+h = c + ρs,hxt + uit, (4.1)

11E(1 − |xt+1 − Ft|/σ) is maximal for a forecast Ft equal to the 50th percentile of the distribution of xt+1
conditional on xt. Given that our process is symmetric around the rational forecast, the median is equal to the
mean, and the optimal forecast is equal to the conditional expectation. Whether the rational agent knows the
true ρ (Full Information Rational Expectations) or predicts realizations using linear regressions (Least-Square
Learning) does not change the expected score by much. In simulations, over 1,000 realizations of the process,
we find that expected scores of the two approaches differ by less than 0.3%.
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for each level of AR(1) persistence ρ and forecast horizon h (estimated in the panel of individual-

level forecasts); we can also run the regression for every individual forecaster and take the

mean or median regression coefficient for each process persistence ρ and forecast horizon

h, which produces similar results. The implied persistence is then given by ρs
h = ρ1/h

s,h . As

the Full Information Rational Expectation (FIRE) is given by ρhxt, the difference between ρs
h

and ρ provides a direct measure of the degree of overreaction. This measure is reliable for

AR(1) processes as we show in Section 2, and forecasters’ information sets are clear in the

experiment.

4.1 Basic Facts: More Overreaction for More Transitory Processes and

Longer Forecast Horizons

A. Overreaction and Process Persistence

We first describe how overreaction varies for AR(1) processes with different levels of per-

sistence, starting with one-period-ahead forecasts. Using data from Experiment 1, we have

AR(1) processes with persistence from 0 to 1. First, in Figure II, Panel A, we run the error-

revision regression in Equation (2.1), as we did using field data (the y-axis shows the error-

revision coefficient, and the x-axis shows the persistence of the process). We find that the

coefficient b is more negative for transitory processes, in line with the evidence from field

data discussed in Section 2. Second, in Figure II, Panel B, we plot the implied persistence

ρs
1 against the actual process persistence ρ. We see that when ρ = 1, ρs

1 is around one (i.e.,

the subjective and rational forecasts have roughly the same sensitivity to xt). When ρ is

smaller, ρs
1 declines, but not as much. When ρ = 0, ρs

1 is around 0.45 (i.e., the sensitivity of

the subjective forecast to xt is much larger than that under the rational benchmark).12

Overall, in the experiment, by explicitly controlling the DGP and forecasters’ information

sets, we can establish clearly that overreaction is stronger for more transitory processes. We

discuss several robustness checks below.

FIRE vs. In-Sample Least Square Learning. The analyses above use FIRE for the actual

12We can also compute the ratio of relative overreaction ζ(ρ, h) = ρs,h
ρh . Figure A.3 plots the value of ζ(ρ, h) for

each level of ρ (except when ρ = 0 where ζ(ρ, h) is not well-defined). Since ρs
1 decreases less than one-for-one

with ρ, the degree of overreaction is higher when the process is less persistent.
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FIGURE II

Implied Persistence and Actual Process Persistence

In Panel A, we use data from Experiment 1 and for each level of AR(1) persistence ρ, we es-
timate a panel regression of forecast errors on forecast revisions: xt+1 − Fi,txt+1 = a + b(Fi,txt+1 −
Fi,t−1xt+1) + vit. The y-axis plots the regression coefficient b, and the x-axis plots the AR(1) persis-
tence ρ. In Panel B, we estimate the implied persistence ρs

1 from Fitxt+1 = c + ρs
1xt + uit for each level

of AR(1) persistence ρ. The y-axis plots the implied persistence ρs
1, and the x-axis plots the AR(1)

persistence ρ. The red line is the 45-degrees line, and corresponds to the implied persistence under
Full Information Rational Expectations (FIRE). The vertical bars show the 95% confidence interval of
the point estimates.
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persistence ρ. Results are similar if we use in-sample least square learning as the rational

benchmark instead. Specifically, the in-sample least square estimates are formed as:

Êtxt+h = ât,h +
k=n

∑
k=0

b̂k,h,txt−k. (4.2)

In period t the forecaster predicts xt+h using lagged values from xt−k up to xt; parameters

ât,h and b̂k,h,t are estimated, on a rolling basis, using OLS and past realizations until xt. The

estimated coefficients may differ based on persistence ρ. We set n = 3, but results are not

sensitive to the number of lags.

In our data, the difference between Êtxt+h and FIRE is small. The top panel of Figure A.4

shows that the mean squared difference between these two expectations is small, and does

not decrease much after 40 periods. This is because our AR(1) processes are very simple,

and a few dozen data points are enough for least square forecasts to be reasonably accu-

rate. It also shows that the mean squared difference between the least square forecast and

the actual forecasts is substantial, and does not change much across different periods. The

bottom panel shows that the persistence implied by least square learning is about the same

as the actual persistence ρ. Accordingly, in the rest of the paper we use FIRE in our baseline

definitions, but all the results are similar if we use the in-sample least square Êtxt+h instead.

Effect of Linear AR(1) Prior. We also analyze whether explicitly providing a prior that

the DGP is a linear AR(1) process affects the results. In Experiment 1 with participants from

the general population, we describe the process as a “stable random process" (given that

most of these participants may not know what an AR(1) process means). In Experiment 3

with MIT EECS students, we tell half of the participants that the DGP is AR(1) with fixed µ

and ρ (treatment group), and half of the participants the process is a “stable random process”

(control group). Given the size limit of MIT EECS students, we use two values of ρ: 0.2 and

0.6 (so participants are randomly assigned into a given value of ρ and a given type of process

description).

In Figure A.5, we show that whether the linear AR(1) information was provided has no

discernible impact on the properties of forecast errors. In Panel A, we plot the distributions

of the forecast errors, which are almost identical in the treatment vs. control group. In Panel
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B, we find that the predictability of forecast errors conditional on the latest observation xt is

also similar in the treatment vs. control group. In both samples, forecasts tend to be too high

when xt is high (overreaction), and the magnitude of the bias is about the same. Table A.5

shows that the implied persistence is also similar in both the treatment and control groups.

Overall, we find that explicit descriptions of the AR(1) process do not seem to affect the

basic patterns in the data. Put differently, participants do not seem to enter the experiment

with complicated nonlinear priors. Finally, Figure A.6 compares the implied persistence ρs
1

in the MIT experiments with that in our baseline experiments, which shows the results are

very stable (even with the caveat that these two sets of experiments were not conducted and

randomized at the same time).

Stability across Demographics. Figure A.7 shows both the error-revision coefficient b

and implied persistence ρs
1 against ρ in different demographic groups. In all cases, the main

patterns are stable.

B. Overreaction and Forecast Horizon

We next examine how overreaction varies across different forecast horizons, by comparing

forecasts for xt+1 and forecasts for xt+2, xt+5, and xt+10. Recent research using survey data

suggests that overreaction appears more pronounced for forecasts of longer-horizon out-

comes. For instance, using the error-revision regression, Bordalo et al. (2019) find a negative

and significant coefficient for equity analysts’ forecasts of long-term earnings growth (which

points to overreaction), while Bouchaud et al. (2019) document a positive error-revision co-

efficient for analysts’ forecasts of short-term earnings (which points to underreaction). Based

on professional forecasters’ predictions of interest rates, several studies also show that the

error-revision coefficient is negative and significant for long-term interest rates, but not for

short-term interest rates (Bordalo et al., 2020c; Wang, 2021; d’Arienzo, 2020).

We compare the degree of overreaction for long-horizon versus short-horizon forecasts

following the structure in Giglio and Kelly (2018). They show that affine asset pricing models

using a given level of process persistence cannot simultaneously account for prices of long-

maturity and short-maturity claims. We ask if the level of implied persistence (ρs
h) differs for

long-term and short-term forecasts in our data.
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FIGURE III

Implied Persistence for Short-Term and Long-Term Forecasts

This figure shows the implied persistence ρs
h as a function of the actual persistence ρ. The implied

persistence ρs
h is obtained by regressing Ftxt+h on xt and taking the 1/hth power of the coefficient. The

vertical bars indicate the 95% confidence interval. Panels A, B, and C show results for h = 2, h = 5,
h = 10, respectively. The data for Panels A, B, and C come from Experiment 1 (where participants
forecast xt+1 and xt+2), 2 (where participants forecast xt+1 and xt+5), and 4 (where participants fore-
cast xt+1 and xt+10) respectively. The two sets of dots (short-horizon and longer-horizon forecasts)
for each panel come from forecasts made by the same participants. The dotted line is the 45-degree
line. There are no results for ρ = 0 and ρ = 1, because the experiment initially designed to collect
data on h = 5 (Experiment 2) did not include these conditions.

Figure III shows the results. Panels A, B, and C report the values of the implied persis-

tence ρs
h for h = 2, h = 5 (for which we only have conditions with ρ between 0.2 and 0.8), and
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h = 10, respectively. In each panel, the longer-horizon forecasts and the short-horizon fore-

casts (for xt+1) come from the same participants for the same AR(1) process. In all panels, we

see a substantial degree of overreaction. Moreover, the degree of overreaction (as reflected

by the gap between the implied persistence ρs
h and ρ) is even higher when h is larger. The

difference between the implied persistence for short-horizon and longer-horizon forecasts is

especially pronounced for very large h and for transitory processes (significant at 5% as the

confidence intervals show). The results also suggest that forecasters using a single incorrect

persistence parameter (e.g., Gabaix, 2018) cannot fully explain the empirical evidence: this

bias alone cannot simultaneously square with both short-term and long-term forecasts made

by the same forecasters.

4.2 Testing Models of Expectations

We now use the data from our experiments and the key facts above to analyze commonly-

used models of expectations formation.

A. Models of Expectations

We begin by laying out the standard formulations of these expectations models.

Backward-Looking Models

We start with older “backward-looking” models, which specify fixed forecasting rules

based on past data and do not incorporate properties of the process (e.g., they are not a

function of ρ). The term structure of expectations in these models is not well-defined, so we

focus on one-period-ahead forecasts.

1. Adaptive expectations

Adaptive expectations have been used since at least the work of Cagan (1956) on inflation

and Nerlove (1958) on cobweb dynamics. The standard specification is:

Ftxt+1 = δxt + (1− δ)Ft−1xt. (4.3)

2. Extrapolative expectations
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Extrapolative expectations have been used since at least Metzler (1941), and are some-

times used in studies of financial markets (Barberis, Greenwood, Jin and Shleifer, 2015; Hir-

shleifer, Li and Yu, 2015). One way to specify extrapolation is:

Ftxt+1 = xt + φ(xt − xt−1). (4.4)

That is, expectations are influenced by the current outcome and the recent trend, and φ > 0

captures the degree of extrapolation.

Forward-Looking Models

We now proceed to “forward-looking" models, where forecasters do incorporate features

of the true process. In these models, which contain rational expectations, the term structure

of expectations is well-defined.

3. Full information rational expectations

Full information rational expectations (FIRE) is the benchmark specification in economic

modeling. Decision makers know the true DGP and its parameters, and make statistically

optimal forecasts accordingly:

Ftxt+h = Etxt+h = ρhxt. (4.5)

As explained in Section 4.1, in our data in-sample least square learning is very close to FIRE,

so we use FIRE as the benchmark.

4. Noisy information/sticky expectations

Noisy information models assume that forecasters do not observe the true underlying

process, but only noisy signals of it (e.g., Woodford, 2003). In our setting where actual re-

alizations are displayed directly, such frictions may correspond to noisy perception. These

models typically have the following recursive formulation:

Ftxt+h = (1− λ)Etxt+h + λFt−1xt+h + εit,h, (4.6)

where Etxt+h is FIRE, λ ∈ [0, 1] depends on the signal’s noisiness, and εit,h comes from the
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noise too. As a reduced form formulation, Equation (4.6) can also represent anchoring on

past forecasts, and Bouchaud et al. (2019) use it to model forecasts of equity analysts.

5. Diagnostic expectations

Diagnostic expectations are introduced by Bordalo, Gennaioli and Shleifer (2018) to cap-

ture overreaction in expectations driven by the representativeness heuristic (Kahneman and

Tversky, 1972). The baseline specification is:

Ftxt+h = Etxt+h + θ(Etxt+h − Et−1xt+h). (4.7)

That is, the subjective expectation is the rational expectation plus the surprise (measured

as the change in rational expectations from the past period) weighted by θ, which indexes

the severity of the bias. Under diagnostic expectations, subjective beliefs adjust to the true

process and incorporate features of rational expectations (“kernel of truth"), but overreact to

the latest surprise by degree θ.

6. Constant gain learning

We also test constant gain learning about xt, which implies least square learning with

weights that decrease for observations further in the past. We use the regression specifica-

tion:

Ftxt+h = Êm
t xt+h = âh,t + b̂h,txt, (4.8)

where âh,t, b̂h,t are obtained through a rolling regression with all data available until t. The

difference with the standard least square learning specification is that this regression uses

decreasing weights (i.e., older observations receive a lower weight) to reflect imperfect re-

tention of past information. Specifically, in period t, for all past observations s ≤ t, we use

exponentially decreasing weights: ws
t = 1

κ(t−s) . These weights correspond to constant gain

learning in recursive least squares formulations (Malmendier and Nagel, 2016).

Other Models

In addition to the models listed above, there are several other models to consider. We

do not estimate these models formally because their features are qualitatively different from
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the results observed in our data, by design or by outcome, as we explain below.

First, an intuitive model of overreaction is described in Gabaix (2018). Specifically, the

forecaster faces a range of possible processes with varying degrees of persistence. To limit

computational cost, the boundedly rational forecaster uses a persistence parameter ρ̂ that

is anchored to a default level of persistence ρd: ρ̂ = mρi + (1 − m)ρd. In such a setting,

forecasters would overreact to processes that are less persistent than the default level ρd, and

underreact to processes that are more persistent than the default level. One limitation of this

approach is such a bias alone cannot account for results across different forecast horizons.

As Figure III shows, a given level of incorrect persistence cannot simultaneously square with

both short-term and long-term forecasts made by the same forecasters. Indeed, if a single

incorrect ρ was the only bias, then overreaction would dissipate for long-term forecasts (e.g.,

forecast of xt+10), which is not the case in the data.

Second, several papers investigate belief formation with model misspecification. For

instance, in natural expectations (Fuster, Laibson and Mendel, 2010), the key observation

is that forecasters can have difficulty differentiating processes with hump-shaped dynam-

ics (such as AR(2) or ARMA(p,q)) from simpler AR(1) processes in finite samples.13 Other

models analyze subjective beliefs about regime shifts (Barberis, Shleifer and Vishny, 1998;

Bloomfield and Hales, 2002; Massey and Wu, 2005). As explained in Section 4.1, in Experi-

ment 3 among MIT EECS students, we explicitly describe the linear AR(1) process to half of

the participants. We do not find that the information of a linear AR(1) prior affects the re-

sults. Indeed, our findings highlight that systematic biases in expectations can be significant

even in linear stationary environments.

Relatedly, building on Rabin (2002), Rabin and Vayanos (2010) also formulate a model

based on beliefs about misspecified DGP. Proposition 6 in their paper states that the forecast

should have a negative loading on the most recent observation (xt−1), whereas this loading

is strongly positive in our data.

13Fuster, Laibson and Mendel (2010) formulate an “intuitive model" Ftxt+1 = xt + φ(xt − xt−1) + εt+1, when
the true DGP is an AR(2) xt+1 = αxt + βxt−1 + ηt+1, and φ = (α− β− 1)/2. We could test this model in our
data, where α ≥ 0, β = 0, φ < 0, and the intuitive model has the same functional form as the extrapolative
expectation in Equation (4.4) with negative φ.
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B. Estimating Models of Expectations

We now estimate the models described above on one-period-ahead forecast data (i.e., with

h = 1). We pool data from all conditions of Experiment 1 (i.e., with ρ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}).

All models except FIRE (which has no parameter) and constant gain learning (whose param-

eter lies in the decreasing weights) can be simply estimated using constrained least squares.

We cluster standard errors at the individual level. The constant gain learning model is es-

timated by minimizing, over the decay parameter, the mean squared deviation between

model-generated and observed forecasts. We estimate standard errors for this model by

block-bootstrapping at the individual level.

Table A.6 reports the estimated parameters. Each model is described by an equation and

a parameter (in bold). The parameter estimate is reported in the third column, along with

standard errors in the fourth column. In the fifth column, we report the mean squared error

of each model, as a fraction of the sample variance of forecast. Since forecasts in the ρ = 1

condition are mechanically more variable than forecasts in the ρ = 0 condition, we compute

one such ratio per level of ρ, and then compute the average ratio across values of ρ.

Several patterns emerge from the model estimation. First, consistent with findings in

Section 4.1, rational expectations are rejected. Indeed, rational expectations are nested in all

three forward-looking non-RE models, and the coefficient related to deviations from rational

expectations is always significant at 1%. In line with such deviations being important, FIRE

has the lowest explanatory power of forecast data.

Second, most models point to strong signs of overreaction. The adaptive model fea-

tures overreaction through the high loading on the past realization xt (0.83). The backward-

looking extrapolative model has a negative coefficient on the slope (xt− xt−1), but this again

reflects that most overreaction is built into the coefficient on the past realization xt, which is

fixed at one by definition. The diagnostic expectations model has θ = 0.34, which indicates

strong overreaction (forecasts react 34% “too much" to the last innovation).14 The constant

gain learning model features a significant decay in the weight of past observations, a loss of

6% per period (i.e., it takes about 12 periods to divide the weight by 2), rejecting the equal

14The θ estimate is slightly lower than the typical estimate in Bordalo et al. (2020c) using macro survey data
(which find θ of around 0.5) and in Bordalo, Gennaioli and Shleifer (2018) and Bordalo et al. (2019) using
analyst forecasts of credit spreads and long-term EPS growth (which find θ of around 1).
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weights in benchmark least square learning. Last, the sticky/noisy expectations model is the

only one that does not feature overreaction. The coefficient on previous forecasts (Ft−1x+1)

is 0.14, similar to earlier analyses on earnings forecasts by stock analysts (Bouchaud et al.,

2019). This finding suggests that there is some anchoring on the level of past forecasts, in

addition to overreaction to the recent realization.

C. Comparing Model Predictions and Empirical Results

We now investigate how overreaction varies with process persistence and forecast horizon

in the estimated models, and compare model predictions with our empirical findings.

Overreaction and Process Persistence. We start with the evidence on overreaction and

process persistence (using one-period-ahead forecasts). In Figure IV, we compute the im-

plied persistence based on the five models estimated above. Specifically, for each model m

and for each observation in our data, we compute the model-based forecast F̂m
t xt+1 using the

parameters in Table A.6. We then group observations per level of ρ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}.

For each level, we regress the model-based forecast F̂m
t xt+1 on xt to obtain the implied per-

sistence according to the model.

In Figure IV, the solid line represents the implied persistence based on actual forecasts

(same as Figure II, Panel B). The dots represent the implied persistence based on the models.

In all models, the implied persistence is an increasing function of ρ, and is close to one for

random walks (as in rational expectations). However, the commonly-used models do not

match the transitory processes very well. The backward-looking expectations models gen-

erate too much overreaction for transitory processes, whereas most of the forward-looking

models do not generate enough overreaction. Sticky expectations generate no overreaction.

The baseline specification of diagnostic expectations generates overreaction, though not for

i.i.d. processes (e.g., the rational surprise in the benchmark formulation of diagnostic expec-

tations is zero in this case). The constant gain learning model also generates some excess

sensitivity to recent realizations by giving them larger weights, but the weights on past ob-

servations do not decrease fast enough.

To connect with results in field data and for completeness, we also report in Figure A.8

the error-revision coefficients based on the models. Again, the solid line represents exper-
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FIGURE IV

Forecast-Implied Persistence: Data vs Models

For each model m, we compute the model-based forecast F̂m
t xt+1 for each observation in our data.

We use the model parameters reported in Table A.6. We then group observations per level of actual
persistence ρ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}. For each level of ρ, we regress the model-based forecast F̂m

t xt+1
on lagged realization xt. The dots report this regression coefficient, which is the forecast-implied
persistence according to model m for a given level of ρ. The solid line corresponds to the forecast-
implied persistence in the data, also shown in Figure II, Panel B.

imental data and the dots represent predictions from estimated models. Here we omit the

adaptive and extrapolative models, because they do not impose an obvious structure on the

two-period-ahead forecasts Ftxt+2, which are needed to compute revisions. The conclusions

are similar to those in Figure IV. For transitory processes, sticky expectations lead to error-

revision coefficients that are too high (no overreaction). The baseline specification of diag-

nostic expectations performs well for more persistent processes, and less so for transitory

processes. Constant gain learning, meanwhile, generates a coefficient that is too negative for

i.i.d. processes.15

Overreaction and Forecast Horizon. We now compare the data and model predictions

for longer-horizon forecasts. We focus on the forward-looking models as the backward-

15This is in fact a mechanical effect of the error-revision coefficient, which divides by the variance of forecast
revision. In the constant gain learning model, forecast revisions tend to be very small for low values of ρs (they
are close to zero), which blows up the absolute value of the error-revision coefficient. The implied persistence
measure in Figure IV is immune to this problem.
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FIGURE V

Forecast-Implied Persistence: Longer Horizon Forecasts

This figure shows the implied persistence ρs
h as a function of the actual persistence ρ. The implied

persistence ρs
h is obtained by regressing Ftxt+h on xt and taking the 1/hth power of the coefficient.

Panels A, B, and C show results for h = 2, h = 5, h = 10, respectively. The data is the same as those
used in Figure III. The dotted line is the 45-degree line.

looking models do not provide a clear term structure of forecasts for multiple horizons. In

particular, we fit all models using h = 1 and use the same parameters to generate model

predictions for h = 2, 5, 10. We find that the implied persistence according to standard

models tends to be too low, especially when the forecast horizon is longer; the exception is

constant gain learning, which produces a closer fit when the horizon is longer.

Overall, the empirical findings suggest that forecasts in the data do adapt to the setting
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(with lower implied persistence when the true persistence ρ is smaller). Consequently, the

backward-looking models (which specify a fixed dependence of forecasts on past realiza-

tions) generally do not perform well in capturing the degree of overreaction across different

levels of process persistence. Meanwhile, despite the partial adaptation of forecasts to the

actual persistence, overreaction is most significant when the process is transitory. This re-

sult echoes strong extrapolative beliefs observed in other settings with transitory processes,

including experimental studies (Frydman and Nave, 2016) and survey data on stock returns

(Greenwood and Shleifer, 2014). The baseline specifications of the forward-looking mod-

els generally do not allow transitory shocks to generate much overreaction. This is because

these models focus on using the recent shock εt to infer future shocks εt+h, which tends to

produce an inferred value (Ft[εt+h|εt]) that scales with the persistence ρ.

The empirical evidence points to the following insight: a parsimonious way for models

to account for the empirical findings is allowing recent observations to influence the as-

sessment of more persistent aspects of the process (e.g., its long-run mean). The benefit of

modeling imperfect inference about the long-run mean is two-fold. First, this approach nat-

urally implies that recent observations can lead to biased forecasts of future outcomes even

when the process is i.i.d. Second, this approach also naturally leads to greater overreaction

of longer horizon forecasts, which are more sensitive to biases regarding the long-run mean.

For the models discussed above, for example, one can modify constant gain learning to fo-

cus on the mean instead of xt+h, as in Nagel and Xu (2022). Similarly, da Silveira, Sung and

Woodford (2020) provide a model where the noisiness of the memory state leads the agent to

put a large weight on the recent observation when inferring the mean. The biases about the

long-run mean can be generalized to other models as well. As an example, for the diagnostic

expectations model of Bordalo et al. (2018), a modification could be that the agent starts with

a default prior regarding µ at a given point in time, and a high realization of xt is diagnostic

of a higher µ.16

In the next section, we present a simple and tractable model that builds on this insight of

biases about the mean. The model delivers three key features. First, it microfounds the over-

weighting of recent observations as a result of imperfect information processing (Sections

16This approach is similar to that of Bordalo et al. (2019), where agents partially conflate transitory noise
with a more persistent underlying latent process. (In our setting, however, there is no unobservable state.)
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5.1 and 5.2). Second, it can be easily estimated to evaluate empirical performance and read-

ily generalized to different processes and settings (Section 5.4 and Online Appendix IA4).

Third, it can accommodate both overreaction and underreaction (Online Appendix IA5).

5 Model

In this section, we provide a simple model that captures the disproportionate influence of

recent observations on expectations, which operates through judgment about the mean of

the process. We set up and solve the model in Sections 5.1 and 5.2. We show the basic com-

parative statics regarding the degree of overreaction in Section 5.3 (and discuss extensions

for underreaction). We then assess the model fit in Section 5.4.

5.1 Setup

Environment. Time is discrete and is indexed by t ∈ {0, 1, 2, . . . }. There is an agent who

forecasts future realizations of an exogenous stochastic process {xt : t ≥ 0} at horizon h.

The process is AR(1) with mean µ and persistence ρ:

xt = (1− ρ)µ + ρxt−1 + εt, εt ∼ N (0, σ2
ε ). (5.1)

The agent’s payoff at any given time t depends on the accuracy of these forecasts and is

given by: −(Ftxt+h − xt+h)
2, where Ftxt+h is the agent’s time t forecast of x’s realization h

periods ahead and xt+h is the ex post realization of the variable at t + h.17 The model can be

extended to general Gaussian ARMA processes and the qualitative conclusions of the model

are unchanged, which we show in Online Appendix IA4.

Information Processing. We assume that the agent is uncertain about the long-run mean

(µ), but can process information to form an assessment of its value in order to forecast xt+h.

17Note that xt+h is not fully known at time t and only realized h periods after the forecast is made. Nonethe-
less, at time t, the agent knows that the payoff is determined by the realization of the process at t + h. This is
similar to the score function in the experiment. A minor difference is that the score function in the experiment
does not have an exact quadratic form to ensure that payments in the experiment are always non-negative (as
discussed in Section 3.2). We use this standard quadratic form for simplicity of modeling, so we can derive
closed-form solutions.
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We model this using information processing where more recent observations are less costly

to process than others. The simplest way to obtain such a cost structure is to assume that

the agent processes the most recent observation xt for free, and processes further informa-

tion at a cost.18 Formally, after observing xt, the agent automatically forms the initial prior

regarding µ ∼ N
(
xt, τ−1). The agent then decides whether to process more information to

update this prior. Letting St denote the set of all processed information (which includes xt),

we assume the cost of processing St is increasing and convex in the amount of information

processed conditional on xt:

Ct(St) ≡ ω
exp (γ · I(St, µ|xt))− 1

γ
,

where ω ≥ 0 and γ ≥ 0 are the scale and convexity parameters, and I(St, µ|xt) is Shannon’s

mutual information function, which measures the amount of information used by the agent

after observing xt.19 We use the term “on top of mind” to refer to the set of information

actively used by the agent, St. In the extreme case when processing any additional informa-

tion is costless, our model nests the frictionless rational benchmark. However, with costly

information processing, only a subset of data will be on top of mind.

Psychological Foundations. Our model has two key assumptions. First, the agent faces

frictions in processing information and use a subset of the data available to them. This as-

sumption is closely related to the psychology literature on working memory, which empha-

sizes that some information is more actively used than others. This notion has been referred

to as heightened activation, increased accessibility, or (constrained) focus of attention (Bad-

deley and Hitch, 1993; Cowan, 1998, 2017a). Here, we use the term “on top of mind” to

refer to the set of information that are at a state of heightened activation (St defined above).

The psychology literature shows that heightened activation applies even when there is no

18More generally, one can allow for more observations to be processed for free or all observations to be
costly to process. Our model predictions are largely unchanged as long as information processing is relatively
cheaper for recent observations than for others. In line with our main assumption, Table A.7 shows that xt has
a disproportionate impact on both the forecast and the deviation from the rational benchmark in our data.

19This functional form embeds two useful cases. First, it becomes linear in I(St, µ|xt) when γ → 0, which
is the classic formulation in rational inattention (Sims, 2003). Second, in case of Gaussian beliefs with γ >
1, the cost is equivalent to choosing the precision of beliefs about µ (see Online Appendix IA2.2 for formal
derivations).
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explicit recall involved (Spillers, Brewer and Unsworth, 2012).20 Even though a person may

see a large number of observations in the environment (e.g., many data points on the screen),

not all information is necessarily actively processed. As Barrett, Tugade and Engle (2004)

write: “any environment contains an array of stimuli ... but stronger representations will

laterally inhibit weaker ones, and the strongest will be expressed in behavior.”21

Second, the agent relies on recent information, which is easier to use, and additional in-

formation processing, which is subject to a cognitive cost. We include these two components

in St. This follows the psychology literature’s view about the two ways for information to

enter working memory, perhaps best summarized by Hitch, Hu, Allen and Baddeley (2018):

“Previous research ... indicates that access to the focus of attention (FoA) can be achieved

in either of two ways. The first is automatic and is indexed by the recency effect, the en-

hanced retention of the final item. The second is strategic and based on instructions to pri-

oritize items differentially, a process that draws on executive capacity and boosts retention

of information deemed important.” Furthermore, these two forces in the working memory

mechanism correspond to broader themes in psychology research about dual processing:

recency (which is part of the information that is automatically activated) and goal-driven

information processing (which is slower and requires effort). Thus, our model also relates

to a broad class of dual process models in psychology (Barrett, Tugade and Engle, 2004),

which is unified by a framework where the individual starts from a default driven by what

is immediately accessible (“System 1”), and further adjusts beliefs by effortful processing

(“System 2”).22

Online Appendix IA3 provides a more detailed review of the relevant psychology liter-

ature. The mechanism in our model can reflect costly information processing as discussed

above, but more generally it can also capture other psychological and institutional factors

that limit the usage of past data and generate recency effects.
20The working memory literature emphasizes that heightened activation is not necessarily about recall but

rather about focusing on a subset of the available information in processing. See, e.g., Unsworth and Spillers
(2010) for a discussion. Cowan (2017a) also explains that the term “working memory" originated from the use
in computer science (where it refers to holding information for active processing).

21The recent survey paper by Cowan (2017a) explains the concept of working memory as “the ensemble
of components of the mind that hold information temporarily in a heightened state of availability for use in
ongoing information processing." Cowan (2017b) conveys the idea through its title, “Working Memory: The
Information You Are Now Thinking of."

22See Evans (2008) for a summary of the many types of dual process models in the psychology literature and
Ilut and Valchev (2023) for an application of dual processing in economics.
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Forecasts. Given the estimate of the long-run mean conditional on St, E[µ|St], the agent’s

forecast of Ftxt+h is:

Ftxt+h = ρhxt + (1− ρh)E[µ|St] = Etxt+h︸ ︷︷ ︸
rational forecast

+ (1− ρh)(E[µ|St]− µ)︸ ︷︷ ︸
forecast error of long-run mean

. (5.2)

We assume that the agent uses the correct ρ for simplicity. As discussed earlier, modeling

frictions in beliefs about the long-run mean µ is the most parsimonious way to capture how

overreaction varies with the process persistence and forecast horizon, whereas biases in ρ by

itself are not sufficient (as shown by the results across different forecast horizons). Overall,

we do not rule out that forecasters may also use an incorrect ρ. Nonetheless, we find that

modeling biases about the mean µ is the most concise approach to capture the empirical

evidence that overreaction is stronger both when the process is less persistent and when the

forecast horizon is longer.

5.2 Model Solution

Given the primitives of the problem at time t, the agent solves:

min
St

E
[

min
Ftxt+h

E
[
(Ftxt+h − xt+h)

2|St

]
+ Ct(St)

]
(5.3)

s.t. {xt}︸︷︷︸
recent observation

⊆ St︸︷︷︸
actively used information

⊆ At︸︷︷︸
total information

where At is the largest possible set of information that is available for processing given the

set of available observations xt ≡ {xτ}τ≤t.23 In Online Appendix IA2.2, we show that the

above problem can be simplified to choosing the optimal precision of the long-run mean

estimate:

23Formally, At ≡ {s|I(s, µ|xt) = 0}, meaning that no available signal should contain further information
about the long-run than what is revealed by the history of available observations.
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Lemma 1. The agent’s problem in Equation (5.3) is equivalent to:

min
τ≤τ≤τ̄t

{ (1− ρh)2

τ︸ ︷︷ ︸
benefit of precision

+ ω

(
τ
τ

)γ
− 1

γ︸ ︷︷ ︸
cost of precision

}
, (5.4)

where τ ≡ var(µ|St)−1 is the precision of the agent’s posterior belief about the long-run mean, and

τ̄t is the maximum precision obtainable given the full information setAt, and τ is the precision of the

agent’s prior about the long-run mean.

For the remainder of the paper, we assume that the constraint τ ≤ τ̄t does not bind,

which occurs when At is sufficiently large. As formally shown in Online Appendix IA2.3,

it is straightforward to derive the optimal posterior precision of the long-run mean, τ∗ =

var(µ|St)−1, as τ∗ = τ max
{

1,
(
(1−ρh)2

ωτ

) 1
1+γ
}

, with the agent’s forecast error of the long-

run mean given by:

E[µ|St]− µ =
τ

τ∗
(xt − µ) + noise. (5.5)

Equation (5.5) shows that the agent’s forecast error of the long-run mean is anchored

towards xt, which follows from the assumption that xt is easier to process than other in-

formation. The dependence of the agent’s perception of the long-run mean on the most

recent observation is the key force that drives the overreaction in forecasts. By applying

Equation (5.5) to Equation (5.2), we obtain the following proposition, which presents the

behavior of forecasts under the optimal information processing.

Proposition 1. Forecasts display systematic overreaction relative to the rational benchmark,

with

Ftxt+h = Etxt+h︸ ︷︷ ︸
rational forecast

+ (1− ρh)min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

}
xt︸ ︷︷ ︸

overreaction (≡ ∆)

+ ut︸︷︷︸
noise

. (5.6)

Proof. See Online Appendix IA2.3.

Proposition 1 shows that in presence of costly information processing, forecasts are more

sensitive to the most recent observation relative to the rational forecasts formed under full
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information. We denote this excess sensitivity by the term ∆, which captures the degree of

overreaction in forecasts relative to rational forecasts.

5.3 Comparative Statics

We now illustrate the implications of our model for the empirical evidence on overreaction.

As Proposition 1 shows, forecasts display overreaction in our model since the agent over-

weighs the most recent observation xt when inferring the long-run mean µ.24 Furthermore,

as the agent conflates some part of the transitory shock as permanent, we also obtain predic-

tions about how the degree of overreaction varies across different settings. The key intuition

is as follows. First, overreaction is stronger when the most recent shock is less predictive of

future outcomes. Accordingly, our model naturally generates greater overreaction for less

persistent processes and for longer-horizon forecasts. Second, as Equation (5.6) shows, the

response of the forecast to xt in our model also adapts partially to the true process (in line

with what we see in the data). In other words, costly information processing allows the

agent to moderate the influence of xt on the forecast. Therefore, the implied persistence is

lower when actual ρ is smaller, instead of being a constant, but the adjustment is imperfect.

The following proposition summarizes the combined effect of these two forces and pro-

vides comparative statistics of overreaction with respect to the parameters of the model.

Proposition 2. Consider the excess sensitivity of forecasts to xt measured by ∆ = ρs,h − ρh

defined in Equation (5.6):

1. ∆ ≥ 0 with ∆ = 0 if and only if, either ρ = 1, or information processing is frictionless

(ω = 0) and past information available to the forecaster is infinite.

2. ∆ is increasing in τ and ω.

3. ∆ is decreasing in ρh (and hence decreasing in ρ and increasing in h) if the cost function

is weakly convex in τ, which is true if and only if γ ≥ 1.

24This is a fundamental difference between our model and models of sticky information (which may use
similar modeling techniques). In sticky information models, agents have full access to past information, but
some may not have access to the most recent observation. Accordingly, forecasts can exhibit underreaction
(since they rely more on past information rather on the recent observation). In contrast, in our model, the
agent is fully aware of the most recent observation but processes past information imperfectly, which results
in overreaction (since forecasts rely more on the recent observation than on past information).
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4. Denote ζ(ρ, h) ≡ ρs,h/ρh. Then, ζ(ρ, h) ≥ 1. Like ∆, ζ(ρ, h) is decreasing in ρ and

increasing in h for all values of ρ and h, if and only if γ ≥ 1.

Proof. See Online Appendix IA2.4.

Proposition 2 implies that the excess sensitivity of forecasts to the most recent observa-

tion (as measured by ∆ or ζ(ρ, h)), is decreasing in the persistence ρ and increasing in the

horizon h, as long as the cost of information processing is weakly convex in the precision

τ. Moreover, this insight carries over to the gap between the implied persistence ρs
h and the

true persistence ρ, especially for less persistent processes.25 We derive this formally in the

following corollary and show the numerical results in Figure VI.

Corollary 1. Consider the measure of the implied persistence per period relative to the actual persis-

tence ∆ρh ≡ ρs
h − ρ, and also assume γ ≥ 1. Then, ∆ρh ≥ 0 and decreasing in ρ. Moreover, ∆ρh is

increasing in h for h sufficiently large: holding fixed ρ, there exists an h∗ such that ∆ρh is increasing

in h for h ≥ h∗.

Proof. See Online Appendix IA2.5.

In sum, Proposition 2, along with Corollary 1, delivers two main results of our model.

The first result is overreaction, a prediction that is consistent with the evidence presented in

Section 4: the gap between the implied persistence and the actual persistence, ∆ and ∆ρh, is

positive (or equivalently, ζ(ρ, h) is greater than 1). The second result is that overreaction (as

measured by ∆, ∆ρh, or ζ(ρ, h)) is stronger for less persistent processes and sufficiently long

horizons, as we observe in the data (as long as the cost of information utilization is convex

in the precision of the agent’s forecast).26

25More precisely, we show in Online Appendix IA2.5 that ∆ρh is monotonically decreasing in ρh for ρh ≤ λ,
a positive constant independent of ρ and h which depends on γ and ωτ. In practice, as shown in Figure VI,
we find ∆ρh is increasing in the range of persistence and horizon covered in our experiment for our calibrated
parameters.

26Another approach for modeling overreaction is the one in da Silveira, Sung and Woodford (2020) who
introduce a dynamic framework where memory is costly and agents optimally choose their memory structure
over time. In their model, agents decide what they want to remember in the future before an observation is
realized. In our model, the recent observation is the starting point and agents decide to use past information
after an observation has been realized. While both our model and the model in da Silveira, Sung and Woodford
(2020) deliver overreaction in posterior beliefs, the predictions for prior beliefs are different: in our model, the
priors are anchored to the present, as the utilization of past data happens after the most recent observation is
realized; in da Silveira, Sung and Woodford (2020), in contrast, the priors depend on the memory state which
is formed optimally based on the past observations before the most recent observation is realized.
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Finally, the baseline version of the model focuses on overreaction in light of our empirical

evidence presented in Section 4. We provide an extension in Online Appendix IA5 that

shows how the model can allow for underreaction as well. In particular, if the signals are

noisy (Woodford, 2003) or if updating is infrequent (Mankiw and Reis, 2002), then there

can be an additional force that pushes in the direction of underreaction. In this case, the

model shows that overreaction will still be relatively more pronounced when the process is

less persistent. In our experiment, the signal is clear and infrequent updating is unlikely, so

overreaction dominates.

5.4 Model Fit

In addition to the qualitative comparative statics presented above, we now estimate the

model using our forecast data to further evaluate its performance. We present results on

model fit for the case where the cost of information utilization is quadratic (γ = 2). We

also present robustness checks in Section 6.2 where we jointly estimate γ with the other

parameters of the model, which produce similar results. As before, the model is estimated

by minimizing the mean-squared error (MSE) between the one-period forecast predicted by

the model for a given parameter (using the realizations of xt in the data) and the one-period

forecast observed in the data.

First, we show that our model matches the relationship between the implied persistence

and the actual persistence found in the data. Figure VI, Panel A, shows the results for the

baseline horizon h = 1. The solid line represents the implied persistence ρs
1 in the data, and

the red solid circles represent ρs
1 predicted by our model. We see that the implied persistence

ρs
1 predicted by our model is very similar to that in the data. Note that there is nothing

mechanical in this very good fit. The models investigated in Figure IV were fitted the same

way as our model, and do not fit the empirical relation between ρs
1 and ρ.

We also examine model fit for longer-horizon forecasts in Figure VI, Panels B to D. We

present the implied persistence (per period) ρs
h for horizons h = 2, 5, 10. Importantly, we fit

our model using one-period-ahead forecasts, so its performance for other forecast horizons

is not targeted. We see that our model performs well for all forecast horizons.

Table A.8 further evaluates the model fit by calculating the MSE between ρs
h in the model
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FIGURE VI

Model Fit: Implied Persistence

This figure shows the forecast-implied persistence ρs
h as a function of the actual persistence ρ.

The implied persistence ρs
h is obtained by regressing Ftxt+h on xt and taking the regression coefficient

to the (1/h)th power. The blue line represents the results in the forecast data. The solid red dot
represents ρs

1 from our model. Results for h = 1 and h = 2 use forecasts in Experiment 1. Results
for h = 5 and h = 10 use forecasts in Experiment 2 and Experiment 4, respectively. We fit the model
parameter using data for h = 1 and use the same parameter to generate model predictions for other
forecast horizons.

and ρs
h in the data, as well as the MSE between Ftxt+h in the model and in the data. We

calculate the MSE for our model and the models in Section 4.2. This MSE calculation also

confirms that our model performs well.
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6 Additional Tests and Robustness

In Section 6.1, we present further experimental results to shed light on the mechanisms in

the model. In Section 6.2, we show the robustness of our model formulations to different

functional forms, and we discuss several modeling assumptions.

6.1 Further Experimental Results

We design additional experiments to investigate the mechanism in our model.

Bias about the long-run mean The key component of our model is that biases in the fore-

casts are linked to biases in the long-run mean assessment, which loads too much on the

recent observation relative to the frictionless benchmark as shown in Equation (5.5). We test

this mechanism in an additional experiment, where we elicit participants’ assessment of the

long-run mean by asking them to enter a response in every round for the following ques-

tion: “What do you think is the long-run average of the process?” In the same experiment,

participants also make long-horizon forecasts about xt+10 in each round, so we can compare

the consistency between the xt+10 forecast and the long-run mean assessment. A screenshot

of this experimental interface is presented in Panel A of Figure A.9. We randomly assign

each participant to a given value of AR(1) persistence ρ, and we focus on conditions with

ρ ∈ {0, 0.2, 0.4, 0.6, 0.8} (as the long-run average is not well-defined for ρ = 1). The data is

collected in Experiment 5 (conditions E11 to E16 in Table A.2).

We document two main findings that align with our model. First, the long-run mean

assessment (Ftµ) helps explain the xt+10 forecast. For example, if we use the actual value of

ρ, then we can impute the long-run mean implied by the xt+10 forecast: µ̃t = Ftxt+10−ρ10xt
1−ρ10 .

The difference between the reported long-run mean belief (Ftµ) and the forecast-implied

long-run mean (µ̃t) has median (mean) 0 (-1), with an interquartile range of -14 to 12.

Columns (1) and (2) of Table I show that the forecast-implied long-run mean (µ̃t) is

strongly correlated with the long-run mean assessment (Ftµ). In addition, for conditions

with ρ < 1, we have ρ10 ≈ 0 so the xt+10 forecast itself should be reasonably close to the

long-run mean assessment (Ftµ).27 In the data, the raw difference between the long-run

27Even 0.810 ≈ 0.11, where 0.8 is the highest persistence in our experimental conditions except ρ = 1.
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mean belief (Ftµ) and the long-run forecast (Ftxt+10) has median (mean) 0 (3) and interquar-

tile range -15 to 18. Columns (3) and (4) of Table I show that the xt+10 forecast is strongly

correlated with the long-run mean assessment.

Second, the long-run mean assessment (Ftµ) is significantly influenced by the most recent

observation xt (the forecast of xt+10 overreacts to xt as well, with magnitude similar to the

baseline results in Panel C of Figure III).28 In columns (5) and (6) of Table I, we show the

loading of the long-run mean assessment (Ftµ) on xt. We observe a clear positive relation-

ship consistent with the predictions of our model. Taken together, these results are difficult

to explain with alternative models. As shown in Section 4.2, commonly used models do

not generate enough overreaction for the long-term forecasts, especially when the process

is transitory.29 Our model generates overreaction for both the long-term forecast (such as

Ftxt+10) and the long-run mean assessment.

A related question is whether we can eliminate forecasting biases if we tell participants

the long-run mean of the process. To investigate this question, we performed an experiment

where we provided the following information on the instruction page and the prediction

page: “The mean of the process is zero. In other words, the long-run mean is zero.” A

screenshot of the experimental interface is presented in Panel B of Figure A.9. We randomly

assign each participant to a given value of AR(1) persistence ρ, and we focus on conditions

with ρ ∈ {0, 0.2, 0.4, 0.6, 0.8} as before. The data is collected in Experiment 5 (conditions E21

to E36 in Table A.2). Table A.9 shows the comparison of this set of treatment conditions with

the baseline conditions (participants are randomly assigned to one type of condition). We

observe less overreaction in these treatment conditions compared to the baseline, but the

biases are not eliminated. A limitation of this test is that the abstract information provided

to participants about the long-run mean may not be internalized by them, in which case it

could be difficult to make a difference to their forecasting behavior. Future research can ex-

plore whether educating participants about the long-run mean in more detail could further

eliminate biases.
28These different designs also verify that overreaction in the xt+10 forecast is not affected by whether the

short-term xt+1 forecast is asked.
29These models do not always have a well-defined counterpart to the long-run mean forecast. It is easiest to

think that the long-run mean forecast implied by these models is approximated by the forecast of xt+h where
h is a relatively large number. In this case, we know that these models do not generate enough overreaction,
especially when the process is transitory, as we have seen from the xt+10 forecasts.
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TABLE I

LONG-RUN MEAN BELIEF

µ̃t Ftxt+10 Long-Run Mean Belief

(1) (2) (3) (4) (5) (6)

Long-Run Mean Belief 0.604*** 0.639*** 0.582*** 0.629***
(0.085) (0.075) (0.082) (0.073)

xt 0.160*** 0.180***
(0.034) (0.029)

Participant FE N Y N Y N Y
Observations 6,095 6,095 6,095 6,095 6,095 6,095
R2 0.10 0.59 0.10 0.57 0.02 0.49

Notes. In columns (1) and (2), we compare the implied long-run mean in the forecast of xt+10 (µ̃t)
with the long-run mean assessment reported by participants. In columns (3) and (4), we compare the
forecast of xt+10 (Ftxt+10) with the long-run mean assessment reported by participants. In columns (5)
and (6), we examine the loading of the long-run mean assessment on the recent observation. The data
is collected in Experiment 5. Each participant is randomly assigned to a given ρ. Columns (2), (4),
and (6) include participant fixed effects to control for average optimism. Standard errors clustered
by participant are presented in parentheses. ∗∗∗ indicates a 1% level of significance.

On top of mind A further component of our model is that forecasts overreact because

recent observations are on top of mind and more easily available. Accordingly, forecasters

rely excessively on recent observations in their judgment of the long-run mean. To test this

mechanism, we implement two conditions that aim to reduce the extent to which the last

observation is on top of mind, which should in turn reduce the degree of overreaction. In the

first condition (“click xt−10”), we require participants to click on xt−10 before making their

forecasts in each round. In the second condition (“red line”), where we draw a red line at

zero (the actual mean of the process) on the graphical interface for forecasting. A screenshot

of the interface for these two conditions is presented in Panels C and D of Figure A.9. The

two treatment conditions seek to divert the focus away from the most recent observation,

which can reduce its impact on the assessment of the long-run mean.30 We also include the

baseline treatment condition (same design as Experiment 1) for comparison. We focus on

conditions with ρ ∈ {0, 0.2, 0.4, 0.6, 0.8} (our model predicts that forecasts do not overreact

when ρ = 1, which is consistent with the data). Each participant is randomly assigned to a

30Formally, both treatments can be modeled as bringing in other signals about the long-run mean to top of
mind, in addition to the existing default belief µ ∼ N(xt, τ−1). We then obtain the prediction that the implied
persistence in the new treatment conditions should be smaller. See Online Appendix IA6 for details.
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TABLE II

CHANGING WHAT IS ON TOP OF MIND

xt+1 − Ftxt+1 ρxt − Ftxt+1

(1) (2) (3) (4)

xt -0.267*** -0.334*** -0.272*** -0.292***
(0.033) (0.029) (0.031) (0.028)

× Click on xt−10 0.078 0.109** 0.091* 0.124**
(0.051) (0.050) (0.049) (0.048)

× Red line at x = 0 0.099** 0.134*** 0.101** 0.127***
(0.046) (0.042) (0.045) (0.040)

Participant FE N Y N Y
Observations 18,560 18,560 18,560 18,560
R2 0.02 0.22 0.04 0.32

Notes. In this table, we regress different definitions of the forecast error (realization minus forecast)
on the last realization, interacted with two indicator variables that equal one when the participant
is allocated to the new treatment conditions. One of these conditions requires participants to click
on the point corresponding to xt−10 in each round before entering new forecasts. The other one
features a red line at x = 0. We also include the baseline condition (same design as Experiment 1)
for comparison. The data is collected in Experiment 4. Each participant is randomly assigned to a
given ρ and a given condition. Columns (2) and (4) include participant fixed effects to control for
average optimism. In all regressions, we exclude conditions for which ρ = 1, since in this case we
know that forecasts do not have significant biases (the implied persistence is close to one). Standard
errors clustered by participant are presented in parentheses. ∗∗∗ indicates a 1% level of significance.

given ρ and a given treatment condition. The data is collected in Experiment 4 (conditions

D11 to D36 in Table A.2).

We present the results in Table II using the following regression:

xit+1 − Ftxit+1 = αxit + βTClick xt−10
i × xit + γTRed Line

i × xit + ai + εit, (6.1)

where TClick xt−10
i and TRed Line

i are indicator variables that equal one if individual i is as-

signed to one of the new treatment conditions, and εit is clustered by forecaster. Since there

is strong overreaction in the experiment, we expect α < 0. But we expect overreaction to be

less pronounced in both conditions where the last observation is less on top of mind, so that

β > 0 and γ > 0. In the data, we find that both treatments reduce overreaction, in line with

the prediction of our model.
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6.2 Robustness of Model Formulations

We discuss several main assumptions in our baseline model in Section 5.

A. Convexity and General Functional Form

Our benchmark calibration assumes that the cost of information utilization is quadratic

(γ = 2) in the relative precision τ
τ . Here, we examine two alternative ways for calibrating

γ and show the robustness of the results. First, we fit our model assuming the cost is linear

in the mutual information (γ 7→ 0), which is a standard approach in the rational inattention

literature (e.g. Sims, 2003). Second, we fully optimize over the convexity parameter γ using

a grid-search method. Figure A.10 shows the results. The linear approach does a reasonable

job fitting the implied persistence, but overshoots slightly for processes with higher persis-

tence and undershoots slightly for processes with lower persistence. The general γ approach

produces very good fit (the optimal value of γ roughly equals 10). Overall, we find that the

model has good performance and is not very sensitive to the exact value used for γ.

B. Assumptions on τ

Our main model defines τ as the baseline precision the agent has regarding the long-run

mean after seeing the most recent observation. For simplicity, we have assumed that τ is

fixed across all experiments and across different persistence levels ρ. In the following, we

also consider an alternative approach, where we endogenize τ. One natural candidate for τ

is the inverse of the variance of the stationary distribution for the AR(1) process:

τalt =
1− ρ2

σ2
ε

. (6.2)

This choice can have a Bayesian interpretation as the posterior variance given xt, for a

Bayesian with an improper uniform prior (or a sequence of priors that become increasingly

dispersed). In particular, τalt is decreasing in ρ: the agent is ex ante more uncertain about

the long-run mean when the process is unconditionally more volatile. Figure A.11 shows

the fit of the alternative specification and confirms the model performs well in this case too.
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C. Incentives and External Validity

A possible question is whether one can test the effect of changing forecasters’ incentives, or

the trade-off between the cost of information processing and the benefit of obtaining accu-

rate beliefs. We performed the following experiments to vary incentives within our budget

constraints. The first set of treatment conditions start with 40 rounds of predictions with

smaller monetary incentives, where the average bonus is on the scale of $0.50. (bonus equal

to total score divided by 4,000). Then, there is a second round of 40 predictions with larger

monetary incentives, where the average bonus is on the scale of $5.00 (total score divided

by 400). The second set of treatment conditions reverse the order, with larger monetary in-

centives before smaller monetary incentives (to make sure any results are not driven by the

effects of order). The data is collected in Experiment 5 (conditions E41 to E46 in Table A.2).

In Panel A of Table A.10, we run the following regression on these two treatment condi-

tions:

xt+1 − Ftxt+1 = αxt + βxt × 1High Incentive + constant,

where the dummy 1High Incentive is equal to one for the forecasting rounds with larger incen-

tives. We exclude ρ = 1 since overreaction does not occur here in the data and in the model.

In these regressions, we have α < 0 as usual: participants overreact, on average, to the most

recent observation. Meanwhile, we do not find that β is significant. As an additional check,

we regress participants’ forecasting scores on the incentive regime in Panel B of Table A.10.

For each participant, we calculate the total forecasting score during the 40 rounds with larger

incentives and the 40 rounds with smaller incentives. We regress the score on a dummy for

high incentive rounds. Columns (1) and (2) use the score; columns (3) and (4) use the log

score. Scores are slightly higher in the high incentive rounds, but the difference is small and

insignificant.

Taken together, consistent with DellaVigna and Pope (2017), we find that variations in

experimental incentives have limited effects on forecasting behavior or forecasting scores.

As DellaVigna and Pope (2017) discuss, participants’ behavior in experiments is not entirely

driven by monetary incentives. The variations of experimental payments are inevitably lim-

ited by our budgets, and variations in financial rewards within the range of affordability do

not seem to have a major impact on participants’ performance.
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Another question is whether incentives for accuracy in practice could be so large that

decision makers will overcome all costs of information utilization. A large literature docu-

ment biases in high-stake settings (Malmendier and Tate, 2005; Pope and Schweitzer, 2011;

Ben-David, Graham and Harvey, 2013; Greenwood and Hanson, 2015; Bordalo, Gennaioli,

La Porta and Shleifer, 2019), which indicate that frictions may not be fully eradicated in these

situations. Furthermore, many decisions are made under time constraints or with a fair bit

of human discretion, in which case the frictions represented by our model—namely, certain

information is particularly on top of mind—are likely to be present. Overall, our findings

align with suggestive evidence from field data as discussed earlier; across many settings, we

observe consistent patterns of stronger overreaction when the process persistence is lower

and the forecast horizon is longer.

7 Conclusion

Recent research using survey data from different sources points to varying degrees of biases

in expectations. A key question is how to unify these different findings. To have a better

understanding of how biases vary with the setting, we conduct a large-scale randomized

experiment where participants forecast stable random processes. The experiment allows us

to control the DGP and the relevant information sets. This is not feasible in survey data,

which can give rise to major complications in interpreting the results.

We find that forecasts display significant overreaction: they respond too much to recent

observations. Furthermore, overreaction is particularly pronounced for less persistent pro-

cesses and longer forecast horizons. We also find that standard specifications of commonly-

used expectations models, estimated in our data, do not square with the variation in over-

reaction. Some predict too much overreaction when the process is transitory, while others

predict too little.

We propose a framework to capture biases in expectations formation, where forecasters

form estimates of the long-run mean of the process using a mix of the recent observation and

past data. They balance these two sources of information depending on the setting, under

the constraint that the utilization of past information is costly. As a result, forecasts adapt

partially to the setting, but recent observations have a disproportionate influence, resulting
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in overreaction. Over-adjusting the estimates of the long-run mean in response to recent

observations also implies that overreaction is more pronounced when the process is more

transitory and the forecast horizon is longer. We estimate the model in our data and find

that it closely matches how overreaction varies with process persistence. The model, when

estimated on short-term forecasts, also predicts biases in long-term forecasts that closely

match what we observe in the data.

Finally, our baseline model focuses on overreaction given the empirical evidence in our

experiment. Nonetheless, the model can also be extended to allow for underreaction by in-

troducing noisy signals, which could be a reason for underreaction observed in some survey

data (Coibion and Gorodnichenko, 2012; Bouchaud et al., 2019). In this setting, the model

maintains the prediction that the degree of overreaction should be relatively stronger when

the process is less persistent. Taken together, we hope that the evidence and theory in this

paper contribute to a systematic understanding of the findings on expectation biases.
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