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This Internet Appendix has six sections.

• Section IA1 presents additional figures and tables referenced in the main text.

• Section IA2 contains the proofs of propositions in the main text.

• Section IA3 discusses the psychological foundations of the assumptions for the model.

• Section IA4 presents an extension of the model for general ARMA processes.

• Section IA5 presents an extension of the model that incorporates underreaction into
forecasts.

• Section IA6 describes additional model predictions for changing what is on top of
mind.
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IA1 Appendix Figures and Tables

(A) Error-Revision Coefficient
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FIGURE A.1

Estimation Error: Error-Revision Coefficient and Implied Persistence

This figure shows simulation results on the error-revision coefficient and the implied persistence.
We start by simulating 10 datasets of 45 participants each, where each participant makes 40 forecasts
of an AR(1) process. Each of the 10 dataset has one level of the AR(1) persistence ρ, which goes from
0 to 1. In each dataset, participants make forecasts using the diagnostic expectations model: Ftxt+h =
ρhxt + 0.4ρhεt, where xt is the process realization and εt is the innovation. In Panel A, for each level
of ρ, we estimate the error-revision coefficient b from the following regression: xt+1 − Ftxt+1 = c +
b(Ftxt+1 − Ft−1xt+1) + ut+1. The dark solid line shows the theoretical prediction (Bordalo et al., 2020).
The light solid line shows the average coefficient from 200 simulations. The dashed lines show the 90%
confidence bands from the simulations. In Panel B, we implement the same procedure and report the
implied persistence coefficient ρ̂ estimated from the regression: Ftxt+1 = cst + ρ̂xt + vt+1. The dark solid
line shows the theoretical prediction based on diagnostic expectations. The light solid line shows the
average coefficient from 200 simulations. The dashed lines show the 90% confidence bands from the
simulations. The standard errors are very tight so the three lines lie on top of one another.
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FIGURE A.2

Prediction Screen

This figure shows a screenshot of the prediction task. The green dots indicate past realizations
of the statistical process. In each round t, participants are asked to make predictions about two
future realizations Ftxt+1 and Ftxt+2. They can drag the mouse to indicate Ftxt+1 in the purple bar
and indicate Ftxt+2 in the red bar. Their predictions are shown as yellow dots. The grey dot is the
prediction of xt+1 from the previous round (Ft−1xt+1); participants can see it but cannot change it.
After they have made their predictions, participants click “Make Predictions" and move on to the
next round. The total score is displayed in the top left corner, and the score associated with each of
the past predictions (if the actual is realized) is displayed at the bottom.
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FIGURE A.3

Implied Persistence Relative to Actual Persistence

We compute the implied persistence ρs
1 from Fitxt+1 = c + ρs,1xt + uit for each level of AR(1)

persistence ρ. The y-axis plots the implied persistence relative to the actual persistence ζ(ρ, 1) =
ρs,1/ρ, i.e., the measure of overreaction, and the x-axis plots the AR(1) persistence ρ. The line at one
is the FIRE benchmark.

4



(A) Least Square Forecasts vs. FIRE and Subjective Forecasts
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(B) Implied Persistence of Least Square Forecasts
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FIGURE A.4

Distance between Subjective Forecasts and Rational Expectations

The top left panel shows the root mean squared difference between in-sample least square expec-
tations and full information rational expectations (FIRE). The top right panel shows the root mean
squared difference between participants’ actual subjective forecasts and the least square forecasts.
The data use all conditions in Experiment 1. The bottom panel shows the implied persistence of least
square forecasts for each level of ρ, which is the regression coefficient of the least square forecast on
xt.
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(A) Distribution of Forecast Error (xt+1 − Ftxt+1)
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(B) Forecast Error Conditional on xt
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FIGURE A.5

Knowledge of Linear DGP and the Distribution of Forecasts

We use the data from Experiment 3 (MIT EECS), with 204 MIT undergraduates randomly assigned
to AR(1) processes with ρ = 0.2 or ρ = 0.6. 94 randomly selected participants were told that the
process is a stable random process (control group), while 110 were told that the process is an AR(1)
with fixed µ and ρ (treatment group). Panel A shows the distributions of the forecast error xt+1 −
Ftxt+1 for both treated and control groups. Panel B shows binscatter plots of the forecast error as a
function of the latest realization xt.
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FIGURE A.6

Comparison of Experiment 3 (MIT EECS) and Experiment 1 (Baseline)

This figure shows the implied persistence (i.e., regression coefficient of the forecast Ftxt+1 on xt)
in Experiment 3 (MIT EECS) and Experiment 1 (MTurk baseline).
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(A) By Gender: Male vs. Female
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(B) By Age: Below 35 vs. Above 35

-.5
-.4

-.3
-.2

0 .2 .4 .6 .8 1
AR(1) Persistence

Age: <35 Age: >=35

Error-Revision Coefficient by Age

0
.2

.4
.6

.8
1

0 .2 .4 .6 .8 1
AR(1) Persistence

Age: <35 Age: >=35

Implied Persistence by Age

(C) By Education: High School vs. College and Above
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FIGURE A.7

Overreaction and Persistence of Process: Results by Demographics

This figure plots the error-revision coefficient and the implied persistence for each level of AR(1)
persistence, estimated in different demographic groups. In Panel A, the solid dots represent results
for male participants and the hollow dots represent results for female participants. In Panel B, the
solid dots represent results for participants younger than 35 and the hollow dots represent results
for participants older than 35. In Panel C, the solid dots represent results for participants with high
school degrees, and the hollow dots represent results for participants with college and above degrees.
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FIGURE A.8

Error-Revision Coefficient: Data vs Models

For each level of ρ, we regress the model-based forecast error xt+1 − F̂m
t xt+1 on the model-based

forecast revision F̂m
t xt+1− ̂Fm

t−1xt+1. The dots report the regression coefficient obtained for each model
m and each level of ρ. The solid line reports the error-revision coefficient in the experimental data, as
in Figure II, Panel A.
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(A) Long-Run Mean Prediction

(B) Telling Participants the Long-Run Mean is Zero

FIGURE A.9

Prediction Screen for Additional Experiments

This figure shows the screenshot of the prediction task for additional conditions in Experiments
4 and 5. Panel A shows the condition where we ask participants for the long-run mean assessment.
Panel B shows the condition where we tell participants that the long-run mean is zero. Panel C
shows the condition where we require participants to click on xt−10 (the dot in blue) before making
the prediction. Panel D shows the condition where we include a red line at zero.
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Prediction Screen for Additional Experiments (Cont.)

(C) Click xt−10

(D) Show Red Line at 0
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(A) h = 1
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(B) h = 10

0
.2

.4
.6

.8
1

Im
pl

ie
d 

Pe
rs

is
te

nc
e

0 .2 .4 .6 .8 1
AR(1) Persistence

Data Model Prediction (linear)
Model Prediction (convex) AR(1) Persistence

FIGURE A.10

Model Functional Form: Robustness Checks

This figure shows the model fit under alternative model specifications of the cost function, for
h = 1 in Panel A and h = 10 in Panel B. The red dots represent the implied persistence from our
model when γ = 1, and the green diamonds represent result from our model when we do a full grid
search for γ. The blue line represents the value observed in the forecast data.
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(A) h = 1
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(B) h = 10
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FIGURE A.11

Model Functional Form: Robustness Checks

This figure shows the model fit under the alternative formulation of τ, as discussed in Section 6.2,
for h = 1 in Panel A and h = 10 in Panel B. The red dots represent the implied persistence from our
model, and the blue line represents the value observed in the forecast data.
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TABLE A.2

SUMMARY OF CONDITIONS

(1) (2) (3) (4)
Condition Persistence ρ Mean µ Conditional Vol σε # of Participants

Panel A: Experiment 1 – Baseline, MTurk
A1 Baseline 0 0 20 32
A2 Baseline 0.2 0 20 32
A3 Baseline 0.4 0 20 36
A4 Baseline 0.6 0 20 39
A5 Baseline 0.8 0 20 28
A6 Baseline 1 0 20 40

Panel B: Experiment 2 – Long Horizon, MTurk
B1 Horizon: F1 + F5 0.2 0 20 41
B2 Horizon: F1 + F5 0.4 0 20 26
B3 Horizon: F1 + F5 0.6 0 20 31
B4 Horizon: F1 + F5 0.8 0 20 30

Panel C: Experiment 3 – DGP Information, MIT EECS
C1 Baseline 0.2 0 20 42
C2 Baseline 0.6 0 20 52
C3 Display DGP is AR(1) 0.2 0 20 70
C4 Display DGP is AR(1) 0.6 0 20 40

Panel D: Experiment 4 – Additional Test, MTurk
D11 Baseline 0 0 20 41
D12 Baseline 0.2 0 20 36
D13 Baseline 0.4 0 20 34
D14 Baseline 0.6 0 20 26
D15 Baseline 0.8 0 20 28
D16 Baseline 1 0 20 26
D21 Red Line at 0 0 0 20 34
D22 Red Line at 0 0.2 0 20 32
D23 Red Line at 0 0.4 0 20 24
D24 Red Line at 0 0.6 0 20 36
D25 Red Line at 0 0.8 0 20 39
D26 Red Line at 0 1 0 20 33
D31 Click xt−10 0 0 20 23
D32 Click xt−10 0.2 0 20 30
D33 Click xt−10 0.4 0 20 28
D34 Click xt−10 0.6 0 20 25
D35 Click xt−10 0.8 0 20 28
D36 Click xt−10 1 0 20 27
D41 Horizon: F1 + F10 0 0 20 27
D42 Horizon: F1 + F10 0.2 0 20 27
D43 Horizon: F1 + F10 0.4 0 20 30
D44 Horizon: F1 + F10 0.6 0 20 26
D45 Horizon: F1 + F10 0.8 0 20 36
D46 Horizon: F1 + F10 1 0 20 38

Notes. This table provides a summary of the experiments we conducted. Each panel describes one
experiment, and each line within a panel corresponds to one treatment condition. Columns (1) to (3)
show the parameters of the AR(1) process xt+1 = µ + ρxt + εt+1. Experiments E41 to E46 combine
participants who are randomly assigned to have high or low incentive rounds first (used in Section 6.2,
so they have about twice the number of participants. Participants are only allowed to participate once.
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SUMMARY OF CONDITIONS (CONTINUED)

(1) (2) (3) (4)
Condition Persistence ρ Mean µ Conditional Vol σε # of Participants

Panel E: Experiment 5 – Additional Tests, MTurk
E11 F10 + Long-Run Average 0 0 20 31
E12 F10 + Long-Run Average 0.2 0 20 32
E13 F10 + Long-Run Average 0.4 0 20 26
E14 F10 + Long-Run Average 0.6 0 20 31
E15 F10 + Long-Run Average 0.8 0 20 34
E16 F10 + Long-Run Average 1 0 20 32
E21 Baseline 0 0 20 37
E22 Baseline 0.2 0 20 40
E23 Baseline 0.4 0 20 25
E24 Baseline 0.6 0 20 30
E25 Baseline 0.8 0 20 31
E26 Baseline 1 0 20 42
E31 Inform Mean is Zero 0 0 20 36
E32 Inform Mean is Zero 0.2 0 20 31
E33 Inform Mean is Zero 0.4 0 20 33
E34 Inform Mean is Zero 0.6 0 20 28
E35 Inform Mean is Zero 0.8 0 20 42
E36 Inform Mean is Zero 1 0 20 42
E41 High vs Low Incentive 0 0 20 66
E42 High vs Low Incentive 0.2 0 20 72
E43 High vs Low Incentive 0.4 0 20 73
E44 High vs Low Incentive 0.6 0 20 69
E45 High vs Low Incentive 0.8 0 20 72
E46 High vs Low Incentive 1 0 20 67
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TABLE A.3

SUMMARY STATISTICS

(A) PARTICIPANT DEMOGRAPHICS

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
Obs. % Obs. % Obs. % Obs. % Obs. %

Gender: Female 90 43.5 61 47.7 116 56.9 316 43.1 417 40.8
Gender: Male 117 56.5 67 52.3 88 43.1 418 56.9 605 59.2

Age: <= 25 30 14.5 18 14.1 197 96.6 62 8.4 138 13.5
Age: 25-45 138 66.7 89 69.5 7 3.4 500 68.1 679 66.4
Age: 45-65 35 16.9 20 15.6 0 0.0 156 21.3 193 18.9
Age: 65+ 4 1.9 1 0.8 0 0.0 16 2.2 12 1.2

Education: Grad School 20 9.7 18 14.1 0 0.0 170 23.2 353 34.5
Education: College 132 63.8 74 57.8 204 100.0 426 58.0 589 57.6
Education: High School 55 26.6 36 28.1 0 0.0 133 18.1 66 6.5
Education: Below/Other 0 0.0 0 0.0 0 0.0 5 0.7 14 1.4

Invest. Exper.: Extensive 7 3.4 3 2.3 2 1.0 77 10.5 306 29.9
Invest. Exper.: Some 58 28.0 29 22.7 21 10.3 258 35.1 441 43.2
Invest. Exper.: Limited 71 34.3 56 43.8 43 21.1 232 31.6 163 15.9
Invest. Exper.: None 71 34.3 40 31.3 138 67.6 167 22.8 112 11.0

Taken Stat Class: No 117 56.5 80 62.5 0 0.0 361 49.2 292 28.6
Taken Stat Class: Yes 90 43.5 48 37.5 204 100.0 373 50.8 730 71.4

Notes. Panel A describes demographics of participants. Panel B reports basic experimental statistics,
including the total score, the total bonus (incentive payments) paid in US dollars, the overall time
taken to complete the experiment, and the time taken to complete the forecasting part (the main
part). The final part of Panel B separates conditions E41 to E46 where each participant makes 80
rounds of forecasts (40 with high incentives and 40 with low incentives) used in Section 6.2.
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SUMMARY STATISTICS (CONTINUED)

(B) EXPERIMENTAL STATISTICS

Mean p25 p50 p75 SD N

Experiment 1

Total Forecast Score 2,004 1,690 1,990 2,335 461.93 207
Bonus ($) 3.34 2.82 3.32 3.89 0.77 207
Total Time (min) 18.01 10.92 13.11 21.85 11.34 207
Forecast Time (min) 6.80 4.54 5.66 7.79 3.53 207

Experiment 2

Total Forecast Score 1,843 1,588 1,820 2,138 463.38 128
Bonus ($) 3.07 2.65 3.04 3.56 0.77 128
Total Time (min) 15.82 8.74 13.11 19.66 9.80 128
Forecast Time (min) 6.70 4.54 6.02 7.58 3.17 128

Experiment 3

Total Forecast Score 2,071 1,755 2,046 2,326 429.59 204
Bonus ($) 8.63 7.31 8.53 9.69 1.79 204
Total Time (min) 18.45 6.55 10.92 13.11 37.67 204
Forecast Time (min) 8.78 4.03 5.09 7.46 19.72 204

Experiment 4

Total Forecast Score 1,767 1,422 1,812 2,174 610.23 734
Bonus ($) 2.95 2.37 3.02 3.62 1.02 734
Total Time (min) 15.75 8.74 13.11 19.66 10.00 734
Forecast Time (min) 7.88 4.79 6.50 9.22 4.97 734

Experiment 5

Total Forecast Score 1,815 1,053 1,713 2,304 1093.47 603
Bonus ($) 3.03 1.76 2.86 3.84 1.82 603
Total Time (min) 14.25 8.74 13.11 21.85 20.87 603
Forecast Time (min) 8.53 4.64 6.54 10.15 6.14 603

Experiment 5 (with two rounds)

Total Forecast Score 2,984 1,993 3,079 3,979 1275.93 419
Bonus ($) 4.12 2.69 4.18 5.55 1.85 419
Total Time (min) 19.65 10.92 17.48 24.03 10.60 419
Forecast Time (min) 12.32 7.85 10.73 14.94 6.14 419
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TABLE A.4

IMPLIED PERSISTENCE WITH AND WITHOUT GREY DOT

ρ = 0.2 0.4 0.6 0.8
Grey Dot Yes No Yes No Yes No Yes No

xt 0.62*** 0.63*** 0.77*** 0.80*** 0.85*** 0.89*** 0.91*** 0.92***
(0.06) (0.04) (0.04) (0.05) (0.04) (0.04) (0.02) (0.05)

Observations 1,280 1,680 1,440 1,080 1,560 1,360 1,120 1,160
R2 0.29 0.19 0.36 0.38 0.46 0.60 0.73 0.71

Notes. This table presents regressions of Ftxt+1 on xt for different levels of actual persistence ρ in con-
ditions with and without the grey dot. In columns (1), (3), (5), (7), we report the implied persistence
(ρs

1) for the baseline conditions (A2, A3, A4, A5 in Table A.2). These baseline conditions contain a
grey dot (to remind the forecaster of her earlier two-period forecast Ft−1xt+1). In columns (2), (4),
(6) and (8), we report the implied persistence (ρs

1) for conditions that are identical to the baseline but
without the grey dot. These additional conditions are only available for ρ between 0.2 and 0.8; they
are not described in Table A.2 for clarity of exposition, and will not be studied in the rest of the pa-
per. Standard errors clustered by participant are presented in parentheses. ∗∗∗ indicates a 1% level of
significance.
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TABLE A.5

EFFECT OF KNOWING THE PROCESS IS AR(1)

Baseline Condition Knows AR(1) Difference (p-value)

ρ = 0.2 0.56 0.65 0.14
ρ = 0.6 0.86 0.88 0.71

Notes. This table reports the implied persistence in Experiment 3 among MIT EECS students. Partici-
pants are randomly assigned to ρ = 0.2 and ρ = 0.6. In addition, half of them are randomly assigned
to the baseline control condition (control) where the process is described as a stable random process,
while the other half are assigned to the treatment condition where they are told that the process is a
fixed and stationary AR(1) process.
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TABLE A.7

BIAS AND LAGGED REALIZATIONS

(A) LHS IS Ftxt+1

ρ = 0 0.2 0.4 0.6 0.8 1
(1) (2) (3) (4) (5) (6)

xt 0.45*** 0.64*** 0.81*** 0.89*** 1.03*** 1.16***
(0.05) (0.06) (0.04) (0.06) (0.05) (0.05)

xt−1 0.03 -0.06 -0.10** -0.10* -0.15** -0.19***
(0.04) (0.04) (0.04) (0.05) (0.06) (0.05)

xt−2 0.00 0.04 -0.02 0.02 -0.01 -0.07*
(0.04) (0.03) (0.03) (0.05) (0.05) (0.04)

xt−3 0.09** 0.05 0.08*** -0.01 0.03 0.06*
(0.03) (0.03) (0.03) (0.04) (0.03) (0.03)

xt−4 0.07** 0.03 -0.03 0.08** -0.01 0.02
(0.03) (0.04) (0.03) (0.03) (0.02) (0.03)

Observations 1,280 1,280 1,440 1,560 1,120 1,600
R2 0.15 0.29 0.37 0.47 0.74 0.98

(B) LHS IS ρxt − Ftxt+1

ρ = 0 0.2 0.4 0.6 0.8 1
(1) (2) (3) (4) (5) (6)

xt -0.45*** -0.44*** -0.41*** -0.29*** -0.23*** -0.16***
(0.05) (0.06) (0.04) (0.06) (0.05) (0.05)

xt−1 -0.03 0.06 0.10** 0.10* 0.15** 0.19***
(0.04) (0.04) (0.04) (0.05) (0.06) (0.05)

xt−2 -0.00 -0.04 0.02 -0.02 0.01 0.07*
(0.04) (0.03) (0.03) (0.05) (0.05) (0.04)

xt−3 -0.09** -0.05 -0.08*** 0.01 -0.03 -0.06*
(0.03) (0.03) (0.03) (0.04) (0.03) (0.03)

xt−4 -0.07** -0.03 0.03 -0.08** 0.01 -0.02
(0.03) (0.04) (0.03) (0.03) (0.02) (0.03)

Observations 1,280 1,280 1,440 1,560 1,120 1,600
R2 0.15 0.16 0.13 0.08 0.06 0.03

Notes. This table shows regressions of the forecast Ftxt+1 (Panel A) or deviation from the rational
benchmark ρxt − Ftxt+1 (Panel B) on lags of realizations xt−k. The data comes from Experiment 1.
Standard errors clustered by participant are presented in parentheses. ∗∗∗ indicates a 1% level of
significance.
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TABLE A.8

MODEL FIT

Forecast Horizon h = 1 h = 2 h = 5 h = 10
MSE Type ρs

h Forecast ρs
h Forecast ρs

h Forecast ρs
h Forecast

(1) (2) (3) (4) (5) (6) (7) (8)

Current model 0.002 496.0 0.001 719.5 0.001 689.9 0.000 2203.6
Adaptive 0.035 495.7 . . . . . .
Extrapolative 0.064 527.3 . . . . . .
Sticky 0.117 556.2 0.140 786.1 0.197 814.6 0.307 2334.1
Diagnostic 0.069 521.2 0.115 758.0 0.177 803.3 0.299 2370.2
Constant gain 0.066 526.6 0.040 750.0 0.033 735.0 0.022 2459.6

Notes. This table shows the MSE between ρs
h in the model in columns (1), (3), and (5), and the MSE

between Ftxt+h implied by the model and Ftxt+h in the data in columns (2), (4), (6). Columns (1) and
(2) report results for the 1-period forecast; columns (3) and (4) report results for the 2-period forecast;
columns (5) and (6) report results for the 5-period forecast. The adaptive expectations model is:
Ftxt+1 = δxt +(1− δ)Ft−1xt. The traditional extrapolative expectations model is: Ftxt+1 = xt +φ(xt−
xt−1). The sticky expectations model is: Ftxt+h = (1 − λ)ρhxt + λFt−1xt+h + εit,h. The diagnostic
expectations model is: Ftxt+h = Etxt+h + θ(Etxt+h − Et−1xt+h). The constant gain learning model is:
Ftxt+h = Êtxt+h = at,h + ∑k=n

k=0 bk,h,txt−k.
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TABLE A.9

TELLING PARTICIPANTS THE LONG-RUN MEAN IS ZERO

xt+1 − Ftxt+1 ρxt − Ftxt+1

(1) (2) (3) (4)

xt -0.329*** -0.358*** -0.334*** -0.331***
(0.041) (0.040) (0.037) (0.035)

× Show Long-Run Mean = 0 0.106* 0.068 0.103* 0.067
(0.060) (0.055) (0.057) (0.050)

Participant FE N Y N Y
Observations 13,320 13,320 13,320 13,320
R2 0.02 0.32 0.03 0.39

Notes. In this table, we regress different definitions of the forecast error on the last realization, inter-
acted with indicator variables that are equal to one in treatment conditions where we tell participants
that the long-run mean is equal to zero. The data is collected in Experiment 5. Each participant is
randomly assigned to a given ρ and a given condition. Columns (2) and (4) include participant fixed
effects to control for average optimism. In all regressions, we exclude conditions for which ρ = 1,
since in this case we know that forecasts do not have significant biases (the implied persistence is
close to one). Standard errors clustered by participant are presented in parentheses. ∗∗∗ indicates a
1% level of significance.
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TABLE A.10

EFFECT OF HIGH INCENTIVES

(A) EFFECT ON OVERREACTION

xt+1 − Ftxt+1 ρxt − Ftxt+1

(1) (2) (3) (4)

xt -0.301*** -0.309*** -0.297*** -0.287***
(0.032) (0.028) (0.031) (0.026)

xt× High Incentive -0.023 -0.009 -0.034 -0.017
(0.035) (0.028) (0.034) (0.027)

Participant FE N Y N Y
Observations 28,160 28,160 28,160 28,160
R2 0.03 0.27 0.03 0.33

(B) EFFECT ON FORECASTING SCORES

Score Log Score

(1) (2) (3) (4)

High Incentive 10.730 10.730 0.007 -0.004
(30.788) (43.541) (0.032) (0.044)

Participant FE N Y N Y
Observations 704 704 702 702
R2 0.00 0.82 0.00 0.80

Notes. This table analyzes the effect of high incentives. Data come from Experiment 5. Half of the
participants see 40 high incentive rounds followed by 40 low incentive rounds, and half of the par-
ticipants see the reverse order (the parameters for the process remain the same for the high and low
incentive rounds). Participants are randomly assigned to one of these two settings and a given ρ.
In Panel A, we examine how incentives affect the predictability of forecast errors. Columns (2) and
(4) include participant fixed effects to control for average optimism. In Panel B, we examine how
incentives affect forecasting scores. For each participant, we calculate the total score from the 40 fore-
casting rounds with high incentives and that from the 40 forecasting rounds with low incentives (so
each participant contributes two observations). In all regressions, we exclude conditions for which
ρ = 1, since in this case, we know that forecasts do not have significant biases (the implied persistence
is close to one). Standard errors clustered by participant are presented in parentheses. ∗∗∗ indicates a
1% level of significance.
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IA2 Proofs

IA2.1 Standard Errors of Error-Revision Coefficient

Proposition 1. Assume a univariate regression of centered variables:

yi = βxi + ui.

Then, the standard error of the OLS estimate of β is given by:

s.d.
(

β̂− β
)
≈ 1√

N

(
varyi

varxi
− β2

)1/2

.

Proof. The OLS estimator of β is given by:

β̂ =
1
N ∑i xiyi

1
N ∑i x2

i
= β +

1
N ∑i xiui

1
N ∑i x2

i
.

Hence,
√

N(β̂− β) =

√
N 1

N ∑i xiui
1
N ∑i x2

i
.

By virtue of the central limit theorem, we have:

√
N

1
N ∑

i
xiui → N(0, var(xiui)),

while
1
N ∑

i
x2

i → varxi.

This ensures that: √
N(β̂− β)→ N(0,

var(xiui))

(var(xi))2︸ ︷︷ ︸
=

varui
varxi

).

Note that the asymptotic variance can be rewritten as:

varui

varxi
=

varyi + β2varxi − 2βcov(xi, yi)

varxi

=
varyi

varxi
− β2.

Evidently, this ratio is bigger when the variance of xi is smaller.
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For the error-revision coefficient, it can easily be shown that:

varyi

varxi
=

(
1 + ρ2θ2)

ρ2 ((1 + θ)2 + θ2ρ2)
→ +∞ as ρ→ 0

This makes it clear that the error-revision coefficient does not work well for small ρ be-
cause the right-hand-side variable has a small variance, which makes it hard to estimate λ
precisely.

On the other hand, measuring overreaction using implied persistence does not have this
problem as the variance of the right-hand-side variable is just the variance of the process
itself, which is non-zero.

IA2.2 Lemma 1

Proof. The agent has two decisions. First, she decides what information to utilize (chooses
St ⊆ At). Second, she chooses the optimal forecast Ftxt+h given the σ-algebra induced by St.
We solve this backward. Specifically, we characterize the optimal forecast for any choice of
St and then solve for the optimal St given the optimal forecast that it implies.

It is straightforward to see that with a quadratic loss function, the optimal forecast for a
given choice of St is simply the unbiased expectation of xt+h conditional on St. Formally, let
F∗t xt+h(St) denote the optimal forecast of the agent under St, then

F∗t xt+h(St) ≡ arg min
Ftxt+h

E[(Ftxt+h − xt+h)
2|St]⇒ F∗t xt+h(St) = E[xt+h|St]. (IA2.1)

It immediately follows that the loss from an imprecise forecast is the variance of xt+h condi-
tional on St

E[(F∗t xt+h(St)− xt+h)
2|St] = var(xt+h|St). (IA2.2)

Moreover, we can decompose this variance in terms of uncertainty about the long-run mean
and variance of short-run fluctuations:

var(xt+h|St) = var((1− ρh)µ + ρhxt +
h

∑
j=1

ρh−jεt+j|St) (IA2.3)

= (1− ρh)2var(µ|St) + σ2
ε

h

∑
j=1

ρ2(h−j), (IA2.4)

where the second line follows from:

1. orthogonality of future innovations to St that follows from feasibility (εt+j ⊥ At, ∀j ≥
1);

2. var(xt|St) = 0 since xt ∈ St by assumption.
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It is important to note that the second term in Equation IA2.4 is independent of the choice
for St. We can now rewrite the agent’s problem as:

min
St

E[(1− ρh)2var(µ|St) + C(St)|xt] (IA2.5)

s.t. {xt} ⊆ St ⊆ At, (IA2.6)

where the expectation E[.|xt] is taken conditional on xt because the choice for what infor-
mation to utilize happens after the agent observes the context but before the information is
processed.

The next step in the proof is to show that under the optimal information utilization, the
distribution of µ|St is Gaussian. To prove this, we show that for any arbitrary St ∈ At, there
exists another Ŝt ∈ At that (1) induces a Gaussian posterior and (2) yields a lower value for
the objective function than St. To see this, let St ⊇ {xt} be in At and let Ŝt ⊇ {xt} be such
that

var(µ|Ŝt) = E[var(µ|St)|xt].

Such a Ŝt exists because At is assumed to contain all possible signals on µ that are feasible,
so if an expected variance is attainable under an arbitrary signal, it is also attainable by a
Gaussian signal. Since both signals imply the same expected variance, to prove our claim,
we only need to show that C(Ŝt) ≤ C(St). To see this, recall that C(St) is monotonically
increasing in I(St, xt+h|xt). Thus,

C(Ŝt) ≤ C(St)⇔ I(Ŝt, xt+h|xt) ≤ I(St, xt+h|xt). (IA2.7)

A final observation yields our desired result: by definition of the mutual information func-
tion in terms of entropy,1

I(St; µ|xt) = h(µ|xt)−E[h(µ|St)|xt]. (IA2.8)

Similarly,

I(Ŝt; µ|xt) = h(µ|xt)−E[h(µ|Ŝt)|xt]. (IA2.9)

It follows from these two observations that

C(Ŝt) ≤ C(St)⇔ E[h(µ|Ŝt)|xt] ≥ E[h(µ|St)|xt]. (IA2.10)

The right-hand side of this condition is true by the maximum entropy of Gaussian random
variables among random variables with the same variance, with equality only if both St
and Ŝt are Gaussian (see for example Cover and Thomas (1991)).2 This result implies that
C(Ŝt) ≤ C(St). Therefore, for any arbitrary St ⊂ At such that µ|St is non-Gaussian, we have
shown that there exists Ŝt ⊂ At that is (1) feasible and (2) strictly preferred to St and (3) µ|Ŝt
is Gaussian.

1For random variables (X, Y), I(X; Y) = h(X)− EY[h(X|Y)] where for any random variable Z with PDF
fZ(z), h(Z) is the entropy of Z defined as the expectation of negative log of its PDF: h(Z) = −EZ[log2( fZ(Z))].

2For completeness, we briefly outline the proof for maximum entropy of Gaussian random variables. The
claim is: among all the random variables X variance σ2, X has the highest entropy if it is normally distributed.
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Hence, without loss of generality, we can assume that under the optimal retrieval of
information, µ|St is normally distributed. Now, for a Gaussian {xt} ⊂ St ⊂ At, since the
entropy of Gaussian random variables are linear in the log of their variance, we have:

I(µ; St|xt) = h(µ|xt)− h(µ|St) (IA2.11)

=
1

2 ln(2)
ln(var(µ|xt))−

1
2 ln(2)

ln(var(xt|St)). (IA2.12)

Moreover, for simplicity, we define τ(St) ≡ var(µ|St)−1 as the precision of belief about µ
generated by St and τ ≡ var(µ|xt)−1 as the precision of the prior belief of the agent about
µ. Moreover, for ease of notation and without loss of generality, we normalize the mutual
information function by the constant 2 ln(2).3 It follows that

I(µ; St|xt) = ln
(

τ(St)

τ

)
, (IA2.13)

C(St) = ω
exp(γ · I(µ; St|xt))− 1

γ
(IA2.14)

= ω

(
τ(St)

τ

)γ
− 1

γ
. (IA2.15)

Hence, the agent’s problem can be rewritten as

min
St

E

 (1− ρh)2

τ(St)
+ ω

(
τ(St)

τ

)γ
− 1

γ

∣∣∣xt

 (IA2.16)

s.t. {xt} ⊆ St ⊆ At. (IA2.17)

Finally, since the objective of the agent only depends on the precision induced by St, we can
reduce the problem to directly choosing this precision, where the constraint on St implies
bounds on achievable precision: the precision should be bounded below by τ (since the
agent knows xt). Moreover, it has to be bounded above by var(µ|xt)−1, which is the precision
after using all available information. Replacing these in the objective and changing the choice
variable to τ(St), we arrive at the exposition delivered in the lemma.

The proof follows from optimizing over the PDF of the distribution of X:

max
{ f (x)≥0:x∈R}

−
∫

x∈R
f (x) log( f (x))dx (maximum entropy)

s.t.
∫

x∈R
x2 f (x)dx− (

∫
x∈R

x f (x)dx)2dx = σ2 (constraint on variance)∫
x∈R

f (x)dx = 1. (constraint on f being a PDF)

3Alternatively, one can re-scale both γ and ω by 2 ln(2), which is simply a normalization of their values.
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IA2.3 Proposition 1

Proof. We start by solving the simplified problem in Lemma 1. The problem has two con-
straints for τ: τ ≥ τ and τ ≤ τ̄t ≡ var(µ|xt)−1. By assumption, var(µ|xt) is arbitrarily small
so we can assume that the second constraint does not bind. The K-T conditions with respect
to τ are

− (1− ρh)2

τ2 +
ω

τ

(
τ

τ

)γ

≥ 0, τ ≥ τ,

(
− (1− ρh)2

τ2 +
ω

τ

(
τ

τ

)γ
)
(τ − τ) = 0.

Therefore, the variance of the agent’s belief about the long-run mean is given by

var(µ|St) = τ−1 = τ−1 min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

}
. (IA2.18)

The next step is to find an optimal signal set St ⊇ {xt} that generates this posterior,
so we can characterize how the agent’s forecast correlates with the recent observation. In
particular, the regression considered in the Proposition (and more generally in our analysis)
is interested in identifying the conditional mean of the agent’s forecast (Ftxt+h) given the
recent observation xt and the true mean µ, which we denote for the rest of the proof as
µt ≡ E[Ftxt+h|xt, µ]. Two cases arise:

1. if
(

ωτ
(1−ρh)2

)
≥ 1, then σ2 = (1− ρh)2τ and St = {xt} delivers us the agent’s posterior.

In other words, var(µ|St) = var(µ|xt) meaning that the agents does not retrieve any
further information other than what is implied by the context. In this case, E[µ|St] =
E[µ|xt] = xt and

µt ≡ E[E[xt+h|St]|µ, xt] = (1− ρh)E[E[µ|St]|µ, xt] + ρhE[E[xt|St]|µ, xt] = xt
(IA2.19)

2. if
(

ωτ
(1−ρh)2

)
< 1, then it means that the agent utilizes more information than what

is revealed by the context xt. Suppose a signal structure S̃t generates this posterior
variance.4 By Lemma 1 this has to be Gaussian. First, it is convenient to observe that
the set Ŝt ≡ {xt, E[µ|S̃t]} is a sufficient statistic for S̃t. To see the equivalence of the
two sets, note that both are comprised of Gaussian variables and by the law of total
variance, both sets generate the same posterior variance for the agent.5

4It is important to note that the model does not discriminate on which observations are in St but only the
quantity of information revealed by those observations because the agent’s payoff depends on the variance of
her forecasts

5Formally, we have

var(µ|xt) = var(µ|S̃t) + var(E[µ|S̃t]|xt)

var(µ|xt) = var(µ|Ŝt) + var(E[µ|Ŝt]|xt),

but note that var(E[µ|Ŝt]|xt) = var(E[µ|xt, E[µ|S̃t]]|xt) = var(E[µ|S̃t]|xt). Thus, it has to be that var(µ|S̃t) =
var(µ|Ŝt)
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Now, by Bayesian updating for Gaussians:

E[µ|St] = E[µ|S̃t] = E[µ|xt] +
cov(µ, E[µ|S̃t]|xt)

var(E[µ|S̃t]|xt)
(E[µ|S̃t]−E[µ|xt]).

Since E[µ|S̃t]−E[µ|xt] 6= 0 almost surely, this implies that

cov(µ, E[µ|S̃t]|xt) = var(E[µ|S̃t]|xt) = τ−1 − τ−1, (IA2.20)

where the last equality follows from the law of total variance. Now, consider the fol-
lowing decomposition of E[µ|S̃t]:

E[µ|S̃t] = aµ + bxt + εt,

where a and b are constants and εt is the residual that is orthogonal to both xt and µ
conditional on S̃t. By agent’s prior on µ, we have

xt = E[µ|xt] = E[E[µ|S̃t]|xt] = aE[µ|xt] + bxt = (a + b)xt,

so a + b = 1. Moreover, we also have

cov(µ, E[µ|S̃t]|xt) = avar(µ|xt),

so a = 1− τ
τ . Therefore,

E[E[µ|S̃t]|µ, xt] = (1− τ

τ
)µ +

τ

τ
xt

⇒µt ≡ E[E[xt+h|S̃t]|µ, xt] = (1− ρh)(1− τ

τ
)µ + (1− ρh)

τ

τ
xt + ρhxt. (IA2.21)

Now subtracting the fully informed rational forecast Et[xt+h] ≡ (1− ρh)µ + ρhxt, we
have

µt = Etxt+h + (1− ρh)
τ

τ
(xt − µ) (IA2.22)

Note that this case also subsumes the previous case, because if St = xt then τ = τ and
µt = xt as before.

Finally, define ut ≡ Ftxt+h − µt. Plugging in the expression for τ from (IA2.18) into (IA2.22),
and setting (normalizing) µ = 0, we get the expression of interest:

Ftxt+h = µt + ut = Etxt+h + (1− ρh)min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

}
xt + ut (IA2.23)

where E[ut|xt, µ] = 0.

31



IA2.4 Proposition 2

Proof. From Proposition 1 we can derive ∆ as

∆ = (1− ρh)min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

}
. (IA2.24)

1. Note that if ∆ = 0 then either ρh = 1 or ω = 0, but recall that this expression for the
precision of the long-run mean was derived under the assumption that var(µ|xt) is
arbitrarily small. So ∆ = 0 if and only if either ρ = 1 or ω = 0 and past information
potentially available to the forecaster is infinite.

2. As long as γ ≥ 0, which is true by assumption, it is straightforward to verify that ∆ is
increasing in ω and τ.

3. For ∆ to be decreasing in ρh it has to be the case that (1− ρh)1− 2
1+γ is decreasing in ρh,

which is the case if and only if

1− 2
1 + γ

≥ 0⇔ γ ≥ 1. (IA2.25)

4. We then prove the comparative static results for ζ(ρ, h). From Proposition 2 we have

ln(ζ(ρ, h)) = ln

(
1 + (ρ−h − 1)min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

})
. (IA2.26)

It is straightforward to see that the term inside the log on the right hand side is larger
than 1, so the implied persistence is larger than the actual persistence. Moreover, for

ζ(ρ, h) to be decreasing in ρh, (1− ρh)1− 2
1+γ /ρh needs to be decreasing in ρh, which is

true if and only if γ ≥ 2ρh− 1. Therefore, for ζ to be decreasing for any value of ρh, we
need γ ≥ 1.

IA2.5 Corollary 1

Proof. First, we prove the comparative static with respect to ρ. The statement holds trivially
when ρs

h = 1, which happens when the minimum in the expression for ∆ binds. Thus,

it suffices to consider the case where 1 >
(

ωτ
(1−ρh)2

) 1
1+γ . Then, denoting f (ρh) = (ρs

h)
h =

ρh + (1− ρh)min
{

1,
(

ωτ
(1−ρh)2

) 1
1+γ

}
, f is differentiable in the region of interest. Given that

∆ = f (ρh)− ρh is decreasing in ρh by Proposition 2, f ′(ρh) < 1.
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Then, the comparative static with respect to ρ holds if:

∂ρs
h − ρ

∂ρ
= ρh−1 · f ′(ρh) · f (ρh)

1
h−1 − 1 < 0

⇐⇒ ρh−1 f (ρh)
1
h−1 · f ′(ρh) < 1

Given that f ′ < 1, it suffices to show that ρh−1 · f (ρh)
1
h−1 < 1 ⇐⇒ ρh−1 < f (ρh)

h−1
h ⇐⇒

ρh f (ρh), which holds trivially from the definition.
Second, to compute the comparative static with respect to h, we examine two cases. First,

if 1 ≤
(

ωτ
(1−ρh)2

) 1
1+γ ⇐⇒ ρh > 1−√ωτ. In this case, ρs

h = 1, so our result holds naturally.

Thus, it suffices to only consider the case ρh < 1−√ωτ. Note that if ωτ ≥ 1, this region
is the empty set for positive ρ and h, and the statement is trivially true for such parameters.
Thus, we only need to consider the cases where ωτ < 1 where the interval [0, 1−√ωτ] has
positive measure. In this case,

∂ρs
h

∂h
= − 1

h2 log f +
1
h2

f ′(ρh)

f (ρh)
· log(ρh) · ρh.

Consequently, ∂ρs
h

∂h ≥ 0 if

ψ(ρh) = − log f (ρh) +
f ′(ρh)

f (ρh)
log ρh · ρh ≥ 0

It is easy to see that for ψ(ρh) is continuous and well-defined in the region of interest (ρh ∈
[0, 1 −

√
ωτ]). Also, note that limρh 7→0 ψ(ρh) = (ωτ)

1
1+γ > 0 and limρh 7→1−

√
ωτ ψ(ρh) =

2(1−
√

ωτ)
1+γ log(1−

√
ωτ) < 0. Consequently, by the intermediate value theorem, there exists

a λ∗ > 0 such that for ρh ∈ [0, λ∗], ψ(ρh) ≥ 0 and thus ρs
h is increasing in h, where λ∗ is

independent of ρ and h. Consequently, for any ρ < 1, there exists an h∗(ρ) = log(λ∗)/ log(λ)
such that ρs

h − ρ is increasing in h for h ≥ h∗(ρ).

IA3 Psychological Foundations

In this section, we provide a discussion of the psychological literature on working memory
(see, e.g., Baddeley, 1992) that motivates our modeling assumptions in Section 5. Our model
in Section 5 has two assumptions: (1) only a subset of information is on top of mind, and such
information is easier to utilize (even if all the data is in front of a participant), and (2) the most
recent observation is immediately on top of mind, and other information can be actively
processed by the participant with additional effort. Below, we discuss the psychological
studies that relate to each of these assumptions.

1. Only a subset of information is on top of mind. A series of research in psychology on
working memory emphasizes that some information is more actively utilized than others.
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This notion has been referred to as heightened activation, increased accessibility, conscious
awareness, or focus of attention (Baddeley and Hitch, 1993; Cowan, 1998, 2017a; Unsworth
and Spillers, 2010), and is connected more broadly to costly information processing in a
variety of settings (Spillers, Brewer and Unsworth, 2012). In this paper, we use the term “on
top of mind” to refer to the set of information actively utilized, which corresponds to the set
St in the model.

Our model draws on the working memory literature because overreaction to some ob-
servations suggests that forecasters use such information more than others. Indeed, a recent
survey paper by Cowan (2017a) explains the concept of working memory as “the ensemble
of components of the mind that hold information temporarily in a heightened state of availability
for use in ongoing information processing."6

While the working memory literature provides a context for why some information has
heightened utilization, a key question for our application is whether this concept applies
to our experiment. Since a number of observations are shown on the experimental screen,
one might wonder if working memory is a binding constraint on participants’ information
processing. The working memory literature highlights that heightened activation is not nec-
essarily about recalling previously seen observations but rather about focusing on a subset
of the available information in processing. Unsworth and Spillers (2010) provide a review of
relevant studies. Several of them study visual tasks, which are closest to our forecasting ex-
periment (Bleckley, Durso, Crutchfield, Engle and Khanna, 2003; Poole and Kane, 2009). To
summarize the evidence, Unsworth and Spillers (2010) write: “Baddeley (1993) noted that
‘the central executive component of working memory does not itself involve storage, which
produces the apparently paradoxical conclusion that not all working memory studies need
involve memory’ (p. 167)."

Finally, a remaining question is how small is the set of constrained focus (St) relative to
all the information that is available on the screen? Numerous experimental studies in the
psychology literature also finds that the capacity of working memory is small, with a lim-
ited amount of information in a rapidly accessible state (Cowan, 2010, 2012). For a more
detailed treatment of this concept, see, e.g., the book titled “working memory capacity”
(Cowan, 2012); in Chapter 1, Cowan defines working memory capacity as “[the] relatively
small amount of information that one can hold in mind, attend to, or, technically speak-
ing, maintain in a rapidly accessible state, at one time,” a definition that we have used as a
guideline for modeling the information set that is available for processing. Later, in Chapter
4, Cowan provides evidence and makes a case for the fact that working memory capacity
is limited to at most a few items or “chunks” at any given time. Our own findings are con-
sistent with the notion that despite the abundant availability of information on the screen,
participants do not necessarily process everything.

2. The most recent observation is immediately on top of mind. The next question is what
determines the small amount of information that is in a state of heightened activation (on
top of mind). Here we also use the psychological literature as a guideline. In the model, we
assume that the most recent observation is easiest to utilize (i.e., recency effect), while other
information is incorporated into forecasts through a more deliberate process. This process

6Cowan (2017b) conveys the idea through its title, “Working Memory: The Information You Are Now
Thinking of."
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is captured by the assumption that xt ∈ St, ∀t ≥ 0, but that St can be expanded by the agent
through a more conscious utilization process that comes at a cognitive cost. In other words,
agents in our model display immediate and automatic recency, modulated by the effortful
processing of further information.

Our modeling approach is based on the psychology literature’s view of the two ways
for information to be incorporated in working memory, perhaps best summarized by Hitch,
Hu, Allen and Baddeley (2018): “Previous research ... indicates that access to the focus of at-
tention (FoA) can be achieved in either of two ways. The first is automatic and is indexed by
the recency effect, the enhanced retention of the final item. The second is strategic and based
on instructions to prioritize items differentially, a process that draws on executive capacity
and boosts retention of information deemed important.” These two forces in the working
memory mechanism correspond to broader themes in psychology research about informa-
tion processing: recency (which is part of the information that is automatically activated)
and goal-driven information processing (which is slower and requires effort).

First, the psychology literature has studied the recency effect and how recent observa-
tions have heightened activation since the 1960s (Sternberg, 1966). Baddeley (2007); Badde-
ley and Hitch (1993) provide a comprehensive summary of findings about recency effects
in psychology and its relationship with the mechanism of working memory. As Baddeley
and Hitch (1993) write: the “presentation and processing of an item results in the activation
of its node... [and] the recency effect occurs because recently activated nodes are easy to
reactivate,” and conclude that “the recency effect can be viewed as reflecting the utilization
of automatic activation by an active, multi-component, working-memory system.”7 Exper-
iments of working memory and recency in a visual setting are closest to our experimental
framework (see, e.g., Hay, Smyth, Hitch and Horton, 2007; Phillips and Christie, 1977). In
sum, the literature on recency shows that recent information gets processed automatically
and enjoys heightened activation.

Second, the working memory mechanism also features the role of executive capacity and
the slower goal-oriented processing of additional information. As Hu, Allen, Baddeley and
Hitch (2016) summarize, “what is accessible in working memory reflects both top-down,
goal-driven priorities under executive control and the results of automatic perceptual selec-
tion from the external environment.” In particular, by varying which information is goal-
relevant, a series of working-memory experiments demonstrate how these two forces shape
the limited amount of information with heightened activation (Hitch et al., 2018).

The two components of the working memory mechanism summarized above can also be
viewed as a microfoundation for a broad class of dual process models in psychology (Barrett,
Tugade and Engle, 2004). The dual process models are unified by a framework where the
individual starts from a default driven by what is immediately accessible (“System 1”), and
further adjusts beliefs by effortful processing (“System 2”). See Evans (2008) for a summary
of the many types of dual process models in the psychology literature and Ilut and Valchev
(2023) for an application of dual process in economics.

Taken together, our model incorporates these two types of forces: agents automatically
form a prior based on the recent observation (automatic recency), and consciously processed

7The working memory literature’s view on recency effect has evolved over the last few decades. Earlier
research on working memory often treated recency as a separate topic (Baddeley and Hitch, 1993). However,
later work views that recency influences what information gets used automatically without conscious process-
ing.
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additional data (deliberate processing). More generally, the framework of our model can
accommodate various settings where the forecasters are influenced by recency but may also
exert costly effort to utilize more past information. Such recency effects can arise due to
psychological forces as described above; they could also come from institutional forces that
limit the usage of past data.

IA4 Generalized Model for ARMA Processes

We consider a Markov Gaussian process {Xt : t ≥ 0} on Rn with the following state space
representation:

Xt = (I − A)X̄ + AXt−1 + Qut.

Suppose the agent’s task is to make a set of forecasts of horizon hi for a vector of m variables
Yt = (yi,t+hi)i∈{1,...,m}, where yi,t+hi = w′iXt+hi is a linear combination of Xt+hi . Since innova-
tions ut are i.i.d. over time, the agent’s forecast of Xt+h for any h ≥ 0 at a given time t can be
written as

E[Xt+h|St] = (I − Ah)E[X̄|St] + AhXt,

where St is what is on top of the agent’s mind at time t. Thus, for any yi,t+hi :

E[yi,t+hi |St] = w′i(I − Ah)E[X̄|St] + w′i A
hXt.

Assuming that the agent minimizes a squared sum of errors weighted by W, the resulting
objective can be written as

− 1
2

E[(Yt − E[Yt|St])
′W(Yt − E[Yt|St])|St]

=− 1
2

tr(ΣtHWH′) + terms independent of optimization,

where Σt = Var(X̄|St) is the variance of the long-run mean of Xt given St and H is an n×m
matrix whose j’th column is (I − Ah)′wi. We define Ω ≡ HWH′. Then, the agent’s loss at
time t from not knowing the long-run mean is given by −1

2 tr(ΣtΩ).
Suppose now that the agent’s prior at the beginning of the period is X̄|Xt ∼ N(Xt, Σ),

which is a generalized version of the prior assumed in the main text. Conditional on this
prior, the agent solves the following problem (the derivations for which closely follow the
proof of Lemma 1):

max
Σ

{
−tr(ΩΣ)−ω

(|Σ||Σ|−1)γ − 1
γ

}
s.t.0 � Σ � Σ,

where (� 0) denotes positive-semidefiniteness. This is a convex optimization problem on
the positive semi-definite cone, similar to the problem studied in Afrouzi and Yang (2021).
While Afrouzi and Yang (2021) only considers the case of γ → 0, we solve for the more
general case of γ > 0. Since the cost of inaccuracy approaches infinity if |Σ| → 0, the optimal
subjective variance Σ should have a strictly positive determinant, with all the eigenvalues of
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Σ strictly positive (Σ � 0). In other words, we can ignore the constraint Σ � 0 as it should
not bind under the solution. On the other hand, the constraint Σ � Σ, however, potentially
binds and needs to be considered (this intuitively corresponds to the case in which zero
costly learning occurs).

We assume Λ is the generalized Lagrange multiplier on this constraint. It follows from
convex optimization that Λ is also positive semi-definite, commutes with X ≡ Σ− Σ, and
satisfies complementarity slackness ΛX = XΛ = 0 (See Afrouzi and Yang (2021) for details).
The first order condition is then

Ω = ω|Σ|γ|Σ|−γΣ−1 + Λ,

which can be rewritten as

ΩX = ΩΣ−ω|Σ|γ|Σ|−γ + ΛΣ.

Now multiply this by Σ
1
2 from left and Σ−

1
2 from the right, and observe that

Σ
1
2 ΩΣ

1
2 Σ−

1
2 XΣ−

1
2 = Σ

1
2 ΩΣ

1
2 −ω|Σ|γ|Σ|−γ I + Σ

1
2 ΛΣ

1
2 .

Setting Ω̂ = Σ
1
2 ΩΣ

1
2 , X̂ = Σ−

1
2 XΣ−

1
2 , Λ̂ = Σ

1
2 ΛΣ

1
2 , and ω̂ = ω|Σ|γ|Σ|−γ, we obtain:

Ω̂X̂ = Ω̂− ω̂I + Λ̂. (IA4.1)

Note that X̂Λ̂ = Λ̂X̂ = 0. We can also see that Ω̂X̂ = X̂Ω̂ since the right hand side
of Equation (IA4.1) above is symmetric. Finally, we can see that Λ̂ and Ω̂ also commute.8

Thus, since Ω̂, X̂t and Λ̂ are all symmetric, they are all diagonalizable, and given that they
all commute with one another, they must be simultaneously diagonalizable. This implies
that there are diagonal matrices DΛ, DX and DΩ, as well as an orthonormal basis U (UU′ =
U′U = I), such that

Ω̂ = UDΩU′, X̂ = UDXU′, Λ̂ = UDΛU′

Now multiplying Equation (IA4.1) by U from left and U′ from right, we have

DΩDX = DΩ − ω̂I + DΛ, DΛ � 0, DX � 0, DXDΛ = 0.

Given that these equations are in terms of diagonal matrices, the inequality needs to hold
entry-by-entry on the diagonal, implying that for any 1 ≤ i ≤ n:

DX,ii = 1− ω̂ max{DΩ,ii, ω̂}−1,

or in matrix form:

I − X̂ = max{ Ω̂
ω̂

, I}−1 = max{Σ
1
2 ΩΣ

1
2

ω̂
, I}−1, (IA4.2)

8To see this, multiply the Equation (IA4.1) by Λ̂ form right and note that Ω̂Λ̂ has to be symmetric, indicating
that Λ̂Ω̂ = (Λ̂Ω̂)′ = Ω̂Λ̂.
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or

Σ = Σ
1
2 max{Σ

1
2 ΩΣ

1
2

ω̂
, I}−1Σ

1
2 , (IA4.3)

where the only unknown on right hand side is ω̂.
To calculate ω̂, take the determinant of the above equation and note that

det(I − X̂) = det(I − Σ−
1
2 XΣ−

1
2 ) = det(Σ−1Σ) = (

ω̂

ω
)−γ−1

.

Thus, taking the log-determinant of Equation (IA4.2) (which is permitted because both sides
are strictly positive definite) gives:

log(ω̂) = log(ω) + γ log det

(
max{Σ

1
2 ΩΣ

1
2

ω̂
, I}
)

.

Now let {λi}i∈{1,...,n} denote the eigenvalues of the matrix Σ
1
2 ΩΣ

1
2 (note that these are simply

parameters of the model). Then, we can rewrite this equation as

log(ω̂) = log(ω) + γ ∑
λi≥ω̂

log(
λi

ω̂
). (IA4.4)

which is an equation only in terms of ω̂ and unique to our case.
To prove the existence of a solution, note that the left hand side is increasing in ω̂ and

subjects onto all of R. On the other hand, the right hand side is decreasing in ω̂, with its
range being [log(ω), ∞). Thus, there is a unique ω̂ that solves this equation (which inciden-
tally is larger than ω for γ > 0 as long as there is at least one eigenvalue larger than ω). Thus
Equations (IA4.3) and (IA4.4) together pin down the optimal Σ for the agent. Therefore, ap-
plying standard Kalman filtering results, we obtain that the agent’s belief about the long run
mean is given by

X̄|St ∼ N(X̂t, Σ),

where

E[X̂t|X̄, Xt] = X̄ + Σ
1
2 max{Σ

1
2 ΩΣ

1
2

ω̂
, I}−1Σ−

1
2 (Xt − X̄)︸ ︷︷ ︸

overreaction

.

and Σ is the solution in Equation (IA4.3).
Consequently, as is the case for our simple AR(1) example, there is a positive loading on

the subjective long-run mean on the most recent observation, which yields overreaction.

IA5 Underreaction

Our model can be extended in a simple way to accommodate underreaction. Following the
noisy information literature (e.g. Woodford (2003) and Khaw, Li and Woodford (2018)), we
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now assume that the individual receives a noisy signal of xt:

st = xt + εt, εt ∼ N
(

0, τ−1
ε

)
. (IA5.1)

Furthermore, the agent has a prior over the latent value xt, given by xt ∼ N
(

x̄, τ−1
0

)
. In this

case, the agent obtains the posterior beliefs regarding the most recent signal:

x̂t|st =
τε

τ0 + τε
st +

τ0

τ0 + τε
x̄. (IA5.2)

We do not need to take a stance on x̄: as long as the prior does not depend on the value of
xt, all of our conclusions are unchanged. The agent then forms a default belief regarding the
long-run mean µ centered around the noisy recent signal x̂t:

µ̂ ∼ N (x̂t, τ) . (IA5.3)

Our main model can be seen as a special case (τε 7→ ∞) of this more general case that allows
for noisy signals.

The derivations are similar as before and we have:

E[µ|x̂t, St] = min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

}
x̂t (IA5.4)

Ftxt+h = ρh · x̂t + (1− ρh)min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

}
x̂t + εt︸︷︷︸

noise

(IA5.5)

= ρhxt +

 τε

τ0 + τε
(1− ρh)min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

}
︸ ︷︷ ︸

overreaction

− τ0

τ0 + τε
ρh︸ ︷︷ ︸

underreaction

 xt + constant + εt.

(IA5.6)

Note that when τε 7→ ∞, the equation above converges to our expression in the main text.
However, for finite τε, noisy signals introduce a downward pressure on the loading of the
forecast on xt, which counteracts overreaction. The intuition is simple: the agent’s forecast
overreacts to x̂t, but with noisy information, x̂t itself underreacts to xt. The following propo-
sition derives the conditions for when each force dominates. When the noise in the signal is
small, overreaction is the dominant force.

The above expression implies the following proposition, which shows that in this model
extension, the degree of overreaction is still stronger when the process is less persistent (i.e.,
ρ is small):

Proposition 2. Holding fixed the noisy information parameters τε, τ0 < ∞, there is over-
reaction (ρs

h > ρ) for sufficiently low ρ, and underreaction (ρs
h < ρ) if ρ 7→ 1. If γ ≥ 1,

∆ = ρs,h − ρh is decreasing in ρh.
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Proof. We have:

ρs,h − ρh =
τε

τ0 + τε
(1− ρh)min

{
1,
(

ωτ

(1− ρh)2

) 1
1+γ

}
− τ0

τ0 + τε
ρh. (IA5.7)

It is evident that the expression on the right-hand side is positive as ρ 7→ 0 (it converges

to τε
τ0+τε

(ωτ)
1

1+γ ), and negative as ρ 7→ 1 (it converges to − τ0
τ0+τε

). For intermediate values of
ρ, when ρ is sufficiently high such that ωτ

(1−ρh)2 > 1, the right hand side becomes:

τε

τ0 + τε
− ρh, (IA5.8)

which is monotonically decreasing in ρ. When ρ is sufficiently low such that ωτ
(1−ρh)2 < 1, the

expression becomes:

τε

τ0 + τε
(1− ρh)

(
ωτ

(1− ρh)2

) 1
1+γ

− τ0

τ0 + τε
ρh =

τε

τ0 + τε
(ωτ)

1
1+γ (1− ρh)−

γ−1
1+γ − τ0

τ0 + τε
ρh.

(IA5.9)

If we assume γ ≥ 1, each of the terms is decreasing in ρh, which is in line with the empirical
evidence.

Overall, in our experiment, the signals are rather simple and unambiguous, so the noise
is likely very small. In other environments, signals can be noisier, which may generate un-
derreaction even at the individual level. Similarly, if we introduce in our model frictions
such as insufficient attention and infrequent updating (Mankiw and Reis, 2002), then we
can also obtain underreaction. This is unlikely to be the case in our experiment, but it could
be more relevant for other settings such as households’ expectations of inflation.

IA6 Model Predictions for Changing What’s on Top of Mind

In this section, we describe our model’s predictions for the additional experiments in Section
6.1 (where we change what’s on top of mind).

IA6.1 Setup

We have two main experimental designs to change what is on top of mind for participants.
In the first condition, we show a red line corresponding to x = 0. In the second condition,
we require participants to click on xt−10 in each round before they can make new forecasts.
Both designs aim to change the default context from the original default, i.e., the most recent
realization xt.

In our baseline model, prior beliefs are given by a normal distribution with mean xt and
precision τ. We model these additional tests as providing an extra signal of the long-run
mean, I, before the agent decides what information to utilize. By design, this signal is on
average centered around 0 with precision τ̄′. After seeing the signal I, the belief the agent
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has regarding the long-run mean is given by:

µ|xt, I ∼ N(zt, τ + τ̄′) (IA6.1)

Standard Gaussian updating implies that E[zt|xt] = αxt, where α = τ
τ+τ̄′ < 1.

After processing the signal, the agent then processes additional information. Following
our experimental design, we assume h = 1 for simplicity. Using the same computation as in
the main model, we obtain:

E[µ|xt, St, I] = min

{
1,
(

ω(τ + τ̄′)

(1− ρ)2

) 1
1+γ

}
zt, (IA6.2)

and consequently:

ρs
1,I = ρ + (1− ρ) ·min

{
1,
(

ω(τ + τ̄′)

(1− ρ)2

) 1
1+γ

}
· τ

τ + τ̄′
. (IA6.3)

In comparison, our original expression is:

ρs
1 = ρ + (1− ρ) ·min

{
1,
(

ωτ

(1− ρ)2

) 1
1+γ

}
. (IA6.4)

IA6.2 Result

We have the following proposition:

Proposition 3. The implied persistence curve in the new conditions ρs
1,I lies below the orig-

inal implied persistence curve ρs
1. In other words, ρs

1,I < ρs
1 for each level of actual ρ (except

ρ = 1).

Proof. It suffices to show:

min

{
1,
(

ωτ

(1− ρ)2

) 1
1+γ

}
> min

{
1,
(

ω(τ + τ̄′)

(1− ρ)2

) 1
1+γ

}
· τ

τ + τ̄′
. (IA6.5)

The above inequality is trivially true if 1 <
(

ωτ
(1−ρ)2

) 1
1+γ

<
(

ω(τ+τ̄′)
(1−ρ)2

) 1
1+γ . Furthermore, if(

ωτ
(1−ρ)2

) 1
1+γ

<
(

ω(τ+τ̄′)
(1−ρ)2

) 1
1+γ

< 1, then note that both sides of the equation simplify to:

(
ωτ

(1− ρ)2

) 1
1+γ

>

(
ω(τ + τ̄′)

(1− ρ)2

) 1
1+γ

· τ

τ + τ̄′

⇐⇒
(

τ

τ + τ̄′

) 1
1+γ

>
τ

τ + τ̄′
,

(IA6.6)

which is clearly true for γ ≥ 0.
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Thus, it suffices to show the inequality for the case
(

ωτ
(1−ρ)2

) 1
1+γ

< 1 <
(

ω(τ+τ̄′)
(1−ρ)2

) 1
1+γ ,

where the expression simplifies to showing:(
ωτ

(1− ρ)2

) 1
1+γ

>
τ

τ + τ̄′
. (IA6.7)

This is clearly true, as:(
ωτ

(1− ρ)2

) 1
1+γ

=

(
ω(τ + τ̄′)

(1− ρ)2

) 1
1+γ

·
(

τ

τ + τ̄′

) 1
1+γ

>

(
τ

τ + τ̄′

) 1
1+γ

>
τ

τ + τ̄′
. (IA6.8)
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FIGURE A.12

Model Prediction for Persistence in Additional Treatment Conditions

This figure shows the theoretical prediction of the implied persistence for our experimental in-
terventions to change what’s on top of mind. We use τ0 = τ/α and α = 0.6. The black dotted line
shows the model’s prediction for implied persistence in the baseline experiment. The red solid line
shows the prediction for the additional experiments described above.
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