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Abstract

We develop a fast, tractable, and robust method for solving the transition
path of dynamic rational inattention problems in linear-quadratic-Gaussian
settings. As an application of our general framework, we develop an attention-
driven theory of dynamic pricing in which the Phillips curve slope is endoge-
nous to systematic aspects of monetary policy. In our model, when the mon-
etary authority is more committed to stabilizing nominal variables, rationally
inattentive firms pay less attention to changes in their input costs, which leads
to a flatter Phillips curve and more anchored inflation expectations. This ef-
fect, however, is not symmetric. A more dovish monetary policy flattens the
Phillips curve in the short-run but generates a steeper Phillips curve in the
long-run. In a calibrated version of our general equilibrium model, we find
that our mechanism quantifies a 75% decline in the slope of the Phillips curve
in the post-Volcker period, relative to the period before it.
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1 Introduction

Since Muth (1961), full-information rational expectations theory has grown to be
an essential part of macroeconomic modeling. Nonetheless, a growing body of ev-
idence on costly information has called for modifications to the theory that take
such costs into account. To this end, the rational inattention theory (Sims, 2003,
2006, 2010) provides an appealing alternative by preserving the consistency of ex-
pectations within an optimizing framework. However, these models tend to be
computationally expensive to solve, especially in dynamic environments.

This paper develops a fast, tractable, and robust method for solving dynamic
rational inattention problems (DRIPs) in linear quadratic Gaussian (LQG) settings.1

Our methodological contributions are twofold: first, we provide an analytical infor-
mation Euler equation that characterizes the transition dynamics of optimal beliefs
from any arbitrary initial prior. Second, we use our theoretical results to develop a
computational toolbox for solving these problems. Because our theoretical results
allow us to iterate over the policy functions, our computational toolbox has two
advantages relative to other alternatives. (1) It is the first algorithm that directly
solves for the transition dynamics of the information structure by iterating over the
Euler equation. (2) It is more accurate and significantly faster in characterizing the
steady-state information structure than alternative algorithms that rely on approxi-
mate solutions. Finally, as an application of our general framework, we develop an
attention-based theory of the Phillips curve. In our theory, the Phillips curve slope
is endogenous to the systematic aspects of monetary policy and is occasionally flat
due to transition dynamics of attention.

DRIPs are notoriously complex because both the state and choice variables are
distributions with endogenous supports. LQG settings reduce these choice and
state variables to covariance matrices of Gaussian distributions. However, even
in these cases, for an n-dimensional Gaussian Markov process, the corresponding
rational inattention problem has n(n+1)

2 state variables. In particular, one major
complication is a set of n “no-forgetting” constraints that bind if the agent does
not acquire information in the corresponding dimension.

Our first methodological contribution is that we derive an analytical information

1In LQG rational inattention problems, the payoffs are quadratic, shocks are Gaussian, and the
cost of information is linear in Shannon’s mutual information function.
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Euler equation that fully characterizes the dynamics of optimal beliefs. In particu-
lar, our Euler equation provides a simple and intuitive rule for which no-forgetting
constraints bind in each period by characterizing the marginal value of informa-
tion in all dimensions of the state. The corresponding constraint then binds if this
value is less than the marginal cost of one bit of information—which is the only
parameter of the cost function for information acquisition.

As our second methodological contribution, we propose a novel solution method
for characterizing the transition dynamics and the steady-state of DRIPs based on
iterating over our analytical information Euler equation. Our solution method is
fast and can be implemented in quantitative work (e.g., our quantitative model or
Song and Stern, 2020, who utilize our algorithm). Moreover, to demonstrate our
toolbox’s accuracy and efficiency for the steady-state information structure, we
have replicated three canonical papers (Maćkowiak and Wiederholt, 2009a; Sims,
2010; Maćkowiak, Matějka, and Wiederholt, 2018) that use three different solution
methods.2 A summary of our computing times is reported in Table 1. Our com-
putational toolbox is available for public use as the DRIPs.m repository for Matlab
and the DRIPs.jl Julia package.3 All examples and replications are available as
interactive Jupyter notebooks that are accessible online with no software require-
ments.4

Application to Phillips Curve. Our third contribution is to apply our analytical
framework to propose an attention-based theory of the Phillips curve. A recent
growing literature documents that the slope of the Phillips curve has flattened
during the last few decades.5 While benchmark New Keynesian models would
relate this flattening to changes in the model’s structural parameters, in an analyt-
ical general equilibrium model with rationally inattentive firms, we show that the
Phillips curve slope is endogenous to the conduct of monetary policy.

In our model, when monetary authority puts a larger weight on stabilizing the
nominal variables (i.e., when monetary policy is more hawkish), firms endoge-
nously choose to pay less attention to changes in their input costs. Accordingly,

2Our replications of Sims (2010); Maćkowiak and Wiederholt (2009a); Maćkowiak, Matějka, and
Wiederholt (2018) is described in Section 2.4, Appendix B.1 and Appendix B.2, respectively.

3Link for Matlab GitHub Repository: https://github.com/choongryulyang/DRIPs.m
Link for Julia Package: https://www.afrouzi.com/DRIPs.jl/dev
4Link: https://mybinder.org/v2/gh/afrouzi/DRIPs.jl/binder?filepath=examples
5See, for instance, Coibion and Gorodnichenko (2015b); Blanchard (2016); Bullard (2018);

Hooper, Mishkin, and Sufi (2020); Del Negro, Lenza, Primiceri, and Tambalotti (2020).
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when monetary policy is more hawkish, prices are less sensitive to the economy’s
slack, the Phillips curve is flatter, and firms’ inflation expectations are more an-
chored. Therefore, our theory suggests that the decline in the slope of the Phillips
curve is related to the more hawkish monetary policy adopted at the beginning of
the Great Moderation.6

This effect, however, is not symmetric. While more hawkish monetary pol-
icy flattens the Phillips curve, a more dovish monetary policy completely flattens
the Phillips curve in the short-run but steepens it in the long-run. The key to this
asymmetry lies in the dynamic incentives in information acquisition. In our model,
forward-looking firms learn about their input costs’ persistent changes and invest
in a stock of knowledge about these processes. When monetary policy becomes
more dovish, firms suddenly find themselves in a more uncertain environment
where their stock of knowledge depreciates faster. Hence, a more dovish mon-
etary policy decreases the net present value of knowledge, and crowds out firms’
information acquisition in the short-run, a period during which prices are not sen-
sitive to changes in input costs and the Phillips curve is completely flat. However,
this effect dissipates as firms’ uncertainty about their input costs grows and, even-
tually, they restart paying attention to their costs. In this new regime, firms have
a lower stock of knowledge, but they acquire information at a higher rate. The
higher rate of information acquisition makes prices more sensitive to changes in
input costs and leads to a steeper Phillips curve and less anchored inflation expec-
tations relative to the previous regime.

Our final contribution is to test the quantitative relevance of our proposed
mechanism for the change in the Phillips curve slope. Using our computational
toolbox, we solve and calibrate a dynamic general equilibrium rational inatten-
tion model with monetary policy and supply shocks to the post-Volcker U.S. data
(1983-2007). In the spirit of Maćkowiak and Wiederholt (2015), we examine the
out-of-sample fit of our model by replacing the post-Volcker Taylor rule with an
estimated Taylor rule for the pre-Volcker period. We find that our model quanti-
tatively matches the higher variance of inflation and GDP in the pre-Volcker era
as non-targeted moments. As our main empirical exercise, we simulate data from
our calibrated model using our estimated pre- and post-Volcker monetary policy

6See Clarida, Galí, and Gertler (2000); Coibion and Gorodnichenko (2011) for evidence on more
hawkish monetary policy in the post-Volcker period.
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rules and estimate the implied slope of the Phillips curve in both samples. We find
that our model can explain up to a 75% decline in the Phillips curve slope in the
post-Volcker period.

Related Literature. Dynamic rational inattention models have long been applied
to different settings in macroeconomics.7 We contribute to a subset of this lit-
erature that has laid the ground for solving DRIPs in LQG settings (Sims, 2003;
Maćkowiak, Matějka, and Wiederholt, 2018; Fulton, 2018). These papers make two
simplifying assumptions that we depart from: (1) they abstract away from transi-
tion dynamics, and (2) they solve for the long-run steady-state information struc-
ture without discounting. A notable exception is Sims (2010), which provides first-
order conditions for transition dynamics assuming the no-forgetting constraints
do not bind, and studies binding constraints in two special cases. Miao, Wu, and
Young (2020) propose a value function iteration method for transition dynamics
as well as a method for solving the long-run steady-state without discounting, but
they do not characterize optimality conditions. We contribute to this literature by
fully characterizing the transition dynamics of DRIPs. Proposing an algorithm that
directly iterates over these optimality conditions, we also provide a fast and robust
method for obtaining their solutions that is orders of magnitude faster than value
function iteration. We provide a more thorough and detailed description of our
contribution relative to this literature in Section 2.5.

Our attention-based theory of the Phillips curve is motivated by the evidence
for the flattening of the Phillips curve in the last few decades (Blanchard, 2016;
Bullard, 2018; Hooper, Mishkin, and Sufi, 2020; Del Negro, Lenza, Primiceri, and
Tambalotti, 2020).8 Another literature that motivates our model provides evidence
for the information rigidities that economic agents exhibit in forming their expec-
tations.9

7See Maćkowiak, Matějka, and Wiederholt (2020) for a recent survey of this literature.
8A recent study by Hazell, Herreño, Nakamura, and Steinsson (2020) also documents that the

Phillips curve is flatter in the post-Volcker era, but once viewed through the lens of benchmark New
Keynesian models, the slope implied by their estimates is so small that the flattening is irrelevant.
According to our model, the benchmark New Keynesian Phillips curve is (1) misspecified and
(2) “too” forward-looking, which is why the implied slope in Hazell, Herreño, Nakamura, and
Steinsson (2020) is small.

9For recent progress in this literature, see for instance, Kumar, Afrouzi, Coibion, and Gorod-
nichenko (2015); Coibion and Gorodnichenko (2015a); Ryngaert (2017); Roth and Wohlfart (2020);
Gaglianone, Giacomini, Issler, and Skreta (2020); Coibion, Gorodnichenko, and Ropele (2020); Yang
(2020) for survey evidence, and Khaw, Stevens, and Woodford (2017); Khaw and Zorrilla (2018);
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We also contribute to the literature that considers how imperfect information
affects the Phillips curve (Lucas, 1972; Mankiw and Reis, 2002; Woodford, 2003;
Nimark, 2008; Angeletos and La’O, 2009; Angeletos and Huo, 2018).10 Our main
departure is to derive a Phillips curve in a model with rational inattention and
study how monetary policy shapes and alters the incentives in information acqui-
sition of firms. Specifically, a notable implication of our model is the different
short-run and long-run implications of changes in monetary policy for the slope of
the Phillips curve.11

Layout. The paper is organized as follows. Section 2 characterizes transition dy-
namics of DRIPs in LQG settings, outlines our solution algorithm, and provides a
more thorough discussion of how our approach relates to the existing literature.
Section 3 provides an attention-based theory of the Phillips curve in an analytical
framework. In Section 4, we present our quantitative model and results. Section 5
concludes.

2 Theoretical Framework

This section formalizes the problem of an agent who chooses her information struc-
ture endogenously over time. We start by setting up the general problem and de-
riving some properties for its solution without making assumptions on payoffs
and information structures. We then derive and solve the implied LQG problem
and present our algorithm for solving DRIPs and compare its accuracy and effi-
ciency by replicating results from previous literature. We conclude this section
by discussing the properties of transition dynamics in DRIPs in the context of an
extension of the pricing example in Sims (2010).

2.1 Environment

Preferences. Time is discrete and is indexed by t ∈ {0, 1, 2, . . . }. At each time t,
the agent chooses a vector of actions~at ∈ Rm and gains an instantaneous payoff of

Afrouzi, Kwon, Landier, Ma, and Thesmar (2020) for experimental evidence.
10See, also, Reis (2006); Angeletos and Lian (2016, 2018); Gabaix (2020).
11While we provide an attention-based theory for the Phillips curve slope, other proposed expla-

nations include non-linearities in the slope of the Phillips curve (Kumar and Orrenius, 2016; Babb
and Detmeister, 2017), identification issues due to optimal monetary policy (McLeay and Tenreyro,
2020), changes in the input-output structure of the economy (Rubbo, 2020), or changes in price
stickiness due to pursuit of price stability by the central bank (L’Huillier and Zame, 2020).
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v(~at;~xt) where {~xt ∈ Rn}∞
t=0 is an exogenous stochastic process, and v(.; .) : Rm ×

Rn → R is strictly concave and bounded above with respect to its first argument.

Set of Available Signals. We assume that at any time t, the agent has access
to a set of available signals in the economy, which we call S t. Signals in S t are
informative of the history of shocks, Xt ≡ (~x0, . . . ,~xt). In particular, we assume:

1. S t is rich: for any posterior distribution on Xt, there is a set of signals St ⊂ S t

that generate that posterior.

2. Available signals do not expire over time: S t ⊂ S t+h, ∀h ≥ 0.

3. Available signals at time t are not informative of future innovations to ~xt:
∀St ∈ S t, ∀h ≥ 1, St ⊥ ~xt+h|Xt.

Information Sets and Dynamics of Beliefs. Our main assumption here is that
the agent does not forget information over time, commonly referred to as the “no-
forgetting” condition. The agent understands that any choice of information will
affect their priors in the future, and that information has a continuation value.12

Formally, a sequence of information sets {St ⊆ S t}t≥0 satisfy the no-forgetting
condition for the agent if St ⊆ St+τ, ∀t ≥ 0, τ ≥ 0.

Cost of Information and the Attention Problem. We assume the cost of infor-
mation is linear in Shannon’s mutual information function.13 Formally, let {St}t≥0

denote a set of information sets for the agent which satisfies the no-forgetting con-
straint. Then, the agent’s flow cost of information at time t is ωI(Xt; St|St−1),
where

I(Xt; St|St−1) ≡ h(Xt|St−1)−E[h(Xt|St)|St−1]

is the reduction in entropy of Xt that the agent experiences by expanding her
knowledge from St−1 to St, and ω is the marginal cost of a unit of information.14

We can now formalize the rational inattention problem (henceforth the RI Prob-
lem) of the agent in our setup as:

12Although we assume perfect memory in our benchmark, these dynamic incentives exist insofar
as the agent carries a part of her memory with her over time. For a model with fading memory with
exogenous information, see Nagel and Xu (2019). Furthermore, Azeredo da Silveira and Woodford
(2019) endogenize noisy memory in a setting where carrying information over time is costly.

13For a discussion of Shannon’s mutual information function and generalizations see Caplin,
Dean, and Leahy (2017). See also Hébert and Woodford (2018) for an alternative cost function.

14This unit is either bits—if entropy is defined in terms of binary logarithm—or nats—if entropy
is defined in terms of natural logarithm.
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V0(S−1) ≡ sup
{St⊂S t,~at :St→Rm}t≥0

∞

∑
t=0

βtE[v(~at;~xt)−ωI(Xt; St|St−1)|S−1] (2.1)

s.t. St = St−1 ∪ St, ∀t ≥ 0, (2.2)

S−1 given. (2.3)

where Equation (2.1) is the RI Problem in which the agent maximizes the net
present value of her payoffs minus the cost of attention; Equation (2.2) captures
the evolution of the agent’s information set over time and Equation (2.3) specifies
the initial condition for the dynamic problem.

It is important to note that this problem is a dynamic problem only because of
information acquisition: any information acquired in a given period potentially
reduces the expected costs of information acquisition in the future by expanding
the agent’s information set.

2.1.1 Two General Properties of the Solution

Solving the RI problem in Equation (2.1) is complicated by two issues: (1) the agent
can choose any subset of signals in any period and (2) the cost of information de-
pends on the whole history of actions and states, which increases the dimensional-
ity of the problem with time. The following two lemmas present results that follow
directly from the linearity of the cost function in Shannon’s mutual information
function and simplify these complications.

Sufficiency of Actions for Signals. An important consequence of assuming that
the cost of information is linear in Shannon’s mutual information function is that
it implies actions are sufficient statistics for signals over time (Steiner, Stewart, and
Matějka, 2017; Ravid, 2020). The following lemma formalizes this result in our
setting.

Lemma 2.1. Suppose {(St ⊂ S t,~at : St → Rm}∞
t=0 ∪ S−1 is a solution to the RI problem

in Equation (2.1). ∀t ≥ 0, define at ≡ {~aτ}0≤τ≤t ∪ S−1. Then, Xt → at → St forms a
Markov chain, i.e. at is a sufficient statistic for St with respect to Xt.

Proof. See Appendix A.1.

In static environments, the sufficiency of actions for signals follows from opti-
mality (Matějka and McKay, 2015). Since information is costly and only valuable
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in choosing the optimal action, an information set not revealed by the optimal ac-
tion must be suboptimal (otherwise, there exists an information set that generates
the same action but is less costly). In dynamic settings, however, the agent might
find it optimal to acquire information about future actions before-hand. Lemma 2.1
rules out this case by showing that if the chain-rule of mutual information holds,
then the agent has no incentives to acquire information about future actions.15

The result in Lemma 2.1 allows us to directly substitute actions for signals. In
particular, we can impose that the agent directly chooses {~at ∈ S t}t≥0 without any
loss of generality.

Conditional Independence of Actions from Past Shocks. It follows from Lemma
2.1 that if an optimal information structure exists, then ∀t ≥ 0 : I(Xt; St|St−1) =

I(Xt; at|at−1). Here we show this can be simplified if {~xt}t≥0 follows a Markov
process.

Lemma 2.2. Suppose {~xt}t≥0 is a Markov process and {~at}t≥0 is a solution to the 2.1
given an initial information set S−1. Then ∀t ≥ 0:

I(Xt; at|at−1) = I(~xt;~at|at−1), a−1 ≡ S−1.

Proof. See Appendix A.2.

When {~xt}t≥0 is Markov, at any time t, ~xt is all the agent needs to know to
predict the future states. Therefore, it is suboptimal to acquire information about
previous realizations of the state.

2.2 The Linear-Quadratic-Gaussian Problem

In this section, we characterize the optimal information structure in a Linear-Quadratic-
Gaussian (LQG) setting. In particular, we assume that {~xt ∈ Rn : t ≥ 0} is a
Gaussian process and the payoff function of the agent is quadratic and given by:

v(~at;~xt) = −
1
2
(~a′t −~x′tH)(~at −H′~xt) + terms independent of~at

15The chain-rule of mutual information implies that for every three random variables:

I(X; (Y, Z)) = I(X; Y) + I(X; Z|Y).

Intuitively, it imposes a certain type of linearity: mutual information is independent of whether the
information is measured altogether or part by part.
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Here, H ∈ Rn×m has full column rank and captures the interaction of the actions
with the state.16 The assumption of rank(H) = m is without loss of generality; in
the case that any two columns of H are linearly dependent, we can reclassify the
problem so that all co-linear actions are in one class. Moreover, we have normal-
ized the Hessian matrix of v with respect to~a to negative identity.17

Optimality of Gaussian Posteriors. We start by proving that optimal actions are
Gaussian under quadratic payoff with a Gaussian initial prior. Maćkowiak and
Wiederholt (2009b) prove this result in their setup where the cost of information is
given by

lim
T→∞

1
T

I(XT; aT).

Our setup is marginally different as in our case the cost of information is dis-
counted at rate β and is equal to (1− β)∑∞

t=0 βtI(Xt; at), as derived in the proof
of Lemma 2.1. The following lemma presents a modified proof that applies to our
specification.

Lemma 2.3. Suppose the initial conditional prior, ~x0|S−1, is Gaussian. If {~at}t≥0 is a
solution to the RI problem in Equation (2.1), with quadratic payoff and a given S−1. Then,
∀t ≥ 0, the posterior distribution ~xt|{~aτ}0≤τ≤t ∪ S−1 is Gaussian.

Proof. See Appendix A.3.

The Equivalent LQG Problem. Lemma 2.3 simplifies the structure of the prob-
lem in that it allows us to re-write the RI problem in terms of choosing a set of
Gaussian joint distributions between the actions and the state. This is a canonical
formulation of the rational inattention problems in LQG settings and it appears in
different forms throughout the literature. For completeness, the following Lemma
derives the LQG problem in our setting that follows from the RI problem in Equa-
tion (2.1). A similar formulation appears in Equation (27) in Sims (2010).

16While we take this as an assumption, this payoff function can also be derived as a second-order
approximation to a twice differentiable function v(.; .) around the non-stochastic optimal action and
disregarding the terms that are independent of the agent’s choices.

17This is without loss of generality; for any negative definite Hessian matrix −Haa ≺ 0, normal-

ize the action vectors by H−
1
2

aa to transform the payoff function to our original formulation. Finally,
while we have abstracted away from endogenous state variables, such problems could be reformu-
lated in a similar form by redefining the action and an adequate redefinition of the matrix H (see,
e.g., Miao, Wu, and Young, 2020; Mackowiak and Wiederholt, 2020).
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Lemma 2.4. Suppose the initial prior ~x0|S−1 is Gaussian and that {~xt}t≥0 is a Gauss-
Markov process with the following state-space representation:

~xt = A~xt−1 + Q~ut, ~ut ⊥ ~xt−1, ~ut ∼ N (0, Ik×k), k ∈N,

Then, the RI problem in Equation (2.1) with quadratic payoff is equivalent to choosing a
set of symmetric positive semidefinite matrices {Σt|t}t≥0:

V0(Σ0|−1) = max
{Σt|t∈Sn

+}t≥0

−1
2

∞

∑
t=0

βt

[
tr(Σt|tΩ) + ω ln

(
|Σt|t−1|
|Σt|t|

)]
(2.4)

s.t. Σt+1|t = AΣt|tA
′ + QQ′, ∀t ≥ 0, (2.5)

Σt|t−1 − Σt|t � 0, ∀t ≥ 0 (2.6)

0 ≺ Σ0|−1 ≺ ∞ given. (2.7)

Here, |.| is the determinant operator,� denotes positive semidefiniteness, Σt|t ≡ var(~xt|at),
Σt|t−1 ≡ var(~xt|at−1), Ω ≡ HH′ and Sn

+ is the n-dimensional symmetric positive
semidefinite cone.

Proof. See Appendix A.4.

Lemma 2.4 reformulates the RI problem into an LQG problem in Equation (2.4)
subject to the law of motion for the agent’s priors in Equation (2.5) and a set of no-
forgetting constraints in Equation (2.6) that follow directly from the no-forgetting
condition and require the agent’s posterior to be at least as precise as their prior in
all dimensions of the state. Finally, Equation (2.7) specifies the initial condition for
the problem as the covariance matrix of the agent’s prior belief over ~x0 induced by
the initial information set S−1.

Solution. Sims (2010) derives a first-order condition for the solution to the LQG
RI problem in Equation (2.4) when the no-forgetting constraints do not bind.18

However, binding no-forgetting constraints arise frequently. In fact, for any m < n,
at least n−m constraints always bind by Lemma 2.2. Here, we provide a solution
for the problem with arbitrary n and m characterizing when and which constraints
bind at any given time. The following proposition takes these constraints into
account and derives the following Karush-Kuhn-Tucker (KKT) conditions for the
solution.

18He also provides a solution for a special case with n = 2 and m = 1 when these constraints do
bind but does not extend that solution to the general problem with arbitrary m and n.
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Proposition 2.1. Suppose Σ0|−1 is strictly positive definite, and AA′ + QQ′ is of full
rank. Then, all the future priors {Σt+1|t}t≥0 are invertible under the optimal solution to
the LQG Problem in Equation (2.4), which is characterized by

ωΣ−1
t|t −Λt = Ω + βA′(ωΣ−1

t+1|t −Λt+1)A, ∀t ≥ 0, (2.8)

Λt(Σt|t−1 − Σt|t) = 0, Λt � 0, Σt|t−1 − Σt|t � 0, ∀t ≥ 0, (2.9)

Σt+1|t = AΣt|tA
′ + QQ′, ∀t ≥ 0, (2.10)

lim
T→∞

βT+1tr(ΛT+1ΣT+1|T) = 0 (2.11)

where Λt and Σt|t−1 − Σt|t are simultaneously diagonalizable.

Proof. See Appendix A.5.

Here, Equation (2.8) is the first-order condition for the problem with eigenval-
ues of Λt being the Lagrange multipliers on the no-forgetting constraints. Since we
allow for binding no-forgetting constraints, Λt is possibly non-zero and character-
ized by the complementarity slackness condition in Equation (2.9). Furthermore,
Equation (2.10) is the law of motion for the agent’s prior, and Equation (2.11) is the
transversality condition on information acquisition of the agent.

With these equations at hand, one can obtain the solution to the problem. Mov-
ing forward, we reformulate these conditions to derive a forward-looking Euler
equation that captures the contemporaneous and continuation value of information
and a policy function that, given the value of information, maps the state variable
of the agent at time t (prior uncertainty denote by Σt|t−1) to a choice variable (pos-
terior uncertainty denoted by Σt|t). To present these two equations as concisely as
possible, we introduce the following two matrix operators:

Definition 2.1. For a symmetric matrix X with spectral decomposition X = UDU′, we
define

Max(X, ω) ≡ U max(D, ω)U′, Min(X, ω) ≡ U min(D, ω)U′.

where max(D, ω) and min(D, ω) operate on every element on the diagonal.

In short, Max(X, ω) preserves the X’s eigenvectors but replaces its eigenvalues
with ω if they are smaller than ω. Similarly, Min(X, ω) preserves X’s eigenvectors
but replaces its eigenvalues with ω if they are larger than ω.
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Theorem 2.1. Let Ωt be the forward-looking component of the FOC in Proposition 2.1.
Then, Ωt is characterized by the following Euler equation:

Ωt = Ω + βA′Σ−
1
2

t+1|t Min
(

Σ
1
2
t+1|tΩt+1Σ

1
2
t+1|t, ω

)
Σ
− 1

2
t+1|tA (2.12)

Furthermore, given Ωt, the optimal posterior covariance matrix, Σt|t, is characterized by
the following policy function:

Σt|t = ωΣ
1
2
t|t−1

[
Max

(
Σ

1
2
t|t−1ΩtΣ

1
2
t|t−1, ω

)]−1

Σ
1
2
t|t−1 (2.13)

Proof. See Appendix A.6.

Here, Ωt is a benefit matrix that captures how information interacts with the
agent’s payoff. Accordingly, we refer to Equation (2.12) as the information Euler
equation that captures how the agent encodes these benefits under her optimal in-
formation acquisition strategy. When β = 0, this benefit is simply given by Ωt = Ω

which captures how ~xt affects the agent’s instantaneous payoff.19 What is new
here is that with β > 0, Ωt has an extra term that captures the continuation value
of knowledge about ~xt, which depends on β itself, the persistence of the shocks A,
and the information acquisition policy of the agent in the next period.

Intuitively, information has marginal value only if (1) it generates higher payoff
(captures by Ωt), and (2) the agent is sufficiently uninformed (captured by Σt|t−1).
Based on this intuition, the policy function in Equation (2.13) shows that in acquir-
ing information, the agent considers the orthogonalized dimensions of the matrix
Σ1/2

t|t−1ΩtΣ
1/2
t|t−1. At the extensive margin, the agent ignores dimensions whose eigen-

values (marginal values of information) are less than ω—i.e., the agent is at a cor-
ner solution and her posterior uncertainty is the same as her prior uncertainty. On
the intensive margin, the agent acquires information in dimensions whose eigen-
values are larger than ω, and her posterior uncertainty is lower than her prior
uncertainty.

Together with the law of motion for the agent’s prior in Equation (2.10) as well
as the transversality condition in Equation (2.11), the information Euler equation

19The case of β = 0 collapses these results to the static cases studied in the literature prior to us
(Fulton, 2018; Kőszegi and Matějka, 2020; Miao, Wu, and Young, 2020).
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and the policy function characterize the solution to the dynamic rational inatten-
tion problem.

Optimal Signals. While we have characterized the covariance matrix of the op-
timal posterior as a function of the agent’s prior, the underlying assumption in
Proposition 2.1 is that this posterior is generated by a sequence of signals about ~xt.
It is important to note that both the number of these signals at a given time t, as
well as how they load on different elements of the vector ~xt are endogenous. Our
next result characterizes these signals in a basis where the noise in these signals
are independent.20

Theorem 2.2. ∀t ≥ 0, let {di,t}1≤i≤n be the set of eigenvalues of the matrix Σ
1
2
t|t−1ΩtΣ

1
2
t|t−1

indexed in descending order. Moreover, let {ui,t}1≤i≤n be orthonormal eigenvectors that
correspond to those eigenvalues. Then, the agent’s posterior belief at t is spanned by the
following 0 ≤ kt ≤ m signals

si,t = y′i,t~xt + zi,t, 1 ≤ i ≤ kt,

where kt is the number of the eigenvalues that are at least as large as ω, and for i ≤ kt,

yi,t ≡ Σ
− 1

2
t|t−1ui,t is the loading of signal i on ~xt, and zi,t ∼ N (0, ω

di,t−ω ) is the agent’s
rational inattention error in signal i that is orthogonal to ~xt and all the other rational
inattention errors.

Proof. See Appendix A.7.

In theory, an agent that learns about an n dimensional vector of shocks needs at
most n signals, one for each dimension. However, in an environment with costly
information acquisition, not all dimensions might hold enough value for informa-
tion acquisition. To this end, we need a closer look at what determines these val-
ues. Information in a particular dimension is more valuable if (1) it provides more
benefit to the agent (encoded in matrix Ωt) and (2) if the agent is more uncertain
about that dimension (encoded in matrix Σt|t−1). The eigenvalues and eigenvectors
of the matrix Σ1/2

t|t−1ΩtΣ
1/2
t|t−1 capture these two forces. The eigenvalues are marginal

values of information in a given dimension. Moreover, the corresponding eigen-
vectors are the dimensions along which the largest amount of information can be
acquired for a given precision of a signal.

20Signals that generate a Gaussian posterior are not unique and, for instance, are equivalent up
to linear transformations.
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With this intuition in mind, Theorem 2.2 simply states that the agent’s optimal
posterior at a given time is generated by kt signals, where kt is the number of di-
mensions for which the marginal value of information, defined as the eigenvalues
of the matrix was Σ1/2

t|t−1ΩtΣ
1/2
t|t−1, is larger than its marginal cost, ω. Furthermore,

for the dimensions that do have a higher marginal value than ω, the loading of the
corresponding signal on ~xt is determined by the eigenvector associated with that
marginal value.

Finally, the endogenous loadings of signals on the shock vector ~xt captures the
incentives of the agent in garbling information in different dimensions to reduce
the cost of information acquisition. These incentives provide a microfoundation
for information spillovers across different actions (Sims, 2010), where information
about an action can affect others, either through a subjective correlated posterior
(Σt|t−1) or through complementarities or substitutabilities in actions captured by
Ωt.21

Evolution of Optimal Beliefs and Actions. While Theorems 2.1 and 2.2 provide
a representation for the optimal posteriors and signals, we are often interested in
the evolution of the agents’ beliefs and actions. Our next theorem characterizes
how beliefs and actions evolve over time.

Proposition 2.2. Let {(yi,t, di,t, zi,t)1≤i≤kt}t≥0 be defined as in Theorem 2.2, and let x̂t ≡
E[~xt|at] be the mean of agent’s posterior about ~xt at time t. Then, optimal actions is
~at = H′ x̂t, where x̂t evolve according to:

x̂t = Ax̂t−1︸ ︷︷ ︸
prior belief

+
kt

∑
i=1

Kalman gain vector of i︷ ︸︸ ︷
(1− ω

di,t
)︸ ︷︷ ︸

signal-to-noise
ratio of i

Σt|t−1yi,t ×
[
y′i,t(~xt −Ax̂t−1) + zi,t

]︸ ︷︷ ︸
surprise in signal i

Proof. See Appendix A.8.
21For instance, Kamdar (2018) documents that households have countercyclical inflation

expectations—an observation that contradicts the negative comovement of inflation and unem-
ployment in the data but is consistent with optimal information acquisition of households under
substitutability of leisure and consumption. Similarly, Kőszegi and Matějka (2020) show that com-
plementarities or substitutabilities in actions give rise to mental accounting in consumption be-
havior based on optimal information acquisition. While these two papers use static information
acquisition, our framework allows for dynamic spillovers through information acquisition.
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2.3 Solution Algorithm, Computational Accuracy and Efficiency

Given an initial prior Σ−1|0, the solution to the LQG dynamic rational inattention
problem in Equation (2.4) is characterized by a sequence of matrices {Σt|t, Σt+1|t, Ωt}t≥0

that satisfy the policy function and Euler equation in Theorem 2.1, the law of mo-
tion for the priors in Equation (2.5) as well as the transversality condition in Equa-
tion (2.11).

Our main methodological contribution here is that, based on our theoretical
findings in Theorems 2.1 and 2.2, we provide a new algorithm for characterizing
the sequence of these matrices. We also provide a software package for solving
LQG dynamic rational inattention problems based on this algorithm that is avail-
able as the DRIPs.jl package to the Julia programming language which is available
at https://github.com/afrouzi/DRIPs.jl. A detailed software documentation
for this package is also available at https://afrouzi.com/DRIPs.jl/dev.22

Table 1: Summary of Computing Times

Dimension DRIPs.jl Alternative Algorithms

Computing time for: n2 Time (s) Time (s) Source

Sims (2010)

Benchmark parameterization:
steady state 22 1.6× 10−4

transition dynamics 22 6.3× 10−4 1.08× 103 Miao, Wu, and Young (2020)
“Golden rule” approximation 22 1.6× 10−4 3.00× 100 Miao, Wu, and Young (2020)

Maćkowiak and Wiederholt (2009a)

Benchmark parameterization:
problem without feedback 202 1.83× 10−1 4.58× 101 original (published)
problem with feedback 202 3.97× 100 1.72× 102 replication files

Maćkowiak, Matějka, and Wiederholt (2018)

Price setting with rational inattention
without feedback 22 0.45× 10−3

with feedback 402 4.42× 10−1

Business cycle model with news shocks 402 9.40× 10−1

Notes: This table shows the summary of computing times for our replication of Sims (2010), Maćkowiak and Wiederholt
(2009a) and Maćkowiak, Matějka, and Wiederholt (2018) (discussed in Section 2.4, Appendix B.1 and Appendix B.2 respec-
tively). Tolerance level for convergence is 10−4 for the solution to rational inattention problem in all cases. Statistics from Miao,
Wu, and Young (2020) are taken directly from their manuscript. All other calculations were performed on a 2019 MacBook
Pro with 16GB of memory, a 2.3 GHz processor and 8 cores (but no multi-core functionality was used).

We have also used our software package to replicate results from three canon-
22In addition to the Julia package, a Matlab code repository for the algorithm is also available at

https://github.com/choongryulyang/DRIPs.m.
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ical papers (Maćkowiak and Wiederholt, 2009a; Sims, 2010; Maćkowiak, Matějka,
and Wiederholt, 2018) that use different methods for solving DRIPs and assess the
accuracy and the efficiency of our algorithm. Our algorithm produces identical
results to each of these papers but is considerably faster than alternative available
solution methods. Table 1 reports a summary of computing times for these replica-
tions. Moreover, all of our replication materials for these three papers are available
along with our software documentations at the link above and are also accessible
as executable Jupyter notebooks.

Our algorithm solves DRIPs in two stages. First, we solve for the steady-state of
a problem that is independent of any initial prior belief. Second, we use a shooting
algorithm on the information Euler equation (Equation 2.12) and the law of motion
for the prior (Equation 2.5) to characterize the transition dynamics of the optimal
information structure from an initial prior belief. In the remainder of this section,
we describe these two stages in more detail.

Solving for the Steady-State Information Structure. The steady-state informa-
tion structure is a triple (Σ̄−1, Σ̄, Ω̄) that satisfy the stationary versions of the policy
function, the law of motion for the prior and the Euler equation (Equations 2.13,
2.5 and 2.12 respectively). We solve for this triple using the following iterative al-
gorithm, starting with initial guesses for Σ̄−1 = Σ̄−1,(0) and Ω̄ = Ω̄(0).23 Then, in
any iteration j ≥ 1:

1. Obtain the eigenvalue and eigenvector decomposition of

X(j) ≡ Σ̄
1
2
−1,(j−1)Ω̄(j−1)Σ̄

1
2
−1,(j−1)

2. Use Theorem 2.1 to update guesses:

Ω̄(j) = Ω + βA′Σ̄−
1
2
−1,(j−1) Min

(
X(j), ω

)
Σ̄
− 1

2
−1,(j−1)A

Σ̄−1,(j) = ωAΣ̄
1
2
−1,(j−1)

[
Max

(
X(j), ω

)]−1
Σ̄

1
2
−1,(j−1)A

′ + QQ′

3. Repeat with j+=1 if ‖Σ−1,(j) − Σ−1,(j−1)‖ > tolerance.
23By default, our solution algorithm sets Ω̄(0) = HH′ and Σ̄(0) = AA′ + QQ′. However, the user

can specify alternative guesses, especially in iterative estimation exercises where a solution from a
previous step might be closer to the solution.
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Solving for the Transition Dynamics. The objective here is to solve for the tran-
sition path of the triple (Σt|t, Σt+1|t, Ωt) to the steady-state solution from the previ-
ous step, starting from an initial prior covariance matrix, Σ−1|0. We use a shooting
algorithm to solve for this transition path. In particular, we start with the guess
that after some large T, the sequence has converged to the steady-state solution.
Therefore, conditional on this guess, we only need to solve for a finite sequence

(Σt|t, Σt+1|t, Ωt)0≤t≤T, Σ−1|0 given.

We find this sequence using the following iterative procedure, starting from the
initial guess that for all t ∈ {0, 1, . . . , T}, Ωt,(0) = Ω̄:

1. At iteration j ≥ 1, given the sequence {Ωt,(j−1)}0≤t≤T and Σ−1|0,(j) ≡ Σ−1|0,
iterate forward in time using the policy function from Theorem 2.1 and the
law of motion for priors: for t = 0 ↑ T,

Σt+1|t,(j) ≡ ωAΣ
1
2
t|t−1,(j)

[
Max

(
Σ

1
2
t|t−1,(j)Ωt,(j−1)Σ

1
2
t|t−1,(j), ω

)]−1

Σ
1
2
t|t−1,(j)A

′ + QQ′

2. At iteration j ≥ 1, given the sequence {Σt+1|t,(j)}0≤t≤T ∪ {ΣT+1|T,(j) ≡ Σ̄−1}
and ΩT+1,(j) ≡ Ω̄, iterate backward in time using the Euler equation from
Theorem 2.1: for t = T ↓ 0,

Ωt,(j) ≡ Ω + βA′Σ−
1
2

t+1|t,(j) Min
(

Σ
1
2
t+1|t,(j)Ωt+1,(j)Σ

1
2
t+1|t,(j), ω

)
Σ
− 1

2
t+1|t,(j)A

3. Repeat Steps 2 to 4 with j+=1 if ‖(Σt+1|t,(j))
T
t=0 − (Σt+1|t,(j−1))

T
t=0‖ > tolerance.

4. Finally, check if T was large enough for convergence to the steady-state. If
not, repeat starting from Step 1 with larger T.

2.4 Example: Transition Dynamics in Sims (2010)

In his Handbook of Monetary Economics chapter, Sims (2010) provides an exam-
ple with two shocks (n = 2) and one action (m = 1). He then characterizes the
steady-state posterior covariance matrix under the solution to the rational inatten-
tion problem. Here we study an extension of that problem to investigate the tran-
sition dynamics of attention from an initial prior.

Background. The example in Sims (2010) is of a monopolist who chooses its price
to match the sum of two AR(1) processes, where one is more persistent than the
other. The contemporaneous profit of the monopolist is decreasing in the distance
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of its price from this linear sum and is given by v(at,~xt) = −(at −H′~xt)2 where at

is the agent’s action (here the monopolist’s price), and ~xt = A~xt−1 + Q~ut is an ex-
ogenous Gaussian process with two AR(1) shocks. Assuming the agent discounts
future payoffs at an exponential rate β, Equation (10) in Sims (2010) derives the
equivalent LQG rational inattention problem with the following parameterization:

β = 0.9, ω = 1, H =

[
1

1

]
, A =

[
0.95 0

0 0.4

]
, Q =

[ √
0.0975 0

0
√

0.86

]

Here, we have renamed the parameters so that the problem directly maps to our
formulation in Equation (2.4). Otherwise, the problem is the same as in Sims (2010).

Steady-state Solution. The steady-state information structure has appeared prior
to our paper in Sims (2010) and Miao, Wu, and Young (2020). Our objective here
is to compare the solution based on our algorithm with these benchmarks. Our
solution method yields the following posterior and prior covariance matrices for
the steady-state information structure up to a tolerance of 10−4:

Σ̄ ≡ lim
t→∞

Σt|t =

[
0.3592 −0.1770

−0.1770 0.7942

]
, Σ̄−1 ≡ lim

t→∞
Σt+1|t =

[
0.4217 −0.0673

−0.0673 0.9871

]
(2.16)

This solution is close to the posterior covariance reported in Sims (2010).24

Moreover, it is almost identical to the one reported in Miao, Wu, and Young (2020)
who use conventional value function iteration methods to calculate this solution.25

Transition Dynamics of the Optimal Information Structure. This section re-
ports results for the transition path of the optimal information structure from a
highly certain prior. In particular, we assume that in the steady-state of the infor-
mation acquisition problem, the agent’s prior is affected by a one time “knowledge
shock” that reduces their prior uncertainty to 1 percent of its long-run value. We
refer to period -1 as the period in which this knowledge shock happens. Thus, at
time 0, the agent’s prior about ~x0 conditional their initial information set S−1 is

~x0|S−1 ∼ N (0, Σ0|−1), Σ0|−1 = 0.01× Σ̄−1

24Sims (2010) reports the following posterior covariance matrix: Σ̄ =

[
0.373 −0.174
−0.174 0.774

]
.

25In Miao, Wu, and Young (2020), the posterior covariance matrix, Σ̄, is
[

0.3590 −0.1769
−0.1769 0.7945

]
.
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where Σ̄−1 is the prior covariance matrix in the steady-state from Equation (2.16).
By setting the mean of this prior to 0, we are implicitly assuming that both compo-
nents of the monopolist’s cost were at their steady-state values when the knowl-
edge shock happened. We use the shooting algorithm outlined in Section 2.3 to
solve for this transition path. It takes our code 630 microseconds to obtain the
solution (See Table 1 for details).

We start by characterizing the number of signals that the agent observes over
time. It follows from Theorem 2.2 that this number is equal to the number of the

eigenvalues of the matrix Σ
1
2
t|t−1ΩtΣ

1
2
t|t−1 that are at least as large as ω. Since the

dimension of the state in this problem is 2, there are two eigenvalues, representing
the two dimensions to which the agent can pay attention.
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Low eigenvalue (d2)

Marginal cost (ω)
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0.3

Signal-to-noise Ratio

Figure 1: Transition Dynamics of Attention

Notes: The Figure depicts the transition dynamics of attention in our extension of the example in
Sims (2010). The left panel shows the marginal values of information in orthogonal dimensions,
and the right panel shows the transition path of the Kalman gain for the optimal signal. Transi-
tion dynamics are from an initial prior Σ0|−1 = 0.01× Σ−1, where Σ−1 is the steady state prior
covariance matrix reported in Equation (2.16). All values are constant in the steady-state.

The left panel of Figure 1 plots these eigenvalues over time. At time 0, none
of these eigenvalues are larger than ω, which implies that the agent acquires no
information right after the knowledge shock. Starting at time 1, one of the eigen-
values is larger than 1, which implies that the agent receives one signal starting
at t = 1. It takes approximately ten periods for these eigenvalues to reach their
steady-state, at which point only one of them remains above ω. Therefore, even in
the steady-state, the agent receives only one signal.26

26This is consistent with Lemma 2.2 which specifies that the number of signals should be
bounded above by the agent’s number of actions. Since the number of actions in this example
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Moreover, in contrast to the steady-state of the information structure, the signal-
to-noise ratio of the agent’s signal varies over time on the transition path. Accord-
ing to Proposition 2.2, this ratio is given by 1− ω

d1,t
. The right panel of Figure 1 plots

this quantity after the knowledge shock happens at time −1. At time 0, the signal-
to-noise ratio is zero since the agent is not receiving any signals. However, starting
at t = 1, this quantity is positive and, in approximately ten periods, converges
to its steady-state from below. Accordingly, the knowledge shock at t = −1 has
dynamic consequences by crowding out information acquisition in later periods.

Impulse Response Functions. How important is the transition dynamics of at-
tention? To answer this question, we compare the impulse responses of the mo-
nopolist’s price to both shocks between the steady-state and the transition path of
the optimal information structure, and show they are significantly different.

0 5 10 15
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Shock
Price (with transition dynamics)
Price (without transition dynamics)
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Time

0.0

0.1

0.2

0.3

IRFs to Persistent Shock (ρ = 0.95)

Figure 2: Impulse Response Functions in Steady State versus on the Transition Path

Notes: This figure the impulse response functions of the price with both the steady-state infor-
mation structure and the information structure on the transition path in our extension of the
example from Sims (2010). Transition dynamics are from an initial prior Σ0|−1 = 0.01× Σ−1,
where Σ−1 is the steady-state prior covariance matrix reported in Equation (2.16). The agent
consistently acquires less information relative to the steady-state on the transition path, and the
impulse responses are more muted. In particular, price does not respond to shocks at all at time
one as the agent receives no signals in that period.

Figure 2 plots these impulse response functions for a one standard deviation
innovation to both components of the monopolist’s cost, under both information
structures. The main observation is that the impulse responses under the transi-
tion dynamics of the information structure are significantly muted. Being highly
certain after the knowledge shock at t = −1, the monopolist temporarily substi-
tutes away from information acquisition in later periods and pays little attention

is 1, the number of signals received by the agent should always be less than or equal to 1.
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to costs on the transition path. These muted responses mirror the smaller signal-
to-noise ratio of the monopolist’s signal on the transition path, and show that the
monopolist is significantly less responsive to shocks under the transition path of
the information structure compared to the steady-state one.

2.5 Relation to Alternative Solution Methods

The literature has focused on two different versions of the DRIPs in LQG settings
in the past. The problem that we study, as posed in Lemma 2.4, was introduced in
Sims (2010) who derived optimality conditions for the general problem when the
solution is interior.27 In related work, Miao, Wu, and Young (2020) also propose a
solution method for transition dynamics of LQG control problems based on value
function iteration, but they do not derive any first-order optimality conditions.
Our contribution relative to these papers is that we fully characterize the optimal-
ity conditions for transition dynamics, taking corner solutions into account. These
corner solutions are significant in economics because they micro-found why an
agent might completely ignore specific shocks (for instance, in our application in
Section 3, they lead to an occasionally flat Phillips curve). Our characterization of
these optimality conditions is essential related to our second contribution: directly
iterating over our information Euler equation, we propose a novel solution method,
which is significantly faster than value function iteration.

Another approach in formulating DRIPs in LQG settings abstracts away from
transition dynamics and focuses on the steady-state information structure (Sims
2003; Maćkowiak, Matějka, and Wiederholt 2018; Fulton 2018 and the “Golden
rule approximation” in Miao, Wu, and Young 2020):

max
Σ�0
−tr(ΣΩ)−ω ln

( |Σ−1|
|Σ|

)
s.t. Σ−1 = AΣA′ + QQ′, Σ−1 � Σ. (2.17)

This problem does not capture transition dynamics, and its solution does not de-
pend on β (the discount factor), implicitly assuming that the agent is perfectly
patient (in Appendix A.9 we show that the solution to this problem collapses to

27This proved to be a restrictive assumption. For instance, Maćkowiak, Matějka, and Wiederholt
(2018) showed that when the agent has one action, all but one of the no-forgetting constraints
always bind (i.e., a firm that only chooses one price would never pay attention to anything but
their marginal cost). More generally, per Lemma 2.2, as long as the number of actions is fewer than
the number of shocks (m < n), the solution is not interior.
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the steady-state information structure of the dynamic problem when β = 1). By as-
suming the discount factor is 1, this method also implies a different steady-state in-
formation structure than the case when β < 1: (1) perfectly patient agents acquire
more information in general because they do not discount the dynamic benefits
of information, and (2) keeping the amount of information fixed, perfectly patient
agents acquire more information about dimensions that are more persistent or, in
general, have higher continuation value. Although this problem ignores transi-
tion dynamics and discounting, its appeal to the literature has been its simplicity,
as pointed out by Miao, Wu, and Young (2020), who show that it is significantly
faster to solve. However, our proposed solution method does not discriminate
between the two problems in terms of solution times and is equally fast in charac-
terizing the steady-state solutions to both problems (see Table 1 for a summary of
computing times).

3 An Attention-Based Theory of the Phillips Curve

This section introduces an analytical general equilibrium model with rationally
inattentive firms and provides an attention-based theory of the Phillips curve.

3.1 Environment

Households. Consider a fully attentive representative household who supplies
labor Lt in a competitive labor market at the nominal wage Wt, trades nominal
bonds with the net interest rate of it, and forms demand over a continuum of va-
rieties indexed by i ∈ [0, 1]. Formally, the representative household’s problem is

max
{(Ci,t)i∈[0,1],Bt,Lt}∞

t=0

E
f
0

[
∞

∑
t=0

βt(log(Ct)− Lt)

]
(3.1)

s.t.
∫ 1

0
Pi,tCi,tdi + Bt ≤WtLt + Rt−1Bt−1 + Πt + Tt, Ct =

[∫ 1

0
C

θ−1
θ

i,t di
] θ

θ−1

where E
f
t [.] is the expectation operator of a fully informed household at time t,

Ci,t is the demand for variety i given its price Pi,t, Bt is the demand for nominal
bonds at t that yield a nominal return of Rt at t + 1, Πt is the aggregated profits
of firms, and Tt is the net lump-sum transfers. Finally, Ct is the final consumption
good aggregated with a constant elasticity of substitution θ > 1 across varieties.
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For ease of notation, let Pt ≡
[∫ 1

0 P1−θ
i,t

] 1
1−θ denote the aggregate price index and

Qt ≡ PtCt be the nominal aggregate demand in this economy. The solution to the
household’s problem is then summarized by:

Ci,t = Ct

(
Pi,t

Pt

)−θ

, ∀i ∈ [0, 1], ∀t ≥ 0, (3.2)

1 = βRtE
f
t

[
Qt

Qt+1

]
, ∀t ≥ 0, (3.3)

Wt = Qt, ∀t ≥ 0. (3.4)

Here, Equation (3.2) is the household’s demand for variety i at time t, Equation (3.3)
is the consumption Euler equation, and Equation (3.4) specifies the equilibrium re-
lationship between the nominal wage and the nominal aggregate demand.28

Monetary Policy. For analytical tractability, we assume that the monetary author-
ity targets the growth of the nominal aggregate demand, which can be interpreted
as targeting inflation and output growth similarly:

log(Rt) = log(R̄) + φ∆qt − σuut, ut ∼ N (0, 1)

where R̄ ≡ β−1 is the steady-state nominal rate at zero trend inflation, qt ≡
log(Qt) is the log of the nominal aggregate demand, and ut is an exogenous shock
to monetary policy that affects the nominal rates with a standard deviation of σu.
We consider a more standard Taylor rule in our quantitative model in Section 4.

Lemma 3.1. Suppose φ > 1. Then, in the log-linearized version of this economy, the nomi-
nal aggregate demand is uniquely determined by the history of monetary policy shocks, and
is characterized by the random walk process, qt = qt−1 +

σu
φ ut.

Proof. See Appendix C.1.

Assuming that the monetary authority directly controls the nominal aggregate
demand is a popular framework in the literature to study the effects of monetary
policy on pricing.29 We derive this as an equilibrium outcome in Lemma 3.1 in or-

28This is the household’s labor supply condition given that the Frisch elasticity of labor supply
is assumed to be infinite. This is a common assumption in monetary models (Golosov and Lucas,
2007). We relax this assumption in our quantitative model in Section 4.

29See, for instance, Mankiw and Reis (2002), Woodford (2003), Golosov and Lucas (2007),
Maćkowiak and Wiederholt (2009a) and Nakamura and Steinsson (2010). This is also analogous
to formulating monetary policy in terms of an exogenous rule for money supply as in, for instance,
Caplin and Spulber (1987) or Gertler and Leahy (2008).
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der to relate the variance of the innovations to the nominal demand to the strength
with which the monetary authority targets its growth: a larger φ stabilizes the
nominal demand while a larger σu increases its variance.

Firms. Every variety i ∈ [0, 1] is produced by a price-setting firm. Firm i hires
labor Li,t from a competitive labor market at a subsidized wage Wt = (1− θ−1)Qt

where the subsidy θ−1 is paid per unit of worker to eliminate steady-state distor-
tions introduced by monopolistic competition (Galí, 2015, p. 73). Firms produce
their product with a linear technology in labor, Yi,t = Li,t. Therefore, for a given
history {Pt, Qt}t≥0 and a set of prices {Pi,t}t≥0, the net present value of the firm’s
profits, discounted by the household’s marginal utility of consumption is

∞

∑
t=0

βt 1
PtCt

(Pi,t − (1− θ−1)Qt)CtPθ
t P−θ

i,t =

− θ − 1
2

∞

∑
t=0

βt(pi,t − qt)
2 +O(‖(pi,t, qt)t≥0‖3) + terms independent of {pi,t}t≥0

where the second line is a second-order approximation with small letters denot-
ing the logs of corresponding variables.30 This expression provides a quadratic
approximation of a monopolistic firm’s losses from not matching its marginal cost
(qt in this setting.) Moreover, the approximation shows that the magnitude of these
losses is proportional to how elastic the firm’s demand is (θ − 1). Firms with more
elastic demand lose more profits by charging a suboptimal price.

We assume prices are perfectly flexible, but firms are rationally inattentive and
set their prices based on imperfect information about shocks in the economy. The
rational inattention problem of firm i is then given by

V(p−1
i ) = max

{pi,t∈S t}t≥0

∞

∑
t=0

βtE[− θ − 1
2

(pi,t − qt)
2 −ωI(pt

i , qt|pt−1
i )|p−1

i ]

where pt
i ≡ (pi,τ)τ≤t denotes the history of firm’s prices up to time t. It is impor-

tant to note that {pi,t}t≥0 is a stochastic process that is a sufficient statistic for the
underlying signals that the firm receives—a result that follows from Lemma 2.2.

Assuming that the distribution of q0 conditional on p−1
i is a Gaussian process,

and noting that {qt}t≥0 is itself a Gauss-Markov process, this problem satisfies the
assumptions of Lemma 2.4. Formally, let σ2

i,t|t−1 ≡ var(qt|pt−1
i ), σ2

i,t|t ≡ var(qt|pt
i)

denote the prior and posterior variances of firm i’s belief about qt at time t. Then,

30For a detailed derivation of this second-order approximation see, for instance, Maćkowiak and
Wiederholt (2009a).
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the corresponding LQG problem to the one in Lemma 2.4 is

V(σ2
i,0|−1) = max

{σi,t|t,σi,t+1|t}∞
t=0

∞

∑
t=0

βt

[
−(θ − 1)σ2

i,t|t −ω ln

(
σ2

i,t|t−1

σ2
i,t|t

)]

s.t. σ2
i,t+1|t = σ2

i,t|t +
σ2

u
φ2 (3.5)

0 ≤ σi,t|t ≤ σi,t|t−1. (3.6)

Here Equation (3.5) is the law of motion for the prior and Equation (3.6) is the
no-forgetting constraint that correspond to this problem.

3.2 Characterization of Solution

The solution to this problem follows from Proposition 2.1 and is characterized fur-
ther in detail by the following proposition.

Proposition 3.1. Firms pay attention to monetary policy shocks only if their prior uncer-
tainty is above a reservation level, σ2. Formally,

1. the policy function of a firm for choosing their posterior uncertainty is

σ2
i,t|t = min{σ2, σ2

i,t|t−1}, ∀t ≥ 0

where σ2 is the positive root of the following quadratic equation:

σ4 +

[
σ2

u
φ2 − (1− β)

ω

θ − 1

]
σ2 − ω

θ − 1
σ2

u
φ2 = 0

2. the firm’s price evolves according to pi,t = pi,t−1 + κi,t(qt − pi,t−1 + ei,t) where
κi,t ≡ max{0, 1 − σ2

σ2
i,t|t−1
} is the Kalman-gain of the firm’s signal under optimal

information structure and ei,t is the firm’s rational inattention error.

Proof. See Appendix C.2.

The first part of Proposition 3.1 shows that firms pay attention to nominal de-
mand only when they are sufficiently uncertain about it. In particular, for small
enough levels of prior uncertainty—where the marginal benefit of acquiring a bit
of information falls below its marginal cost—the no-forgetting constraint binds,
and the firm receives no information. However, if the firm’s prior uncertainty
is higher than a reservation level, it acquires enough information to restore and
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maintain that uncertainty level. The second part of Proposition 3.1 shows that in
the region where the firm does not pay attention to the nominal demand, its price
is entirely insensitive to monetary shocks as the implied Kalman-gain is zero.

Nonetheless, as the nominal demand follows a random walk, it cannot be that
the firm stays in the no-attention region forever. The variance of a random walk
grows linearly with time, and it would only be below the reservation uncertainty
for a finite amount of time. Once the firm’s uncertainty reaches this level, the
problem enters its steady-state, and the Kalman-gain is

κi,t = κ ≡ σ2
u

φ2σ2 + σ2
u

. (3.7)

Comparative Statics. Here, we study how the reservation uncertainty σ2, and the
steady-state Kalman-gain κ, change with the model parameters.

Corollary 3.1. The reservation uncertainty of firms increases with ω and σu, and decreases
with φ, θ as well as β. Moreover, the steady-state Kalman-gain of firms increases with σu, θ

and β, and decreases with φ and ω.

Proof. See Appendix C.3.

While Corollary 3.1 holds for all values of the underlying parameters, a simple
first order approximation to the reservation uncertainty and steady-state Kalman-
gain can be derived when firms are perfectly patient (β → 1) and σ2

u is small rela-
tive to the cost of information ω:31

[σ2]β=1,σ2
u�ω ≈

σu

φ

√
ω

θ − 1
, [κ]β=1,σ2

u�ω ≈
σu

φ

√
θ − 1

ω
.

3.3 Aggregation

For aggregation, we make two assumptions: (1) firms all start from the same initial
condition, σ2

i,0|−1 = σ2
0|−1, ∀i ∈ [0, 1]—which is without loss of generality if all

firms start with the steady-state prior as their initial prior—and (2) firms’ rational
inattention errors are independently distributed.32

31This approximation becomes the exact solution to the analogous problem in continuous time
as the variance of the innovation is proportional to the length of time between two consecutive
decisions.

32This assumption follows as a result from assuming that the cost of attention is Shannon’s mu-
tual information (Denti, 2015; Afrouzi, 2020). With other classes of cost functions, however, non-
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Notation-wise, we let pt ≡ log(Pt) =
∫ 1

0 log(Pi,t)di denote the log of aggre-
gate price, πt = log(Pt)− log(Pt−1) denote the aggregate inflation rate and yt =

log(Qt) − log(Pt) be the log of aggregate output. The following proposition de-
rives the Phillips curve of this economy.

Proposition 3.2. Suppose all firms have the same initial condition, σ2
0|−1 ≥ 0. Then,

1. the Phillips curve of this economy is

πt = max{0,
σ2

t|t−1

σ2 − 1}yt

where σ2
t+1|t = min{σ2, σ2

t|t−1}+
σ2

u
φ2 for all t ≥ 0.

2. For any given T ≥ 0, if σ2
T|T−1 < σ2, then πt = 0 and yt = yt−1 +

σu
φ ut.

3. For any given T ≥ 0, if σ2
T−1|T ≥ σ2, then for all t ≥ T + 1,

πt = (1− κ)πt−1 +
κσu

φ
ut, yt = (1− κ)yt−1 +

(1− κ)σu

φ
ut

where κ ≡ σ2
u

φ2σ2+σ2
u

is the steady-state Kalman-gain of firms in Equation (3.7).

Proof. See Appendix C.4.

3.4 Implications for the Slope of the Phillips Curve

Proposition 3.2 shows that this economy has a Phillips curve with a time-varying
slope, which is flat if and when the no-forgetting constraint binds. When firms’
uncertainty is below the reservation uncertainty, they pay no attention to changes
in their input costs, and inflation does not respond to monetary policy shocks.
However, when the no-forgetting constraint binds, firms’ uncertainty about their
cost grows linearly with time and eventually reaches its reservation level, at which
point firms begin to pay attention to their costs again at a constant rate that is
determined by the steady-state information structure. This section analyzes this
steady-state and then considers the dynamic consequences of unanticipated dis-
turbances (MIT shocks) to the model’s parameters.

fundamental volatility can be optimal—see Hébert and La’O (2020) for characterization of these
cost functions.
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3.4.1 The Long-run Slope of the Phillips Curve

It follows from Proposition 3.2 that once the rational inattention problem settles in
its steady-state, the Phillips curve is given by πt =

κ
1−κ yt where κ is the steady-state

Kalman-gain.33 Moreover, the last part of Proposition 3.2 also shows that in this
steady-state, both output and inflation follow AR(1) processes whose persistence
are given by 1− κ.

Thus, in the long-run, κ determines the Phillips curve slope and the magnitude
and the persistence of the real effects of monetary policy shocks in this economy.
A lower value of κ leads to a flatter Phillips curve, more persistent inflation and
output processes, and higher monetary non-neutrality. Firms with a lower κ are
more inattentive and acquire information at a slower pace. It takes longer for such
firms to learn about changes in their input costs and respond to them. Meanwhile,
firms’ output responds to compensate for the partial pass-through of input costs
to prices. Hence, more inattention leads to a larger and longer output response.

While comparative statics of κ with respect to the model parameters are derived
in Corollary 3.1, in this section, we are particularly interested in how the rule of
monetary policy affects the Phillips curve slope and consequently the transmission
of monetary policy to output and inflation.

3.4.2 The Aftermath of an Unexpectedly More Hawkish Monetary Policy

According to Corollary 3.1, κ increases with σu
φ . We interpret this ratio as a measure

for the hawkishness of monetary policy. A higher value for φ (or a smaller value for
σu
φ ) corresponds to a more stabilized process for nominal demand and constitutes

a more hawkish monetary policy.
What happens to the Phillips curve slope when the monetary policy is more

hawkish? To answer this question, we consider an economy where all firms are in
the steady-state of their information acquisition and study the transition dynamics
of their attention when monetary policy unexpectedly becomes more hawkish (σu

φ

decreases).

33In the steady-state of the rational inattention problem, σ2
t|t−1 = σ2 + σ2

u
φ2 . Plugging this into the

expression for the Phillips curve in Part (1) of Proposition 3.2, we get πt =
σ2

u
φ2σ2 yt. It is straightfor-

ward from Equation (3.7) to verify that κ
1−κ = σ2

u
φ2σ2 .
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Corollary 3.2. Suppose the economy is in the steady state of its attention problem, and
consider an unexpected decrease in σu

φ . Then, the economy immediately jumps to a new
steady state of the attention problem, in which (a) the Phillips curve is flatter and (b)
output and inflation responses are more persistent.

Proof. See Appendix C.5.

When monetary becomes unexpectedly more hawkish, nominal demand be-
comes more stable because innovations to its process are less volatile. This lower
volatility affects firms’ information acquisition in two different ways. First, it in-
creases the value of information because knowledge about nominal demand de-
preciates less over time when its process is more stable. Second, firms can afford a
lower level of steady-state uncertainty with the same information acquisition rate
(κ). These two forces manifest themselves in a desire for lower σ2 and a lower
steady-state information acquisition rate (lower κ).

Therefore, when the shock happens, firms acquire enough information to jump
to the new steady-state because their uncertainty from the previous steady-state
is above their new reservation uncertainty. After that, firms also acquire infor-
mation with a lower κ because their uncertainty grows more slowly. Thus, when
monetary policy becomes more hawkish, output and inflation are more persistent,
and the Phillips curve is flatter. These results are consistent with the flattening of
the Phillips curve since the onset of the Great Moderation.34 Our theory provides
a new perspective on this issue. Firms do not need to be attentive to monetary
policy in an environment where the policymakers follow a hawkish rule.

3.4.3 The Aftermath of an Unexpectedly More Dovish Monetary Policy

The model is non-symmetric in response to changes in the rule of monetary policy.
While the economy jumps to the new steady state of the attention problem after a
decreases in σu

φ , as shown in Corollary 3.2, the reverse is not true. An unexpected
increase in σu

φ has different short-run implications due to its effect on reservation
uncertainty.

34For evidence on the flattening of the Phillips curve, see e.g., Coibion and Gorodnichenko
(2015b); Blanchard (2016); Bullard (2018); Hooper, Mishkin, and Sufi (2020); Del Negro, Lenza,
Primiceri, and Tambalotti (2020).
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Corollary 3.3. Suppose the economy is in the steady state of its attention problem, and
consider an unexpected increase in σu

φ . Then,

1. the Phillips curve becomes temporarily flat until firms’ uncertainty increases to its
new reservation level.

2. once firms’ uncertainty reaches to its new reservation level, the economy enters its
new steady state in which (a) the Phillips curve is steeper and (b) output and inflation
responses are less persistent.

Proof. See Appendix C.6.

An increase in σu
φ makes the nominal demand more volatile and raises the reser-

vation uncertainty of firms. Hence, immediately after an unexpected increase in
σu
φ , firms find themselves with an uncertainty below their new reservation level.

The no-forgetting constraint begins to bind, and firms temporarily stop paying
attention to the shocks until their uncertainty grows to its new reservation level.
In the meantime, the Phillips curve is entirely flat; inflation is non-responsive to
shocks, and output responds one to one to changes in nominal demand.

Once firms’ uncertainty reaches its new reservation level, however, they start
paying attention at a higher rate to maintain this new level as the process is now
more volatile. Thus, while a more dovish policy leads to a temporarily flat Phillips
curve, it eventually leads to a steeper Phillips curve once firms adapt to their new
environment.

Figure 3 illustrates this point in a numerical example by plotting three different
sets of impulse response functions. The light gray lines with square markers show
the impulse responses under an initial steady-state information structure for firms.
The black lines show these impulse responses after the monetary policy become
unexpectedly more dovish in period zero. The main observation is the temporary
flatness of the Phillips curve that occurs in the first three periods. The shock to
dovishness of policy increases firms’ reservation uncertainty and crowds out their
information acquisition for three periods. After that, they begin to pay attention
to shocks again, and inflation sharply picks up to match nominal demand shock.
Finally, the dark gray lines with triangle markers show the impulse responses of
output and inflation in the long-run after firms’ information structure converges to
its new steady-state. In this new steady-state, both inflation and output are more
volatile, and their impact responses are larger because nominal demand is more
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Figure 3: IRFs to a 1 S.D. Expansionary Shock When Policy Becomes More Dovish

Notes: This figure plots a numerical example for impulse responses of inflation and output to a
one standard deviation expansionary shock to monetary policy. The lines with square markers
are under the steady-state information structure. The lines with circle markers are the impulse
responses after the policy becomes unexpectedly more dovish at time 0, with the transition dy-
namics of the information structure. The lines with triangle markers are the responses after the
information structure converges to new steady-state with the more dovish policy. See Proposi-
tion 3.2 and Corollary 3.3 for details.

volatile than the previous regime. However, these responses are less persistent as
firms acquire information with a higher κ.

These findings provide a new perspective on the recently perceived disconnect
between inflation and monetary policy. Our model offers an attention-based ra-
tionale for this disconnect, assuming that the Great Recession was followed by a
period of higher uncertainty and more lenient monetary policy.

3.5 Implications for Anchoring of Inflation Expectations

One of the most salient indicators to which monetary policymakers pay specific
attention, especially under inflation targeting regimes, is the anchoring of inflation
expectations. “Well-anchored” inflation expectations are considered a sign of mon-
etary policy success as they imply that the publics’ inflation expectations are not
very sensitive to temporary disturbances in economic variables. Moreover, infla-
tion expectations have become more anchored in the U.S. since the onset of the
Great Moderation: inflation expectations are more stable and have lower sensitiv-
ity to short-run fluctuations in the economic data (Bernanke, 2007; Mishkin, 2007).

The dependence of firms’ information acquisition incentives on the rule of mon-
etary policy in our framework provides a natural explanation for this trend. When
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monetary policy becomes more hawkish, firms pay less attention to shocks. Hence,
their beliefs become less sensitive to short-run fluctuations in economic data, and
their expectations become more anchored. The following proposition characterizes
the dynamics of firms’ inflation expectations in our simple model.

Proposition 3.3. Let π̂t ≡
∫ 1

0 Ei,t[πt]di denote the average expectation of firms about
aggregate inflation at time t. Then, in the steady-state of the attention problem,

π̂t = (1− κ)π̂t−1 +
κ2

(2− κ)(1− κ)
yt (3.8)

= 2(1− κ)π̂t−1 − (1− κ)2π̂t−2 +
κ2

2− κ

σu

φ
ut (3.9)

where κ is the steady-state Kalman-gain of firms in Equation (3.7).

Proof. See Appendix C.7.

Proposition 3.3 illustrates the degree of anchoring in firms’ inflation expecta-
tions from two perspectives. Equation (3.8) derives the relationship between infla-
tion expectations and output gap and shows that inflation expectations’ sensitivity
to output gap depends positively on κ. Equation (3.9) recasts this relationship in
terms of the exogenous monetary policy shocks, which are the sole drivers of short-
run fluctuations in this economy. The AR(2) nature of these expectations indicates
the inertia that expectations inherit from firms’ imperfect information—the coun-
terfactual being full-information rational expectations, in which case both inflation
and inflation expectations are i.i.d. over time.35

Moreover, both the degree of the inertia in firms’ inflation expectations, which
is determined by 1− κ, as well as the sensitivity of firms’ inflation expectations to
output gap or monetary policy shocks depend on the conduct of monetary policy
through κ. The following Corollary formalizes this relationship.36

Corollary 3.4. Firms’ inflation expectations are less sensitive to both output gap and
short-run monetary policy shocks (are more “anchored”) and are more persistent when
monetary policy is more hawkish—i.e., σu

φ is smaller.

Proof. See Appendix C.8.
35With full-information rational expectations,

∫ 1
0 Ei,t[πt]di = πt = ∆qt = σuφ−1ut.

36While in our setup higher anchoring of the expectation are generated by a combination of
higher order beliefs and lower information acquisition on the part of firms, it is also important
to note that higher persistence and anchoring can be generated in a context that takes the role of
strategic interactions into account (see, e.g., Angeletos and Huo, 2018).
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4 Quantitative Analysis

In this section, we extend our simple model in Section 3 to a more quantitatively
plausible setup. Our objective is to assess whether our mechanism can generate a
quantitatively relevant change in the Phillips curve slope in a calibrated model.

Our exercise in this section is in the spirit of the literature that interprets the
Great Moderation, at least partially, through the lens of a shift in monetary pol-
icy in the post-Volcker era (Clarida, Galí, and Gertler, 2000; Coibion and Gorod-
nichenko, 2011; Maćkowiak and Wiederholt, 2015). In particular, we are interested
in the following question: can the shift in the rule of monetary policy in the post-
Volcker era explain the decline in the Phillips curve slope, and if so, by how much?
To answer this question, we calibrate a quantitative version of our model with
TFP and monetary policy shocks to the U.S. inflation and output data in the post-
Volcker era and examine whether the model can generate a quantitatively relevant
shift in the slope of the Phillips curve.

4.1 Model

We extend our simple model from Section 3 in three dimensions. First, we intro-
duce two new parameters on the household side for the inverse of the intertem-
poral elasticity of substitution (σ) and the inverse of the Frisch elasticity of labor
supply (ψ). Second, we allow for strategic complementarities in pricing, which
we excluded from the simple model but are quantitatively important for inflation
dynamics. Third, we relax our Taylor rule specification to allow for interest rate
smoothing and different central bank responses to inflation, output gap, and out-
put growth. Appendix E provides a detailed explanation of this setup and the
definition of general equilibrium. Here we present the log-linearized equilibrium
conditions that characterize that equilibrium:

xt = E
f
t

[
xt+1 − σ−1 (it − πt+1)

]
+ E

f
t
[
∆yn

t+1
]

∀t ≥ 0(4.1)

it = ρit−1 + (1− ρ)
(
φππt + φxxt + φ∆y∆yt

)
− σuut ∀t ≥ 0(4.2)

pi,t = Ei,t [pt + αxt] ∀t ≥ 0, ∀i ∈ [0, 1]. (4.3)

Equation (4.1) is the standard log-linearized Euler equation for the household with
full-information rational expectations. Here, σ−1 is the intertemporal elasticity of
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substitution, yn
t ≡

σ+ψ
1+ψ at is the log of the natural level of output with no frictions

(which is uniquely determined by the productivity shock), xt is the output gap de-
fined as the log difference between output and its natural level, and πt is inflation.

Equation (4.2) is the log-linearized Taylor rule, where ρ is the degree of interest
rate smoothing, yt is the log output, ut ∼ N (0, 1) is the monetary policy shock,
and φπ, φx and φ∆y are the responses of the central bank to inflation, output gap
and output growth respectively.

Equation (4.3) shows that firm i tracks its nominal marginal cost, pt + αxt,
where pi,t is the firm’s log price at t, pt is the log of the aggregate price level, and
α ≡ σ+ψ

1+ψθ is the degree of strategic complementarity. Moreover, Ei,t[·] is firm i’s
expectation operator conditional on its time t information set under the solution to
its rational inattention problem.

4.2 Computing the Equilibrium

The main computational challenge is solving for firms’ rational inattention prob-
lem. This has two stages: first, given a Markov state-space representation for
pt + αxt we can use our algorithm from Section 2. However, the process for pt + αxt

is endogenous to the equilibrium decisions of firms and households. Therefore, a
second step is to find the equilibrium process for pt + αxt. It is important to note
that for these two steps to be consistent, we need to choose a state-space represen-
tation for pt + αxt that is Markov.

We start by guessing for the MA representation of pt + αxt as a function of the
productivity (εt) and monetary policy (ut) shocks, which gives us a Markov repre-
sentation for the process. We then approximate the process with a truncated MA
process and use this truncated process as the input to our algorithm for DRIPs. We
then solve for the implied state-space representations of the output gap and aggre-
gate price and update our guess for the MA process of pt + αxt. We repeat until
convergence. When truncating the MA process of pt + αxt, we approximate this
process with an MA(160) process. Therefore, the corresponding rational inatten-
tion problem has 12880 = 160×161

2 state variables. On average, for a given guess for
this process, it takes 0.30 seconds for our DRIPs algorithm to solve for the implied
steady-state covariance matrix (that is of dimension 1602).37 Appendix E.3 pro-

37Truncated MA process are not necessarily the most efficient guesses for endogenous variables
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vides a detailed description of matrix representations, and our solution algorithm.

4.3 Calibration

Our benchmark model is calibrated at a quarterly frequency with a discount factor
of β = 0.99 to the post-Volcker U.S. data ending at the onset of the Great Recession
(1983–2007). Table 2 presents a summary of the calibrated values of the parameters.
In the remainder of this section we go over the details of our calibration strategy.

Table 2: Calibrated and Assigned Parameters

Parameter Value Moment Matched / Source

Panel A. Calibrated parameters
Information cost (ω) 0.70× 10−3 Cov. matrix of GDP and inflation
Persistence of productivity shocks (ρa) 0.850 Cov. matrix of GDP and inflation
S.D. of productivity shocks (σa) 1.56× 10−2 Cov. matrix of GDP and inflation

Panel B. Assigned parameters
Time discount factor (β) 0.99 Quarterly frequency
Elasticity of substitution across firms (θ) 10 Firms’ average markup
Elasticity of intertemporal substitution (1/σ) 0.4 Aruoba, Bocola, and Schorfheide (2017)
Inverse of Frisch elasticity (ψ) 2.5 Aruoba, Bocola, and Schorfheide (2017)
Taylor rule: smoothing (ρ) 0.946 Estimates 1983–2007 (Table F.1)
Taylor rule: response to inflation (φπ) 2.028 Estimates 1983–2007 (Table F.1)
Taylor rule: response to output gap (φx) 0.168 Estimates 1983–2007 (Table F.1)
Taylor rule: response to output growth (φ∆y) 3.122 Estimates 1983–2007 (Table F.1)
S.D. of monetary shocks (σu) 0.28× 10−2 Romer and Romer (2004)

Panel C. Counterfactual model parameters (Pre-Volcker: 1969–1978)
Taylor rule: smoothing (ρ) 0.918 Estimates 1969–1978 (Table F.1)
Taylor rule: response to inflation (φπ) 1.589 Estimates 1969–1978 (Table F.1)
Taylor rule: response to output gap (φx) 0.292 Estimates 1969–1978 (Table F.1)
Taylor rule: response to output growth (φ∆y) 1.028 Estimates 1969–1978 (Table F.1)
S.D. of monetary shocks (σu) 0.54× 10−2 Romer and Romer (2004)

Notes: The table presents the baseline parameters for the quantitative model. Panel A shows the calibrated
parameters which match the three key moments shown in Table 3. Panel B shows values and the source of the
assigned model parameters. Panel C shows the parameters for the counterfactual analysis in Section 4.5.

Assigned Parameters. We set the elasticity of substitution across firms to be ten
(θ = 10), which corresponds to a markup of 11 percent. We set the inverse of the

and one can gain efficiency in the second step of this iterative process by using ARMA guesses,
which reduce the number of state variables (Maćkowiak, Matějka, and Wiederholt, 2018). However,
MA processes assume a higher flexibility for the solution when the length of truncation is large.
Since our algorithm is fast enough to be able to handle a large number of state variables, we use
this structure in our solution method.
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Frisch elasticity (ψ) to be 2.5 and the elasticity of intertemporal substitution (1/σ)
to be 0.4, which are consistent with estimates presented in Aruoba, Bocola, and
Schorfheide (2017).

Monetary Policy Rule(s). In our benchmark calibration, we choose the standard
deviation of monetary policy shocks (σu) to match the size of these shocks, as iden-
tified by Romer and Romer (2004), for the period 1983–2007.38

Furthermore, for the parameters describing the monetary policy rule (ρ, φπ,
φ∆y, φx), we estimate the Taylor rule in Equation (4.2) using real-time U.S. data.
Specifically, following Coibion and Gorodnichenko (2011), we use the Greenbook
forecasts of inflation and real GDP growth. The measure of the output gap is also
based on Greenbook forecasts. For our benchmark calibration, we perform this
estimation for the the post-Volcker (1983–2007) sample.39 The point estimates are
reported in Panel B of Table 2, and more detailed results including standard er-
rors are reported in Appendix Table F.1. These estimates point to strong long-run
responses by the central bank to inflation and output growth (2.03 and 3.12, re-
spectively) and a moderate response to the output gap (0.17).40

Finally, for our counterfactual analysis in later sections, we do a similar es-
timation of these parameters for the pre-Volcker sample (1969–1978). The point
estimates are reported in Panel C of Table 2, and more detailed results, including
standard errors, are reported in Appendix Table F.1.

Calibrated Parameters. We calibrate the three remaining parameters of the model—
marginal costs of information processing (ω) as well as the persistence (ρa) and the
size (σa) of productivity shocks—jointly by targeting the covariance matrix of in-
flation and real GDP in post-Volcker U.S. data. To measure the covariance matrix
of output and inflation, we detrend the CPI core inflation and real GDP data us-

38Original data on monetary policy shocks in Romer and Romer (2004) are available until 1996,
while we use extended data from Coibion, Gorodnichenko, Kueng, and Silvia (2017).

39Coibion and Gorodnichenko (2011) use data from 1983 through 2002 for the post-Volcker period
estimation. We extend the sample period until 2007. Another difference is that our specification
allows for interest rate smoothing of order one, while they consider the smoothing of order two.

40Because empirical Taylor rules are estimated using annualized rates while the Taylor rule in
the model is expressed at quarterly rates, we rescale the coefficient on the output gap in the model
such that φx = 0.673/4 = 0.168. Also, because we use the Greenbook forecast data prepared by
staff members of the Fed a few days before each FOMC meeting, the sample from 1969 through
1978 was monthly, whereas the sample from 1983 through 2007 was every six weeks. Thus, we
convert the estimated AR(1) parameters from monthly or six-week frequency to quarterly and use
the converted parameters for our model simulations.
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ing log-quadratic trends. The three moments (variances of inflation and GDP with
their covariance) identify the three model parameters, as reported in Table 2.

The standard deviation of the productivity shocks (σa) is around 1.56 percent
per quarter, which is about six times larger than the standard deviation of the mon-
etary policy shock (σu) for the post-Volcker period. Moreover, the calibrated cost of
information processing, ωI(., .), is 0.1 percent of firms’ steady-state real revenue.41

This small calibrated cost implies that imperfect information models do not require
large information costs to match the data.

4.4 Model Fit

Targeted Moments. Columns (1) and (2) of Table 3 reports our targeted moments
both in the data and as implied by the model. All three targeted moments are
matched by the model.

Table 3: Targeted and Non-targeted Moments

Targeted moments Non-targeted moments
(Post-Volcker: 1983–2007) (Pre-Volcker: 1969–1978)

Moment (1) Data (2) Model (3) Data (4) Model

Standard deviation of inflation 0.015 0.015 0.025 0.025
Standard deviation of real GDP 0.018 0.018 0.022 0.020
Correlation(inflation, real GDP) 0.209 0.209 0.242 0.245

Notes: Columns (1) and (2) present moments of the data and simulated series from the model
parameterized at the baseline values in Table 2. Columns (3) and (4) compares the volatility
of inflation and output gap and their correlation in the US data for the pre-Volcker era to the
counterparts from the counterfactual model simulation. See Section 4.4 for details

Non-targeted Moments. To examine the model’s ability to capture the out-of-
sample behavior of GDP and inflation, following Maćkowiak and Wiederholt (2015),
we compare the implied variance-covariance matrix of GDP and inflation for the
pre-Volcker era with the one measured from the U.S. data.

To do so, we first replace the parameters related to monetary policy with the
pre-Volcker era estimates. Specifically, we replace the estimates of the Taylor rule

41This number is on the lower end of the cost of pricing frictions that have been estimated in
the literature. For instance, Levy, Bergen, Dutta, and Venable (1997) estimate the cost of menu cost
frictions as 0.7 percent of firms’ steady-state revenue.
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for the post-Volcker period with our estimates for the pre-Volcker period. Fur-
thermore, we re-estimate the standard deviation of monetary policy shocks (σu)
using the pre-Volcker period monetary policy shock series from Romer and Romer
(2004). Our estimated values for these parameters are reported in Panel C of Table
2, and indicate that monetary policy was less responsive to inflation and output
growth in the pre-Volcker period, and the monetary shocks were more volatile.

We then simulate the model under the calibrated values for the cost of attention
and the process for the TFP shocks and calculate the implied covariance matrix for
GDP and inflation. Columns (3) and (4) of Table 3 reports the model-generated
moments and their analogs in the data. While we only target the volatility of infla-
tion and GDP for the post-Volcker period, our model matches the high volatility of
inflation and GDP in the pre-Volcker period.

4.5 Quantification of the Change in the Slope of the Phillips Curve

Because the Phillips curve slope is endogenous in the model, the change in the rule
of monetary policy in the post-Volcker period would imply a potential change in
this slope as well. In this section, we study whether these changes are consistent
with a flatter Phillips curve in the post-Volcker period within the model. If so, is
the mechanism quantitatively relevant?

The main challenge here is to constitute the right comparison between the
model and the empirical evidence on the Phillips curve slope. While the empirical
literature uses the New Keynesian Phillips curve (NKPC) as the equation guiding
their estimation strategy, according to our model the NKPC is misspecified. While
the ideal case would be to re-estimate the Phillips curve based on the specification
subscribed by our model, such a strategy requires a time-series on firms’ expec-
tations that goes back long enough in time to cover both periods. Such a dataset
does not exist for the U.S. to the best of our knowledge. The alternative strategy
that we employ here is to simulate data from our model under the two specifica-
tions of monetary policy and run similar regressions as in the empirical literature.
These regressions are misspecified from our model’s perspective and provide bi-
ased estimates due to an omitted variables bias issue. However, they constitute a
fair comparison to the evidence on the Phillips curve slope.

Formally, we simulate the model for 50,000 periods for both the pre- and post-

39



Volcker periods and estimate the following hybrid NKPC using GMM estimation.

πt = constant + γEt[πt+1] + (1− γ)πt−1 + κxt + εt. (4.4)

We use four lags of both inflation and output gap as instruments. Column (1) in
Table 4 shows the estimates of the NKPC. The model predicts that the slope of the
Phillips curve declined from 1.16 in the pre-Volcker era to 0.30 in the post-Volcker
period—a 75% decline.

Table 4: Estimates of the New Keynesian Phillips Curve Using Simulated Data

(1) Output gap (2) Output (3) Adj. output gap

Pre-
Volcker

Post-
Volcker

Pre-
Volcker

Post-
Volcker

Pre-
Volcker

Post-
Volcker

Slope of NKPC (κ) 1.160 0.304 0.035 0.027 0.024 -0.012
(0.029) (0.007) (0.001) (0.001) (0.007) (0.003)

Forward-looking (γ) 0.666 0.612 0.549 0.499 0.554 0.512
(0.005) (0.003) (0.002) (0.001) (0.002) (0.001)

Notes: This table shows the estimation results of the NKPC using simulated data from the base-
line model presented in Section 4.2. Column (1) and (2) show the estimates of the NKPC in
Equation (4.4) using the simulated output gap and output data, respectively. Column (3) shows
the estimates using the simulated output gap data, which are adjusted by subtracting moving
averages of natural level of output from actual output. Four lags of inflation and output gap
(or output) are used as instruments for the GMM estimation. A constant term is included in the
regressions but not reported. Newey-West standard errors are reported in parentheses.

It worth noting that while we are interested in the relative slope in the two
periods, the magnitude of these estimates slopes are well above the estimates in
the empirical literature.42 However, this is not necessarily inconsistent with our
model. One challenge that the the empirical literature faces is controlling for sup-
ply shocks that confound the estimates of the Phillips curve slope and introduces
a downward bias (McLeay and Tenreyro, 2020). To see whether this type of down-
ward bias can bring us closer to these estimates we repeat our estimation exercise
with imperfect measures of output gap in our model. Column (2) in Table 4 reports
the estimated hybrid NKPC when we use the output minus the steady-state output
as our measure of the output gap—fully omitting the supply shocks. In this case,
the estimated slope for both periods is much smaller compared to the estimates in

42For example, the estimated slope of the hybrid NKPC in Galí, Gertler, and López-Salido (2005)
is 0.002. In Del Negro, Lenza, Primiceri, and Tambalotti (2020), the slope estimates for the post-
Volcker period range from 0 to 0.01.
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Column (1), but there is still a 25% decline in the slope of the Phillips curve from
the pre- to post-Volcker period. Finally, in Column (3) we partially control for the
supply shocks by subtracting a moving average of the natural level of output from
realized output to construct the output gap. Again, the model predicts a decline in
the slope of the Phillips curve from the pre- to post-Volcker period.43

5 Concluding Remarks

We derive an information Euler equation that fully characterizes the transition
path of dynamic rational inattention problems in LQG settings and use our theoret-
ical results to propose a novel and fast solution method that significantly reduces
the computing times for solving these problems. We apply our findings to derive
an attention-driven Phillips curve. Our theory of the Phillips curve puts forth a
new perspective on the flattening of the Phillips curve slope in recent decades.
It suggests that this was an endogenous response of the private sector to a more
disciplined monetary policy in the post-Volcker era, putting a larger weight on
stabilizing nominal variables.

Our results also speak to an ongoing debate on the trade-off between stabi-
lizing inflation and maintaining a lower unemployment rate on the policy front.
Our theory suggests that while a dovish policy might seem appealing in the cur-
rent climate where inflation seems hardly responsive to monetary policy, once im-
plemented, such a policy might have an adverse effect by steepening the Phillips
curve in the long-run.
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ONLINE APPENDIX

A Proofs for Section 2

A.1 Proof of Lemma 2.1

Proof. First, note that observing {at}∞
t=0 induces the same action payoffs over time

as {St}∞
t=0 because at any time t and for every possible realization of St, the agent

gets a(St) – the optimal action induced by that realization – as a direct signal. Sup-
pose now that at is not a sufficient statistic for St relative to Xt. Then, we can show
that {at}∞

t=0 costs less in terms of information than {St}∞
t=0. To see this, note that for

any t ≥ 1 and St, consecutive applications of the chain-rule of mutual information
imply

I(Xt; St) = I(Xt; St|St−1) + I(Xt; St−1)

= I(Xt; St|St−1) + I(Xt−1; St−1) + I(Xt; St−1|Xt−1)︸ ︷︷ ︸
=0

,

where the third term is zero by availability of information at time t − 1; St−1 ⊥
Xt|Xt−1. Moreover, for t = 0 applying the chain-rule implies:

I(X0; S0) = I(X0; S0|S−1) + I(X0; S−1)

Thus,

∞

∑
t=0

βtI(Xt; St|St−1) =
∞

∑
t=0

βt(I(Xt; St)− I(Xt−1; St−1)) = I(X0; S−1)+ (1− β)
∞

∑
t=0

βtI(Xt; St).

Similarly, noting that a−1 is equal to S−1 by definition, we can show

∞

∑
t=0

βtI(Xt; at|at−1) = I(X0; S−1) + (1− β)
∞

∑
t=0

βtI(Xt; at).

Finally, note that Xt → St → at form a Markov chain so that Xt ⊥ at|St. A final
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application of the chain-rule for mutual information implies

I(Xt; at, St) = I(Xt; at) + I(Xt; St|at) = I(Xt; St) + I(Xt; at|St)︸ ︷︷ ︸
=0

.

Therefore,

∞

∑
t=0

βtI(Xt; St|St−1)−
∞

∑
t=0

βtI(Xt; at|at−1) = (1− β)
∞

∑
t=0

βt[I(Xt; St)− I(Xt; at)]

=
∞

∑
t=0

βtI(Xt; St|at) ≥ 0.

Hence, while {at}∞
t=0 induces the same action payoffs as {St}∞

t=0, it costs less in
terms of information costs, and induce higher total utility for the agent. Therefore,
if {St}t≥0 is optimal, it has to be that

I(Xt; St|at) = 0, ∀t ≥ 0

which implies St ⊥ Xt|at and Xt → at → St forms a Markov chain ∀t ≥ 0.

A.2 Proof of Lemma 2.2

Proof. The chain-rule implies I(Xt; at|at−1) = I(Xt; at, at−1|at−1) = I(Xt; at|at−1).
Moreover, it also implies

I(Xt;~at|at−1) = I(~xt;~at|at−1) + I(Xt−1;~at|at−1,~xt).

Since at = arg maxa E[u(a; Xt)|St] and given that at is a sufficient statistic for St,
then optimality requires that I(Xt−1; at|at−1,~xt) = 0. To see why, suppose not.
Then, we can construct a an information structure that costs less but implies the
same expected payoff. Thus, for the optimal information structure, this mutual
information is zero, which implies

I(Xt; at|at−1) = I(~xt;~at|at−1), ~at ⊥ Xt−1|(~xt, at−1).
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A.3 Proof of Lemma 2.3

Proof. We prove this Proposition by showing that for any sequence of actions, we
can construct a Gaussian process that costs less in terms of information costs, but
generates the exact same payoff sequence. To see this, take an action sequence
{~at}t≥0, and let at ≡ {~aτ : 0 ≤ τ ≤ t} ∪ S−1 denote the information set implied by
this action sequence. Now define a sequence of Gaussian variables {ât}t≥0 such
that for t ≥ 0,

var(Xt|ât) = E[var(Xt|at)|S−1].

Note that both these sequence of actions imply the same sequence of utilities for
the agent since they have the same covariance matrix by construction. So we just
need to show that the Gaussian sequence costs less. To see this note:

E

[
∞

∑
t=0

βt
(

I(Xt; at|at−1)− I(Xt; ât|ât−1)
)
|S−1

]

=(1− β)E

[
∞

∑
t=0

βt (I(Xt; at)− I(Xt; ât)
)
|S−1

]

=(1− β)E

[
∞

∑
t=0

βt (h(Xt|ât)− h(Xt|at)
)
|S−1

]
≥ 0,

where the last inequality is followed from the fact that among the random variables
with the same expected covariance matrix, the Gaussian variable has maximal en-
tropy.44

A.4 Proof of Lemma 2.4

Proof. We know from Lemma 2.3 that optimal posteriors, if the problem attains its
maximum, are Gaussian. So without loss of generality we can restrict our attention
to Gaussian signals. Moreover, since {~xt}t≥0 is Markov, we know from Lemma 2.2
that optimal actions should satisfy ~at ⊥ Xt−1|(at−1,~xt) where at = {~aτ}0≤τ≤t ∪
S−1. Thus, we can decompose:

~at −E[~at|at−1] = Y′t(~xt −E[~xt|at−1]) +~zt, ~zt ⊥ (at−1, Xt), ~zt ∼ N (0, Σz,t),

44See Chapter 12 in Cover and Thomas (2012).
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for some Yt ∈ Rn×m. Now, note that choosing actions is equivalent to choosing a
sequence of {(Yt ∈ Rn×m, Σz,t � 0)}t≥0.

Now, let ~xt|at−1 ∼ N (~xt|t−1, Σt|t−1) and ~xt|at ∼ N (~xt|t, Σt|t) denote the prior
and posterior beliefs of the agent at time t. Kalman filtering implies ∀t ≥ 0:

~xt|t = ~xt|t−1 + Σt|t−1Yt(Y′tΣt|t−1Yt + Σz,t)
−1(~at −~at|t−1), ~xt+1|t = A~xt|t

Σt|t = Σt|t−1 − Σt|t−1Yt(Y′tΣt|t−1Yt + Σz,t)
−1Y′tΣt|t−1,

Σt+1|t = AΣt|tA
′ + QQ′.

Note that positive semi-definiteness of Σz,t implies that Σt|t � Σt|t−1. Furthermore,
note that for any posterior Σt|t � Σt|t−1 that is generated by fewer than or equal
to m signals, there exists at least one set of Yt ∈ R and Σv,t ∈ Sm

+ that generates
it. Moreover, note that any linear map of~at, as long as it is of rank m, is sufficient
for ~xt|t by sufficiency of action for signals. So we normalize ~at = H′~xt|t which is
allowed as H has full column rank. Additionally, observe that given at:

E[(~at−~x′tH)(~at−H′~x′t)|at] = E[(~xt−~xt|t)
′HH′(~xt−~xt|t)|at] = tr(ΩΣt|t), Ω ≡ HH′.

Thus, the RI Problem in Equation (2.1) becomes:

sup
{Σt|t∈Sn

+}t≥0

−1
2

∞

∑
t=0

βt

[
tr(Σt|tΩ) + ω ln

(
|Σt|t−1|
|Σt|t|

)]
s.t. Σt+1|t = AΣt|tA

′ + QQ′, ∀t ≥ 0,

Σt|t−1 − Σt|t � 0, ∀t ≥ 0

0 ≺ Σ0|−1 = var(~x0|S−1) ≺ ∞ given.

Finally, note that we can replace the sup operator with max because ∀t ≥ 0 the
objective function is continuous as a function of Σt|t and the set {Σt|t ∈ Sn

+|0 �
Σt|t � Σt|t−1} is a compact subset of the positive semidefinite cone.

A.5 Proof of Proposition 2.1

Proof. We start by writing the Lagrangian. The problem has two set of constraints:
(1) a set of n(n+1)

2 equality constraints that are introduced by the law of motion for
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the priors in Equation (2.5) (2) a set of n non-negativity constraints on the eigen-
values of the matrix Σt|t−1−Σt|t. We let Γt be a matrix whose k’th row is the vector
of Lagrange multipliers on the k’th column of the evolution of prior at time t (note
that in matrix notation, each constraint is introduced twice by the symmetry of the
prior matrix, except for the ones on the diagonal. Hence, Γt is also symmetric by
the symmetry of the constraints). Moreover, let λt be the vector of shadow costs on
the vector of no-forgetting constraints, which we refer to as eig(Σt|t−1 − Σt|t) ≥ 0
where eig(.) denotes the vector of eigenvalues of a matrix.

L0 = max
{Σt|t∈Sn

+}t≥0

1
2

∞

∑
t=0

βt[−tr(Σt|tΩ)−ω ln(|Σt|t−1|) + ω ln(|Σt|t|)

− tr(Γt(AΣt|tA
′ + QQ′ − Σt+1|t)) + λ′t eig(Σt|t−1 − Σt|t).]

Our goal is to take the FO(N)C conditions with respect to the elements of the matrix
Σt|t. First, we transform the non-negativity constraints in terms of Σt|t−1 − Σt|t
instead of its eigenvalues:

λ′t eig(Σt|t−1 − Σt|t) = tr(diag(λt)diag(eig(Σt|t−1 − Σt|t)))

where diag(.) is the operator that places a vector on the diagonal of a square matrix
with zeros elsewhere. Finally notice that for Σt|t such that Σt|t−1−Σt|t is symmetric
and positive semidefinite, there exists an orthonormal basis Ut such that

Σt|t−1 − Σt|t = Ut diag(eig(Σt|t−1 − Σt|t))U
′
t.

Now, let Λt ≡ Ut diag(λt)U′t and observe that

tr(diag(λt)diag(eig(Σt|t−1 − Σt|t))) = tr(Λt(Σt|t−1 − Σt|t)).

Moreover, note that complementary slackness for this constraint requires:

λ′t eig(Σt|t−1 − Σt|t−1) = 0, λt ≥ 0, eig(Σt|t−1 − Σt|t−1) ≥ 0

⇔diag(λt)diag(eig(Σt|t−1 − Σt|t)) = 0, diag(λt) � 0, Σt|t−1 − Σt|t � 0

⇔Λt(Σt|t−1 − Σt|t) = 0, Λt � 0, Σt|t−1 − Σt|t � 0.
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re-writing the Lagrangian we get:

L0 = max
{Σt|t∈Sn

+}t≥0

1
2

∞

∑
t=0

βt[−tr(Σt|tΩ)−ω ln(|Σt|t−1|) + ω ln(|Σt|t|)

− tr(Γt(AΣt|tA
′ + QQ′ − Σt+1|t)) + tr(Λt(Σt|t−1 − Σt|t)).]

Differentiating with respect to Σt|t and Σt|t−1 while imposing symmetry we
have

Ω−ωΣ−1
t|t + A′ΓtA + Λt = 0, and ωβΣ−1

t+1|t − Γt − βΛt+1 = 0.

Now, replacing for Γt in the first order conditions we get the conditions in the
Proposition.

One result that we have assumed in writing this expression is that Σt|t−1 is
invertible, which follows from the assumptions of the Proposition. The claim is:

Σt|t−1 � 0⇒ Σt+1|t = AΣt|tA
′ + QQ′ � 0, ∀t ≥ 0.

To see why, suppose otherwise, then ∃w 6= 0 such that

w′(AΣt|tA
′ + QQ′)w = 0⇔ w′AΣt|tA

′w = w′QQ′w = 0.

Thus,
(Σ

1
2
t|tA

′w = 0) ∧ (Q′w = 0).

Moreover, note that Σt|t is invertible because the cost of attention has to be finite:

ln

(
det(Σt|t−1)

det(Σt|t)

)
< ∞⇒ det(Σt|t) > 0.

Hence, Σ
1
2
t|t is invertible, and we can write the above equations as:

(AA′w = 0) ∧ (QQ′w = 0)⇒ (AA′ + QQ′)w = 0

but since AA′ + QQ′ is invertible by assumption, this implies that w = 0 which is
a contradiction with w 6= 0. Thus, Σt+1|t has to be invertible as well.
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Moreover, we have a terminal optimality condition that requires:

lim
T→∞

βTtr(ΓTΣT+1|T) ≥ 0⇔ lim
T→∞

βT+1tr(ΛT+1ΣT+1|T) ≤ 0.

Since both ΛT and ΣT+1|T are positive semidefinite, we also have tr(ΛT+1ΣT+1|T) ≥
0. Thus, TVC becomes:

lim
T→∞

βT+1tr(ΛT+1ΣT+1|T) = 0.

A.6 Proof of Theorem 2.1

Proof. From the FOC in Proposition 2.1 observe that

ωΣ−1
t|t = Ωt + Λt ⇒ Σt|t−1 − Σt|t = Σt|t−1 −ω(Ωt + Λt)

−1.

For ease of notation let Xt ≡ Σt|t−1 − Σt|t. Multiplying the above equation by
Ωt + Λt from right we get

XtΩt − Σt|t−1Λt = Σt|t−1Ωt −ωI,

where we have imposed the complementarity slackness XtΛt = 0. Finally, multi-

ply this equation by Σ
1
2
t|t−1 from right and Σ

− 1
2

t|t−1 from left.45 We have

X̂tDt − Λ̂t = Dt −ωI (A.1)

where

X̂t ≡ Σ
− 1

2
t|t−1XtΣ

− 1
2

t|t−1, Λ̂t ≡ Σ
1
2
t|t−1ΛtΣ

1
2
t|t−1, Dt ≡ Σ

1
2
t|t−1ΩtΣ

1
2
t|t−1 (A.2)

Now, note that ΛtXt = XtΛt = 0 implies Λ̂tX̂t = X̂tΛ̂t = 0. Similarly, note that
Xt and Λt are positive semidefinite if and only if X̂t and Λ̂t are positive semidef-
inite, respectively. So we need for two simultaneously diagonalizable symmetric
positive semidefinite matrices Λ̂t and X̂t that solve Equation (A.1).

45Σ
1
2
t|t−1 exists since Σt|t−1 is positive semidefinite and Σ

− 1
2

t|t−1 exists since we assumed that the
initial prior is strictly positive definite.
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It follows from these that X̂t, Λ̂t and D̂t are simultaneously diagonalizable. To
see this, consider the following revisions of Equation (A.1):

X̂tDt = Dt + Λ̂t −ωI, −Λ̂tDt = Λ̂2
t −ωΛ̂t

where the equation on the left is a simple re-arrangement of Equation (A.1) and
the equation on the right is one where we have multiplied Equation (A.1) with Λ̂t

from left. Note that the right hand side of both of these equations are symmetric
matrices. Therefore, the left hand side of the should also be symmetric, which
implies that Dt commutes with both X̂t and Λ̂t. Now, since all three matrices are
diagonalizable (because they are symmetric) and any two of them commute with
one another, they are simultaneously diagonalizable . Let α denote a basis in which
these matrices are diagonal. Then, we have

[X̂t − I]α[Dt]α = [Λ̂t −ωI]α.

Using complementarity slackness [Λ̂t]α[X̂t]α = 0, the constraint [X̂t]α � 0, and dual
feasibility constraint [Λ̂t]α � 0 it is straight forward to show that [Λt]α is strictly
positive for the eigenvalues (entries on the diagonal) of [Dt]α that are smaller than
ω.

[Λ̂t]α = max(ωI− [Dt]α, 0)⇔ Λ̂t = Max(ωI−Dt, 0).

Now, using Equation (A.2), we get:

Λt = Σ
− 1

2
t|t−1 Max(ωI−Dt, 0)Σ−

1
2

t|t−1. (A.3)

Moreover, recall ωΣ−1
t|t = Ωt +Λt. Using the solution for Λt and Ωt = Σ

− 1
2

t|t−1DtΣ
− 1

2
t|t−1:

ωΣ−1
t|t = Σ

− 1
2

t|t−1 [Dt + Max(ωI−Dt, 0)]Σ
− 1

2
t|t−1

= Σ
− 1

2
t|t−1 Max(Σ

1
2
t|t−1ΩtΣ

1
2
t|t−1, ω)Σ

− 1
2

t|t−1.

Inverting this gives us the expression in the statement of the theorem—the matrix
is invertible because all eigenvalues are bounded below by ω. Moreover, using
the definition of Ωt in the statement of the theorem, and the expression for Λt in
Equation (A.3) we have:
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Ωt = Ω + βA′(ωΣ−1
t+1|t −Λt+1)A

= Ω + βA′Σ−
1
2

t+1|t(ωI−Max(ωI−Dt+1, 0))Σ−
1
2

t+1|tA

= Ω + βA′Σ−
1
2

t+1|t Min(Σ
1
2
t+1|tΩt+1Σ

1
2
t+1|t, ω)Σ

− 1
2

t+1|tA.

A.7 Proof of Theorem 2.2

Proof. The upper bound m directly follows from Lemma 2.1. Recall from part 2 of
Lemma 2.2 that when {~xt} is a Markov process, then ~at ⊥ Xt−1|(at−1,~xt). More-
over, since actions are Gaussian in the LQG setting, we can then decompose the
innovation to the action of the agent at time t as

~at −E[~at|at−1] = Y′t(~xt −E[~xt|at−1]) +~zt, ~zt ⊥ (Xt, at−1)

where~zt ∼ N (0, Σz,t) is the agent’s rational inattention error – it is mean zero and
Gaussian. It just remains to characterize Yt and the covariance matrix of~zt. Now,
since actions are sufficient for the signals of the agent at time t, we have

E[~xt|at] = E[~xt|at−1] + Kt(~at −E[~at|at−1])

= E[~xt|at−1] + KtY′t(~xt −E[~xt|at−1]) + Kt~zt (A.4)

where Kt ≡ Σt|t−1Yt(Y′tΣt|t−1Yt + Σz,t)−1 is the implied Kalman gain by the de-
composition. The number of the signals that span the agent’s posterior is therefore
the rank of this Kalman gain matrix. Moreover, note that if the decomposition is
of the optimal actions, then the implied posterior covariance should coincide with
the solution:

Σt|t = Σt|t−1 −KtY′tΣt|t−1 ⇒ KtY′t = I− Σt|tΣ
−1
t|t−1. (A.5)

Let UtDtU′t denote the spectral decomposition of Σ
1
2
t|t−1ΩtΣ

1
2
t|t−1. Then, using The-

orem 2.1, we have:

KtY′t = Σ
1
2
t|t−1Ut(I−ω Max(Dt, ω)−1)U′tΣ

− 1
2

t|t−1

=
n

∑
i=1

max(0, 1− ω

di,t
)Σt|t−1yi,ty′i,t (A.6)

54



where di,t is the i’th eigenvalue in Dt and yi,t is the i’th column of the matrix

Σ
− 1

2
t|t−1Ut. Notice that for any i, yi,t = Σ

− 1
2

t|t−1ui,t is an eigenvector for ΩtΣt|t−1:

ΩtΣt|t−1yi,t = Σ
− 1

2
t|t−1(Σ

1
2
t|t−1ΩtΣ

1
2
t|t−1)ui,t = di,tΣ

− 1
2

i,t ui,t = di,tyi,t.

Moreover, note that only eigenvectors with eigenvalue larger than ω get a positive
weight in spanning KtY′t, meaning that we can exclude eigenvectors associated
with di,t ≤ ω. Formally, let Y+

t be a matrix whose columns are columns of Yt whose
eigenvalue is larger than ω. Let D+

t be the diagonal matrix with these eigenvalues,
and let Σ+

z,t be the corresponding principal minor of Σz,t. Then,

Yt(Y′tΣt|t−1Yt + Σz,t)
−1Y′t =

n

∑
i=1

max(0, 1− ω

di,t
)yi,ty′i,t = ∑

di,t≥ω

(1− ω

di,t
)yi,ty′i,t

= Y+
t (Y

+′
t Σt|t−1Y+

t + Σ+
z,t)
−1Y+′

t .

Now we just need Σ+
z,t to fully characterize the signals. For this, note that ∀i, j:

y′i,tΣt|t−1yj,t =

u′i,tui,t = 1 if i = j

u′i,tuj,t = 0 if i 6= j.

Thus, Y+′
t Σt|t−1Y+

t = Ik where Ik is the k-dimensioanl identity matrix with k be-
ing the number of eigenvalues in Dt that are larger than ω. Combining this with
Equation (A.5) we have:

Σt|t−1 − Σt|t = Σt|t−1Y+
t (Y

+′
t Σt|t−1Y+

t + Σ+
z,t)
−1Y+′

t Σt|t−1

⇒ Y+′
t (Σt|t−1 − Σt|t)Y

+
t = Y+′

t Σt|t−1Y+
t (Y

+′
t Σt|t−1Y+

t + Σ+
z,t)
−1Y+′

t Σt|t−1Y+
t

⇒ Σ+
z,t = (Ik − Y+′

t Σt|tY
+
t )
−1 − Ik.

Plugging in for Σt|t from Equation (2.13) we have:

Σ+
z,t = (Ik −ω(D+

t )
−1)−1 − Ik = (ω−1D+

t − Ik)
−1.

Note that Σ+
z,t is diagonal where the i’th diagonal entry is 1

ω−1di,t−1 .
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Thus, the agent’s posterior is spanned by the following k signals:

~st = Y+′~xt +~zt, Y+′
t Σt|t−1Y+

t = Ik,~zt ∼ N (0, (ω−1D+
t − Ik)

−1).

A.8 Proof of Proposition 2.2

Proof. Let x̂t ≡ E[~xt|at]. Combining Equation (A.4) and Equation (A.6), we have

x̂t = E[~xt|at−1] +
n

∑
i=1

max(0, 1− ω

di,t
)Σt|t−1yi,ty′i,t(~xt −E[~xt|at−1]) + Kt~zt

= Ax̂t−1 +
kt

∑
i=1

(1− ω

di,t
)Σt|t−1yi,t(y′i,t(~xt −Ax̂t−1) + zi,t),

where kt is the number of the eigenvalues that are at least as large as ω. Notice that,
as shown in Appendix A.4, we normalize~at = H′ x̂t since any linear map of~at, as
long as it is of rank m, is sufficient for x̂t by sufficiency of action for signals.

A.9 Steady-state Information Structure with β = 1

Here, we show that the solution to the problem in Equation (2.17) is characterized
by the steady-state version of our conditions in Proposition 2.1 when β = 1. The
Lagrangian for the problem in Equation (2.17) is:

max
Σ,Σ−1

−tr(ΩΣ)−ω ln(|Σ−1|) + ω ln(|Σ|)− tr(Γ(AΣA′ + QQ′ − Σ−1)) + λ′eig(Σ−1 − Σ)

where Γ is a symmetric matrix whose k’th row is the set of Lagrange multipliers on
the constraints imposed by the k’th column of Σ−1 = AΣA′+ QQ′. Now, consider
the following Spectral decomposition of Σ−1 − Σ:

Σ−1 − Σ = U diag(eig(Σ−1 − Σ))U′

where by the Spectral theorem, U is an orthonormal basis so that UU′ = U′U = I,
and diag(eig(Σ−1−Σ)) denotes the diagonal matrix of the eigenvalues of Σ−1−Σ.

Following the proof of Proposition 2.1, we can also do the following transfor-
mation: λ′ eig(Σ−1 − Σ) = tr(Λ(Σ−1 − Σ)), where Λ ≡ U diag(λ)U′. Then, the KKT
conditions are

Ω−ωΣ−1 + A′ΓA + Λ = 0, ωΣ−1
−1 − Γ−Λ = 0.
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Replacing for Γ we have ωΣ−1 −Ω = Λ + A′(ωΣ−1
−1 − Λ)A with complementary

slackness conditions that Λ(Σ−1 − Σ) = (Σ−1 − Σ)Λ = 0 where Λ and Σ−1 − Σ are
simultaneously diagonalizable. Notice that these conditions are identical to the
conditions outlined in Proposition 2.1, when we impose the steady-state and set
β = 1.

B Replications

In this appendix, we present briefly two models we replicate in Section 2.3.

B.1 Replication of Maćkowiak and Wiederholt (2009a)

The rational inattention problem in Maćkowiak and Wiederholt (2009a) is

min
{∆̂i,t,ẑi,t}

E
[
(∆t − ∆̂i,t)

2
]
+

(
π̂14

π̂11

)2

E
[
(zi,t − ẑi,t)

2
]

,

s.t. I({∆t}; {∆̂i,t}) + I({zi,t}; {ẑi,t}) ≤ κ, {∆t, ∆̂i,t} ⊥ {zi,t, ẑi,t}

where ∆t ≡ pt +
(
|π̂13|
|π̂11|

)
(qt − pt) is the profit-maximizing response to aggregate

conditions and zi,t is an idiosyncratic shock. Also, ∆̂i,t ≡ Ei,t[∆t] and ẑi,t ≡ Ei,t[zi,t]

are firm i’s subjective expectation of ∆t and zi,t, respectively. I(·; ·) is Shannon’s
mutual information and κ is a fixed capacity of processing information. Lastly, no-
tice that aggregate price pt =

∫ 1
0 ∆̂i,tdi and exogenous shock processes are defined:

qt = ρqqt−1 + νq,t, νq,t ∼ N (0, σ2
q ), zi,t = ρzzi,t−1 + νz,t, νz,t ∼ N (0, σ2

z ).

To solve the model using our method, we translate the problem above into a
DRIPs structure. The most efficient way, due to the independence assumption, is
to write it as the sum of two DRIPs: one that solves the attention problem for the
idiosyncratic shock, and one that solves the attention problem for the aggregate
shock which also has endogenous feedback. Moreover, since the problem above
has a fixed capacity, instead of a fixed cost of attention (ω) as in DRIPs pacakge,
we need to iterate over ω’s to find the one that corresponds with κ. Lastly, the
attention problem in this model coincides with our model when β = 1.
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B.2 Replication of Maćkowiak, Matějka, and Wiederholt (2018)

We describe the model of price-setting in Maćkowiak, Matějka, and Wiederholt
(2018) with and without endogenous feedback in firms’ optimal prices.

B.2.1 A Model of Price-Setting

There is a measure of firms indexed by i ∈ [0, 1]. Firm i chooses its price pi,t at time
t to track its ideal price p∗i,t. Formally, her flow profit is −(pi,t − p∗i,t)

2.

Without Endogenous Feedback We first consider the case without endogenous
feedback in the firm’s optimal price by assuming that p∗i,t = qt where ∆qt =

ρ∆qt−1 + ut with ut ∼ N (0, σ2
u). Then, the state-space representation of the prob-

lem is
~xt =

[
qt

∆qt

]
=

[
1 ρ

0 ρ

]
︸ ︷︷ ︸

A

~xt−1 +

[
σu

σu

]
︸ ︷︷ ︸

Q

ut, p∗i,t =

[
1

0

]
︸ ︷︷ ︸

H

′

~xt

Endogenous Feedback with Strategic Complementarity Now we consider the
case where there is general equilibrium feedback with the degree of strategic com-
plementarity α. Firm i’s optimal price is p∗i,t = (1− α)qt + αpt where pt ≡

∫ 1
0 pi,tdi

and ∆qt = ρ∆qt−1 + ut with ut ∼ N (0, σ2
u). Note that now the state space rep-

resentation for p∗i,t is no longer exogenous and is determined in the equilibrium.
However, we know that this is a Guassian process and by Wold’s theorem we can
decompose it to its MA(∞) representation, p∗i,t = Φ(L)ut, where Φ(.) is a lag poly-
nomial and ut is the shock to nominal demand. Here, we have guessed that the
process for p∗i,t is determined uniquely by the history of shocks which requires that
rational inattention errors of firms are orthogonal. Our objective is to find Φ(.).

We approximate MA(∞) processes with truncation. In particular, for stationary
processes, we can arbitrarily get close to the true process by truncating MA(∞)

processes to MA(T) processes. Our problem here is that p∗i,t has a unit root and
is not stationary. We can bypass this issue by re-writing the state space in the
following way: p∗i,t = φ(L)ũt where ũt = (1− L)−1ut = ∑∞

j=0 ut−j. Here, ũt−j is
the unit root of the process and we have differenced out the unit root from the lag
polynomial, and φ(L) = (1− L)Φ(L). Notice that since the original process was
difference stationary, differencing out the unit root means that φ(L) is in `2, and
the process can now be approximated arbitrarily precisely with truncation.
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B.2.2 A Business Cycle Model with News Shocks

In this subsection, we describe the business cycle model with news shocks in Sec-
tion 7 in Maćkowiak, Matějka, and Wiederholt (2018).

The techonology shock, zt, follows AR(1) process, zt = ρzt−1 + σεt−k, and the
total labor input is nt =

∫ 1
0 ni,tdi. Under perfect information, the households

chooses the utility-maximizing labor supply, all firms choose the profit-maximizing
labor input, and the labor market clearing condition is, 1−γ

ψ+γ wt =
1
α (zt −wt). Then,

the market clearing wages and the equilibrium labor input are:

wt =
1
α

1−γ
ψ+γ + 1

α

zt ≡ ξzt, nt =
1
α
(1− ξ)zt.

Firms are rationally inattentive and want to keep track of their ideal price,

n∗t =
1
α

zt −
1
α

ψ + γ

1− γ
nt.

Then, firm i’s choice depends on its information set at time t and ni,t = Ei,t[n∗t ].
Note that now the state space representation for n∗t is determined in the equi-

librium. As we describe above, we can decompose it to its MA(∞) representation
by Wold’s theorem: n∗t = Φ(L)εt where Φ(.) is a lag polynomial and εt is the
shock to technology. We have again guessed that the process for n∗t is determined
uniquely by the history of technology shocks. Then, we transform the problem to
a state space representation. The full documentation for replication is available in
https://afrouzi.com/DRIPs.jl/dev/.

C Proofs for Section 3

C.1 Proof of Lemma 3.1

Proof. The log-linearized Euler equation from the household side is

log(Rt) = log(β−1) + Et[∆qt+1].

Combining this with the monetary policy rule, we have

∆qt = φ−1E
f
t [∆qt+1] +

σu

φ
ut.

Iterating this forward and noting that limh→∞ φ−hE
f
t [∆qt+h] = 0 due to φ > 1, we

get the result in the Lemma.
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C.2 Proof of Proposition 3.1

Proof. Part 1. For ease of notation we drop the firm index i in the proof. The FOC
in Proposition 2.1 in this case reduces to

λt = 1− θ +
ω

σ2
t|t
− βω

σ2
t+1|t

+ βλt+1.

Since the problem is deterministic and the state variables grows with time when
the constraint is binding, then there is a t after which the constraint does not bind.
Given such a t, suppose λt = λt+1 = 0, then noting that σ2

t+1|t = σ2
t|t + σ2

uφ−2, the
FOC becomes:

σ4
t|t +

[
σ2

u
φ2 − (1− β)

ω

θ − 1

]
σ2

t|t −
ω

θ − 1
σ2

u
φ2 = 0

Note that given the values of parameters, this equation does not depend on any
other variable than σ2

t|t (in particular it is independent of the state σ2
t|t−1). Hence,

for any t, if λt = 0, then the σ2
t|t = σ2, where σ2 is the positive root of the equation

above. However, for this solution to be admissible it has to satisfy the no-forgetting
constraint which holds only if σ2 ≤ σ2

t|t−1. Thus,

σ2
t|t = min{σ2

t|t−1, σ2}.

Part 2. The Kalman-gain can be derived from the relationship between prior and
posterior uncertainty:

σ2
i,t|t = (1− κi,t)σ

2
i,t|t−1 ⇒ κi,t = 1−min{1,

σ2

σ2
i,t|t−1

} = max{0, 1− σ2

σ2
i,t|t−1

}.(C.1)

C.3 Proof of Corollary 3.1

Proof. Follows from differentiating the expression for σ2 in Proposition 3.1.

C.4 Proof of Proposition 3.2

Proof. Part 1. Recall from the proof of Proposition 3.1 that

pi,t = pi,t−1 + κi,t(qt − pi,t−1 + ei,t)
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Aggregating this up and imposing κi,t = κt since all firms start from the same
uncertainty and solve the same problem, we get:

πt =
κt

1− κt
yt.

Plug in κt from Equation (C.1) to get the expression for the slope of the Phillips
curve.

Part 2. In this case the Phillips curve is flat so it immediately follows that πt = 0.
Moreover, since πt + ∆yt = ∆qt, plugging in πt = 0, we get yt = yt−1 + ∆qt.

Part 3. If σ2
T|T−1 ≥ σ2, then ∀t ≥ T + 1, σ2

t|t = σ2 and σ2
t|t−1 = σ2 + σ2

uφ−2.
Hence, for t ≥ T + 1, the Phillips curve is given by πt = κ

1−κ yt. Combining this
with πt + ∆yt = ∆qt we get the dynamics stated in the Proposition.

C.5 Proof of Corollary 3.2

Proof. The jump to the new steady state follows from the result in Corollary 3.1
that σ2 increases with σu

φ . The comparative statics follow from the fact that κ is the
positive root of

βκ2 + (1− β + ξ)κ − ξ = 0

where ξ ≡ σ2
u(θ−1)
φ2ω

. It suffices to observe that κ decreases with ξ, and ξ increases
with σu

φ .

C.6 Proof of Corollary 3.3

Proof. The transition to the new steady state follows from the fact that reservation
uncertainty increases with a positive shock to σ2. The policy function of the firm in
Proposition 3.1 that firms would wait until their uncertainty reaches this new level.
Comparative statics in the steady state follow directly from Corollary 3.1.
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C.7 Proof of Proposition 3.3

Proof. Note that in the steady state of the attention problem, inflation and nominal

demand,~st ≡
[

qt

πt

]
, jointly evolve according to

~st =

[
1 0

0 1− κ

]
︸ ︷︷ ︸

≡As

~st−1 +

[
σu
φ

κσu
φ

]
︸ ︷︷ ︸
≡Qs

ut

Moreover, given that we know that a firm’s history of prices is a sufficient statistics
for their information set at that time, we can solve for their belief about the vector
~st by applying the Kalman filtering:∫ 1

0
E[~st|pt

i ]di =
∫ 1

0
E[~st|pt−1

i ]di + Ks(qt −E[qt|pt−1
i ])

It follows that the steady-state covariance matrix, Σs ≡ limt→∞ var(~st|pt−1
i ), solves

the following Riccati equation:

Σs = AsΣsA′s − κ
Σse1e′1Σs

e′1Σse1

where κ is the steady-state Kalman-gain of firms in Equation (3.7) and e′1 ≡ (1, 0).
The solution to this Riccati equation is given by

Σs ≡
[

1
κ

1
2−κ

1
2−κ

(3−2κ)κ
(2−κ)3

]
σ2

u
φ2

which then implies that the Kalman-gain vector, Ks is given by

Ks = κ
Σse1e′1
e′1Σse1

=

[
κ
κ2

2−κ

]
e1

Thus, noticing that the firms average inflation expectations is given by the second
element of the vector

∫ 1
0 E[~st|pt

i ]di, we have

π̂t = (1− κ)π̂t−1 +
κ2

2− κ
(qt − pt−1) = (1− κ)π̂t−1 +

κ2

(2− κ)(1− κ)
yt

where in the second line we have plugged in yt ≡ qt − pt and the Phillips curve
πt =

κ
1−κ yt. Finally, multiplying the lag of the above equation by 1− κ and differ-

encing them out we have
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π̂t − (1− κ)π̂t−1 = (1− κ)π̂t−1 − (1− κ)2π̂t−2 +
κ2

(2− κ)(1− κ)
(yt − (1− κ)yt−1)

= (1− κ)π̂t−1 − (1− κ)2π̂t−2 +
κ2

2− κ

σu

φ
ut.

C.8 Proof of Corollary 3.4

Proof. Note that the sensitivity of firms’ inflation expectations to a one standard
deviation shock to monetary policy (σu

φ ut) is, ∂π̂t
∂( σu

φ ut)
= κ2

2−κ . Now, note that

∂

(
∂π̂t

∂( σu
φ ut)

)
∂
(

σu
φ

) =
4κ − κ2

(2− κ)2 =

[
1 +

(
2

2− κ

)2
]

∂κ

∂
(

σu
φ

) < 0

where the negative sign follows from the fact that κ is decreasing in σu
φ (Corollary

3.1).

D Approximation of Firms’ Profit Function

Consider a firm with the following net present value of its profits at time 0:

∞

∑
t=0

βtΠ(Pt, Wt, Xt)

where Π(Pt, Wt, Xt) = elog(Xt)−θ log(Pt)(elog(Pt) − (1− θ−1)elog(Wt)). Here, Pt is the
firm’s price Xt scales the profit function (in both our simple and quantitative mod-
els Xt = P̄θ

t Yt(Ct/C0)
−σ where P̄t is the aggregate price, and Yt is the aggregate

output, (Ct/C0)
−σ is stochastic part of the discount factor). Moreover, Wt is the

firm’s marginal cost which corresponds to the nominal wage in the simple model,
and nominal wage scaled by productivity in the quantitative model.

For any pair of Wt and Xt, note that

Wt = arg max
P

Π(Pt, Wt, Xt)⇔ Π1(Wt, Wt, Xt) = 0

Therefore, in the non-stochastic steady-state P = W for this firm. Now taking a
second-order approximation to the function L(Pt, Wt, Xt) ≡ Π(Pt, Wt, Xt)−Π(Wt, Wt, Xt)

around these steady-state values, we have
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L(Pt, Wt, Xt) =
1
2

Π11(log(Pt)
2 − log(Wt)

2) + Π12 log(Wt)(log(Pt)− log(Wt))

+ Π13 log(Xt)(log(Pt)− log(Wt)) +O(‖log(Xt), log(Wt), log(Pt)‖3) (D.1)

where Π1n, n ∈ {1, 2, 3} denotes second order derivatives of the profit function
with respect to log price, log price and log wage, and log price and log(X) around
teh approximation point. Now, also note that since Wt maximizes the profit func-
tion for any Wt and Xt, we have

Π1(Wt, Wt, Xt) = 0⇒ Π11 log(Wt)+Π12Wt +Π13Xt +O(‖log(Xt), log(Wt)‖2) = 0

Combining this with Equation (D.1) we have

Π(Pt, Wt, Xt) = L(Pt, Wt, Xt) + Π(Wt, Wt, Xt) =
1
2

Π11(log(Pt)− log(Wt))
2

+O(‖log(Wt), log(Xt), log(Pt)‖3) + terms independent of Pt

Finally, to calculate Π11, note that

Π1 = −θelog(X)−θ log(P)(elog(P) − (1− θ−1)elog(W)) + elog(X)−(θ−1) log(P),

Π11 = −θΠ1 − (θ − 1)elog(X)−(θ−1) log(P)

Now assuming that the aggregate price is the same as the firm’s individual price
in the stochastic steady-state, log(X) − (θ − 1) log(P) = log(PYC−σ) = log(Q)

where Q is the steady-state value of nominal demand. Moreover, since Π1 = 0 in
the steady-state, we have Π11 = −(θ − 1)Q. Hence, normalizing the steady-state
value of nominal demand to 1:

∞

∑
t=0

βtΠ(Pt, Wt, Xt) = −
1
2

∞

∑
t=0

βt
[
(θ − 1)(log(Pt)− log(Wt))

2 +O(‖log(Pt)‖3)
]

+ terms independent of {Pt}t≥0

E Setup of the Quantitative Model

E.1 Environment

Household. The representative household’s problem is similar to the one in Equa-
tion (3.1) with two extensions. First, we add two new parameters to preferences
that capture the intertemporal elasticity of substitution and the Frisch elasticity of
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labor supply. Second, we assume segmented labor markets for different varieties,
which is a known mechanism to generate quantitatively plausible strategic com-
plementarities in pricing. Formally, the household solves:

max{
Ct,Bt,(Ci,t,Li,t)i∈[0,1]

}
t≥0

E
f
t

 ∞

∑
t=0

βt

C1−σ
t

1− σ
−
∫ 1

0 L1+ψ
i,t di

1 + ψ

 (E.1)

s.t.
∫ 1

0
Pi,tCi,tdi + Bt ≤ Rt−1Bt−1 +

∫ 1

0
Wi,tLi,tdi + Πt

with CES aggregator, Ct =

[∫ 1
0 C

θ−1
θ

i,t di
] θ

θ−1
. Here all variables and notation are

similarly defined as in Equation (3.1), with the addition that Li,t now represents
the household’s labor supply in the segmented labor market i given wage Wi,t.
Moreover, σ is the inverse of the intertemporal elasticity of substitution, and ψ is
the inverse of the Frisch elasticity of labor supply.

Monetary Policy. Monetary policy is specified as the following standard Taylor
rule with interest smoothing that targets inflation, output gap and output growth:

Rt

R̄
=

(
Rt−1

R̄

)ρ
((

Pt

Pt−1

)φπ
(

Yt

Yn
t

)φx ( Yt

Yt−1

)φ∆y
)1−ρ

exp(−σuut) (E.2)

where R̄ is the steady-state nominal rate, Yt ≡ Ct is the aggregate output, Yn
t is the

natural-level of output in the economy with no frictions, and ut ∼ N (0, 1) is the
monetary policy shock.

Firms. There is a measure one of firms, indexed by i, that operate in monopolis-
tically competitive markets and are price takers in their segmented labor market.
Firms take wages and demands for their goods as given, and choose their prices
Pi,t based on their information set, St

i , at that time. After setting its prices, firm i
hires labor Ld

i,t to meet its demand with the production function Yi,t = AtLd
i,t. Here,

At is an aggregate productivity shock. We assume at ≡ log(At), follows a AR(1)
process: at = ρaat−1 + σaεt, εt ∼ N (0, 1).

Firms are rationally inattentive and choose their prices subject to a cost that is
linear in Shannon’s mutual information function. as in the RI problem in Equa-
tion (2.1). Firm i’s dynamic rational inattention problem is given by:
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max
{Si,t⊆Si,t,Pi,t(St

i )}t≥0

E

[
∞

∑
t=0

βtC−σ
t

{(
Pi,t − (1− θ−1)

Wi,t

At

)(
Pi,t

Pt

)−θ

Yt (E.3)

−ωI(St
i ; (Aτ, Wi,τ)τ≤t|St−1

i )

}∣∣∣∣∣S−1
i

]
s.t. St

i = St−1
i ∪ Si,t,

where Yt is the aggregate output, Pt is the aggregate price index, Pi,t is the firm’s
price, θ−1Wi,t is the optimal subsidy for hiring labor that eliminates the steady-
state distortions from monopolistic pricing, and Si,t is the set of available signals
for the firm that satisfies the assumptions specified in Section 2.1.

Similar to our approach in the simple model, we derive a second-order ap-
proximation to the net present value of firms’ profits (see Appendix D for detailed
derivation) and define the firms’ rational inattention problem as

min
{pi,t}t≥0

∞

∑
t=0

βtE

[
θ − 1

2
(pi,t − pt − αxt)

2 + ωI(pi,t, {pt−j + αxt−j}∞
j=0|pt−1

i )|p−1
i

]
Here, small letters denote log-deviations from the non-stochastic steady-state for
their corresponding variables and α ≡ σ+ψ

1+θψ is the degree of strategic complemen-
tarity. Moreover, xt ≡ yt − yn

t is the log output gap defined as the log difference
between output and its natural-level in the economy with no frictions. The log
natural-level of output is uniquely determined by the productivity shock and is
given by yn

t ≡
1+ψ
ψ+σ at. Finally, in stating this problem, we have already incorpo-

rated the result from Lemma 2.2, which states that with Shannon’s mutual infor-
mation as the cost of attention, the history of prices is sufficient statistics for the
firm’s signals at any given time.

E.2 Definition of Equilibrium

Given exogenous processes for productivity and monetary policy shocks {at, ut}t≥0,
a general equilibrium of this economy is an allocation for the representative house-
hold, ΩH ≡

{
Ct, Bt, (Ci,t, Li,t)i∈[0,1]

}∞

t=0
, an allocation for every firm i ∈ [0, 1]

given their initial set of signals, ΩF
i ≡

{
si,t ∈ Si,t, Pi,t, Ld

i,t, Yi,t

}∞

t=0
, a set of prices{

Pt, Rt, (Wi,t)i∈[0,1]

}∞

t=0
, and a stationary distribution over firms’ states such that
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1. given the set of prices and
{

ΩF
i
}

i∈[0,1], the household’s allocation solves the
problem in Equation (E.1),

2. given the set of prices and ΩH, and the implied labor supply and output
demand, firms’ allocation solve their problem in Equation (E.3),

3. monetary policy satisfies the specified rule in Equation (E.2) ;

4. markets clear: ∀i ∈ [0, 1], ∀t ≥ 0, Yi,t = Ci,t, Li,t = Ld
i,t and Yt = Ct.

E.3 Matrix Representation and Solution Algorithm

Firms wants to keep track of their ideal price, p∗i,t = pt + αxt. Notice that the
state space representation for p∗i,t is no longer exogenous and is determined in the
equilibrium. However, we know that this is a Guassian process and by Wold’s
theorem we can decompose it to its MA(∞) representation, p∗i,t = Φa(L)εa,t +

Φu(L)εu,t, where Φa(.) and Φu(.) are lag polynomials. Here, we have basically
guessed that the process for p∗i,t is determined uniquely by the history of monetary
shocks which requires that rational inattention errors of firms are orthogonal.

We cannot put MA(∞) processes in the computer and have to truncate them.
However, we know that for stationary processes we can arbitrarily get close to the
true process by truncating MA(∞) processes. Our problem here is that p∗i,t has a
unit root and is not stationary. To bypass this issue, we re-write the state-space as:
p∗i,t = Φa(L)εa,t + φu(L)ε̃u,t, ε̃u,t = (1− L)−1εu,t = ∑∞

j=0 εu,t−j, where ε̃u,t is the unit
root of the process and basically we have differenced out the unit root from the lag
polynomial, and φu(L) = (1− L)Φu(L). Notice that since the original process was
difference stationary, differencing out the unit root means that φu(L) is now in `2,
and the process can now be approximated arbitrarily precisely with truncation.

For ease of notation, let zt = (εa,t, εu,t) and z̃t = (εa,t, ε̃u,t). For a length of trun-
cation L, let ~x′t ≡ (zt, zt−1, . . . , zt−(L+1)) ∈ R2L and ~x′t ≡ (z̃t, z̃t−1, . . . , z̃t−(L+1)) ∈
R2L. Notice that ~xt = (I− ΛM′)~xt and~xt = (I− ΛM′)−1~xt where I is a 2L× 2L
identity matrix, Λ is a diagonal matrix where Λ(2i,2i) = 1 and Λ(2i−1,2i−1) = 0 for
all i = 1, 2, · · · , L, and M is a shift matrix:

M =

[
02×(2L−2) 02×2

I(2L−2)×(2L−2) 0(2L−2)×2

]
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Then, note that p∗i,t ≈ H′~xt where H ∈ R2L is the truncated matrix analog of the
lag polynominal, and is endogenous to the problem. Our objective is to find the
general equilibrium H along with the optimal information structure that it implies.

Moreover, note that at = H′a~xt and ut = H′u~xt whereH′a = (1, 0, ρa, 0, ρ2
a, 0, . . . , ρL−1

a , 0)
and H′u = (0, 1, 0, ρu, 0, ρ2

a, . . . , 0, ρL−1
u ).

We will solve for H by iterating over the problem. In particular, in iteration
n ≥ 1, given the guess H(n−1), we have the following state space representation
for the firm’s problem

~xt =



0 0 · · · 0 0 0
0 1 · · · 0 0 0
1 0 · · · 0 0 0
0 1 · · · 0 0 0
...

... . . . ...
...

...
0 0 · · · 1 0 0


︸ ︷︷ ︸

A

~xt−1 +



1 0
0 1
0 0
...

...
0 0


︸ ︷︷ ︸

Q

zt, p∗i,t = H′(n−1)~xt

Now, note that

pt =
∫ 1

0
pi,tdi = H′(n−1)

∫ 1

0
Ei,t[~xt]di ≈ H′(n−1)

[
∞

∑
j=0

[(I−K(n)Y
′
(n))A]jK(n)Y

′
(n)M

′j
]
~xt

= H′(n−1)X(n)~xt = H′p~xt

Let xt = H′x~xt, it = H′i~xt, and πt = H′π~xt = H′p(I−ΛM′)−1(I−M′)~xt. Then the

households Euler equation, xt = E
f
t

[
xt+1 − 1

σ (it − πt+1)
]
+ E

f
t [y

n
t+1]− yn

t , gives:

Hi = σ
(
M′ − I

)
Hx +

σ(1 + ψ)

σ + ψ

(
M′ − I

)
Ha + M′Hπ

The Taylor rule, it = ρit−1 +(1− ρ)
(
φππt + φxxt + φ∆y (yt − yt−1)

)
+ ut, gives:

(I− ρM)Hi = (1− ρ)

(
φπHπ + φxHx + φ∆y (I−M)

(
Hx +

1 + ψ

σ + ψ
Ha

))
+ Hu

These give us Hx and Hi and we update new H(n) using H(n) = Hp + α(I −
MΛ′)Hx. We iterate until convergence of H(n).
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E.4 Impulse Response Functions

For both the pre-Volcker and post-Volcker parameterization of monetary policy in
Table 2, Figure F.1 shows the impulse responses of the model variables to one stan-
dard deviation TFP and monetary policy shocks. The main takeaway from these
IRFs is that inflation, output, and both nominal and real interest rates respond
more to shocks under the pre-Volcker parameterization of monetary policy.

F Appendix Figure and Tables
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Figure F.1: Impulse Responses to Technology and Monetary Shocks

Notes: This figure plots impulse responses of inflation, output, nominal rates, and real interest
rates to a one standard deviation shock to technology (upper panels) and those to a one standard
deviation shock to monetary policy (lower panels). Solid black lines are the responses in the
model with the post-Volcker calibration while dashed gray lines are the responses in the model
with the pre-Volcker calibration.
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Table F.1: Estimates of the Taylor Rule

constant ρ φπ φ∆y φx

Pre-Volcker 0.096 0.957 1.589 1.028 1.167
(1969–1978) (0.187) (0.022) (0.847) (0.601) (0.544)
Post-Volcker -0.310 0.961 2.028 3.122 0.673
(1983–2007) (0.062) (0.015) (0.617) (1.090) (0.234)

Notes: This table reports least squares estimates of the Taylor rule. We use the Greenbook fore-
casts of current and future macroeconomic variables. The interest rate is the target federal funds
rate set at each meeting from the Fed. The measure of the output gap is based on Greenbook
forecasts. We consider two time samples: 1969–1978 and 1983–2007. Newey-West standard er-
rors are reported in parentheses.

Table F.2: Estimates of the New Keynesian Phillip Curve

(1) Output gap (2) Output (3) Adj. output gap

Pre-
Volcker

Post-
Volcker

Pre-
Volcker

Post-
Volcker

Pre-
Volcker

Post-
Volcker

Panel A. Standard New Keynesian Phillips Curve
Slope of NKPC (κ) 2.751 0.846 -0.347 -0.231 -0.278 -0.057

(0.101) (0.020) (0.020) (0.007) (0.034) (0.013)
Forward-looking (γ) 0.901 0.894 2.459 1.649 2.399 1.592

(0.055) (0.016) (0.043) (0.013) (0.041) (0.011)

Panel B. Hybrid New Keynesian Phillips Curve
Slope of NKPC (κ) 1.020 0.249 -0.128 -0.07 -0.057 -0.021

(0.063) (0.012) (0.013) (0.004) (0.016) (0.005)
Forward-looking (γ f ) 0.738 0.649 1.420 0.931 1.299 0.848

(0.027) (0.006) (0.049) (0.016) (0.038) (0.010)
Backward-looking (γb) 0.335 0.393 0.304 0.356 0.332 0.392

(0.005) (0.003) (0.011) (0.007) (0.009) (0.004)

Panel C. Hybrid New Keynesian Phillips Curve (γ f + γb = 1)
Slope of NKPC (κ) 1.160 0.304 0.035 0.027 0.024 -0.012

(0.029) (0.007) (0.001) (0.001) (0.007) (0.003)
Forward-looking (γ f ) 0.666 0.612 0.549 0.499 0.554 0.512

(0.005) (0.003) (0.002) (0.001) (0.002) (0.001)

Notes: This table shows the estimates of the NKPC using simulated data from the baseline model
presented in Section 4.2. Column (1) and (2) show the estimates of the NKPC using the simulated
output gap and output data, respectively. Column (3) shows the estimates using the simulated
output gap data, which are adjusted by subtracting moving averages of natural level of output
from actual output. Panel A shows the estimates of the standard New Keynesian Phillips curve
without backward-looking inflation and Panel B shows the estimates of the hybrid New Key-
nesian Phillips curve. Panel C shows the estimates of the hybrid New Keynesian Phillips curve
with a coefficient restriction, γ f + γb = 1. Four lags of inflation and output gap (or output) are
used as instruments for the GMM estimation. A constant term is included in the regressions but
not reported. Newey-West standard errors are reported in parentheses.
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