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Abstract

This paper characterizes the solution for optimal information acquisition under ra-

tional inattention for Gaussian processes, and shows that limited attention creates a

forward looking behavior among agents, even when their decisions depend only on the

current realizations of the shocks. Applied to the pricing theory, the results of the paper

imply a forward looking pricing scheme. In an economy with perfectly flexible prices,

where firms’ optimal prices depend only on the current realization of their marginal

cost, agents face the following trade-off in choosing their information structure: on one

hand, they want to learn the current level of their marginal cost, to which their current

decision depends. On the other hand, however, they also have an incentive to learn

about the best possible forecasts of future marginal costs as they do not want to make

large mistakes in pricing when those periods arrive. Thus, they choose signals that not

only inform them about their current marginal cost, but also about the best forecasts

of its future realizations, which leads to a forward looking Phillips curve. This implies

that, under forward guidance, when future monetary policy shocks are announced be-

fore their realization, firms optimally choose to acquire information about those shocks,

and react to them before they happen, a feature that other models of information

rigidity, such as sticky information or reduced-form noisy information models, miss.
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1 Introduction

This paper proposes a new tractable approach for characterizing the optimal solution for

dynamic rational inattention models with Gaussian fundamentals, and shows that rationally

inattentive agents have a forward looking behavior in their information acquisition, even when

their decisions only depend on the current realization of their fundamentals. In particular,

agents face the following trade-off in gathering information about their fundamental: on one

hand they want to know the current realization of the fundamental as their contemporaneous

payoff depends on it; however, on the other hand, they also want to learn about the future

path of their fundamental to minimize the distance of their perception when those periods

arrive. This leads agents to choose signals that not only includes the current value of the

fundamental, but also the best possible estimates of its future values. Therefore, when agents

choose their optimal actions under such signals, a forward looking pattern in actions emerge

as at each period the agent’s information set incorporates the future path of the fundamental.

Applied to the pricing theory, this introduces a forward looking Phillips curve, an im-

portant feature that has been missing from the sticky and reduced-form noisy information

models1. The importance of expectations of future inflation on its current realization has

been the cornerstone of the modern analysis of monetary policy. This forward looking behav-

ior has been micro-founded in the economic literature by introducing price rigidities such as

sticky prices or menu cost models. These models, however, has been criticized for not being

able to match the inertial response of inflation to monetary policy shocks, a feature that has

been shown to be consistent with sticky or noisy information models2.

While noisy and sticky information models are consistent with the inertial response of

inflation, we show that they induce a pricing behavior under which inflation does not depend

on firms’ expected future inflation. Therefore, each class of micro-founded models of pricing

fail to capture an important feature of the pricing behavior of the firms. Perhaps it is because

of these shortcomings that, despite the lack of strong micro foundations, reduced-form hybrid

models of the Phillips curve, such as sticky prices with indexation3, are widely used to assess

different policies, as they have proven to be much more consistent with inflation dynamics

1By reduced-form noisy information models, we refer to models in which agents are assumed to observe
noisy signals of the fundamentals where their signal structure is assumed to be exogenously determined. In
this sense, rational inattention models with Gaussian signals are micro-founded noisy information models
that endogenize information structure of the agents by allowing them to choose their signal structure in an
optimal manner.

2See, for instance, Mankiw et al. (2002); Woodford (2003).
3These are models that assume within sticky price models, firms who do not get to re-optimize, change

their prices with a rule of thumb. They have been widely criticized as the rule of thumb pricing neglects the
assumption of sticky prices that is the microfoundation of these models in the first place.
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observed in the data4.

The results of this paper, applied to the pricing theory, introduces a micro foundation

for inflation dynamics that incorporates both these features, even within a perfectly flexible

pricing environment: inflation has an inertial response to shocks due to the fact that rationally

inattentive firms have noisy information about them. More importantly inflation dynamics

depend on firms’ expectations of future inflation, as they optimally choose to allocate some

attention to those and form a prior about it before the period arrives. Intuitively, when faced

with limited attention, firms’ optimal response is to prepare themselves for future to avoid

big losses in profits over their lifetime.

To manifest the importance of this forward looking behavior in analyzing the effects of

monetary policy, we consider a forward guidance exercise under rational inattention and com-

pare it to sticky and reduced-form noisy information models. Forward guidance is modeled

by assuming that shocks to monetary policy can be observed beforehand. Since prices are

flexible, firms within sticky and reduced-form noisy information models5 do not respond at

all to this sort of policy. However, we show that when firms are allowed to choose their infor-

mation structure endogenously they optimally choose to pay attention to these news shocks,

and incorporate that information in their pricing scheme. This leads to dynamics in which

inflation responds to these shocks, even before they affect the fundamentals of firms.

While the form of the solution is given by the formulation of the attention problem, similar

to rational expectation models, the solution has be solved numerically. However, in special

cases, a closed form solution can be derived for the Phillips curve that allows us to understand

how rational inattention affects the dynamics of inflation and output. For instance, when

the aggregate demand follows a random walk, the Phillips curve is simply a proportional

relationship between output and inflation, where its slope is an increasing function of the

firms’ capacity of processing information. This implies that both the magnitude and the

persistence of the real effects of monetary policy are directly related to this capacity.

Moreover, a semi-closed form solution for the Phillips curve can be derived for the case

when shocks to aggregate demand are announced one period ahead, and the aggregate de-

mand, again, follows a random walk. The solution shows that rationally inattentive firms,

who do not fully discount future losses, optimally choose signals that incorporates these fu-

ture shocks. This leads to a Phillips curve in which inflation responds contemporaneously

to these announced shocks. The degree of this response depends on two key parameters:

the discount factor of the firms and their capacity of processing information. More patient

firms chooses signals that put higher weights on announced shocks and therefore react more

4See, for instance, Christiano et al. (2005)
5that assume agents only see the current realizations of their fundamentals.
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strongly to them. The effect of higher capacity, however, is more interesting. When capacity

of processing information increases, firms choose to be less informed of future shocks. This

is due to the fact that firms with higher capacity are more confident that they will know

about these shocks when the time comes, and since these shocks do not affect their current

fundamental they choose to simply ignore them.

This paper also contributes to the rational inattention literature in several dimensions.

First, we characterize and solve the attention problem of the agent as a sequential problem

of choosing priors and posteriors over time, for a given initial prior over the state of the

economy. The solution method relies on the fact that any stationary Gaussian process can

be approximated by an MA(T ) process for an arbitrarily large T , and thus the attention

problem boils down to choosing a vector of weights over the last T innovations of the process.

The Euler equation of the attention problem is derived based on this approximation, which is

then can be used to solve for the set of optimal signals. Furthermore, we show that even when

the fundamentals are not stationary, they can be transformed to choosing an stationary part

for the optimal signals based on the stationary parts of the fundamental. Thus, the method

introduced in the paper can be used for any ARIMA process.

Second, this formulation sheds some light on the economic trade-off of the agent in choos-

ing their information structure. Rationally inattentive agents are aware that they will never

perfectly observe the realizations of their fundamentals. Therefore, any signal that they get

at a given period will serve them in two dimensions: first, it will give them a posterior about

the current level of their fundamental, according to which they choose their optimal action,

and second, it will equip them with a prior over future realization of that fundamental, so

that when those periods arrive they would be able to better estimate what that fundamentals

are. This dynamic trade-off manifests itself in the optimal signal that agents choose at every

period: the signal not only incorporates information about the current fundamental, but also

includes information about the best possible estimates of future fundamentals that can be

formed at that period. In fact, the optimal signal will be a linear combination of the current

fundamental and the estimates of its future realizations. Thus, the optimal signal of an agent

for a Gaussian fundamental is one that allows the agent to form expectations over current

and future fundamentals: for example, in the case of an AR(2) fundamental, the optimal

signal can be written as a linear combination of the current value of the fundamental and its

lag, as those are sufficient for forming expectations over any future horizon.

Section 2 characterizes the rational inattention problem of an agent who follows a single

fundamental over time, Section 3 applies the results to the pricing theory.
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1.1 Literature Review

• This paper builds on the rational inattention literature and the seminal work of Sims

(2003). the rational inattention problem has been applied in various macroeconomic

problem. Maćkowiak and Wiederholt (2009, 2015) consider the rationally inattentive

firms and households and analyze the effects of the rational inattention on the dy-

namics of inflation and output in the economy. Most of the works focus on the static

decision problems. Paciello (2012) and Paciello and Wiederholt (2014) studies the ef-

fect of monetary policy under the rational inattention model. Our focus is the effect of

unconventional monetary policy, such as forward guidance, under our noble dynamic

rational inattention model which considers the dynamic incentives of firms’ decision

makers when the monetary authority announces the news about the future monetary

policy.

• There are two recent works that consider the dynamic rational inattention problem

under Gaussian process.

– Afrouzi (2016): dynamic problem but focus on the strategic incentives. This one

corresponds to our β = 0 case.

– One of the most related works is done by Maćkowiak et al. (2016). They consider

a dynamic rational inattention problem under Gaussian process. There are several

differences in the formulation and the application between their work and ours.

∗ 1. Different formulation: especially for the objective functions: In their model,

the time preferenceβ doesn’t affect on the optimal actions of decision makers

while our model implies the time preference parameter has non-trivial effects

on the optimal signals and thus on the optimal actions. This difference comes

from the different formulation of the model.

∗ 2. We find the necessary and sufficient conditions for optimality in the dy-

namic rational inattention problem.

∗ 3. Different applications: They apply their model in a business cycle model

with news shock and the price-setting problem of Woodford (2003). We focus

on the effect of forward guidance policy under the dynamic rational inatten-

tion.

∗ 4. We also apply our model in the price-setting problem but consider the

Phillips curve implied by our model and find the implication of forward-looking

motives in the Phillips curve.
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– Steiner et al. (ming) solve a general class of dynamic rational-inattention problems

with discrete choice that an agent repeatedly acquires costly information about

an evolving state. The solution of the dynamic RI problem in their model is a

dynamic logit rule with a bias. They consider general payoffs and distributions

in discrete environments while we focus on Gaussian fundamentals in continuous

choices.

• The Phillips curve that we derive from our model can be a micro foundation for

reduced-form hybrid models of the Phillips curve, such as sticky price with indexa-

tion(Christiano et al. (2005)) or rule-of-thumb firms of backward-looking pricing(Gali

and Gertler (1999)). Šauer (2016) derives the Phillips curve in the model of imperfect-

common knowledge with Rotemberg sticky pricing and find that this curve differs from

the Calvo version in a sense that expectations of future relative prices impact on cur-

rent inflation. We derive the forward-looking Phillips curve within a perfectly flexible

pricing environment under the dynamic rational inattention.

• Since our model formulate the dynamic incentives in agents’ information choice prob-

lem, related to the expectation formation. And one of th most relevant example that

we can apply for the expectation formation under dynamic setting is forward guidance

example.

– Forward guidance policy is an optimal policy commitment at the zero lower bound:

Krugman et al. (1998); Woodford (2003); Campbell et al. (2012)

– Gaballo (2016) studies the implications of forward guidance under the no-commitment

release of the policymakers’ expectations about the future economic outlook and

likely policy actions, on which the authority evidently has an informational ad-

vantage. In a two-period OLG model, agents need to forecast the future price

level, they observe the current price and perceive with idiosyncratic noise the

expectation announced by a more informed authority. When forward guidance

communication is loose, the market becomes a main source of information about

the future. Reliance on market information amplifies the impact of shocks on

prices, which increases ex ante uncertainty and worsens agents’ forecasting ability,

harming social welfare.

• Recent work studies the importance of expectation formations of agents to study the

puzzling high effectiveness of forward guidance, so called forward guidance puzzle.

– Del Negro et al. (2012) show that standard medium-scale DSGE models tend to
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overestimate the impact of forward guidance on the macroeconomy, a phenomenon

called the forward guidance puzzle.

– To reconcile this forward guidance puzzle, recent works are done in the sticky

information model.

∗ Kiley (2016) shows that in a zero-lower bound environment, fiscal and mon-

etary multipliers are smaller under the sticky information assumptions while

forward guidance multipliers can be very large under the common sticky-prices

New-Keynesian model.

∗ Carlstrom et al. (2015) examine a general class of interest rate pegs in a

variety of DNK models and find that standard versions of the model produce

counterintuitive reversals where the effect of the interest rate peg can switch

from highly expansionary to highly contractionary for modest changes in the

length of the interest rate peg. This unusual behavior does not arise in sticky

information models of the Phillips curve.

∗ Angeletos and Lian (2016): Forward guidance relies on shifting expecta-

tions of income and inflation. These expectations matter through general-

equilibrium mechanisms, including two known as the deflationary spiral and

the income multiplier. Recasting these expectations and these mechanisms in

terms of higher-order beliefs reveals how the predictions of the New-Keynesian

model—and some of its anomalies—hinge of the combination of a strong equi-

librium concept with strong informational assumptions. Relaxing these as-

sumptions anchors the expectations and attenuates the mechanisms. This

attenuation increases with the horizon at which forward guidance operates,

as well as with the degree of price flexibility. We thus lessen, not only the

forward-guidance puzzle, but also the paradox of flexibility. We also opera-

tionalize the notion that policy makers may find it hard to shift expectations

of income and inflation even if they can easily shift expectations of policy

∗ All these models introduce information frictions in their model and find that

this informational frictions help to mitigate the forward guidance puzzle. This

is obvious that the standard NK models with stick price are too forward-

looking in inflation and thus future news about the interest rates have huge ef-

fects on current inflation and output. On the other hand, the sticky-information

model has backward-looking component in the Phillips curve and thus the

power of forward guidance might be weak compared to the sticky-price model.

As we derive the Phillips curve, it depends not only on the expectations of
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future fundamentals, but also on the past average expectations about current

inflation and current output. This helps also to mitigate the forward guid-

ance puzzle. The forward-looking and backward-looking components in our

model can reconcile the gap between the powerful effects of forward guidance

in the standard NK model and the weak effectiveness of it in the informational

friction models.

2 Model

This section characterizes the attention problem of an agent who only follows a single stochas-

tic process over time. For example, this could be a firm that only follows its marginal cost

over time to decide on its optimal pricing strategy. While this section characterizes this

problem in an abstract manner, in later sections we come back to this example, and study

the economic implications of dynamic inattention in pricing.

The problem of an agent with limited attention, who follows a single stochastic process

over time, has two stages: at each point in time, the agent first decides what information

they want to gather about the stochastic process, and second, based on the information that

they get, they decide on an optimal action.

We solve this problem in a backward manner: in Section 2.1, we characterize the optimal

action profile for any arbitrary information structure, and then in Section 2.2, we present and

solve the attention problem of the agent to an stationary process, where they optimize over

a set of feasible information structures. Section 2.3 extends the results to an environment

where the agent follows a difference stationary process to prepare the model to tackle the

pricing problem of firms whose fundamentals are integrated of order one processes.

2.1 Environment Given an Information Structure

Suppose the agent tracks a fundamental that is characterized by a covariance stationary6

Gaussian process {xt : t = 0, 1, 2, . . . }. At each time t, xt realizes, and then the agent chooses

an action at ∈ R. For a possible realization of the fundamentals x̃ ∈ X̃ ≡ {(xt)∞t=0 |xt ∈ R,∀t ≥ 0},
and for a given sequence of actions ã = (a0, a1, a2, . . . ), the agent’s realized payoff is

L0(ã, x̃) ≡ −
∞∑
t=0

βt (at − xt)2 .

The agent does not observe {xt : t ≥ 0} directly, but sees another stochastic process

6This assumption will be relaxed in later sections.
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{st ∈ F : t = 0, 1, 2, . . . } that is jointly distributed with the process xt, where F is the set

on which the signals are realized. Note that st can be a vector of signals instead of a single

signal that are realized at time t. For any t ≥ 0, let st ≡ (s0, s1, . . . , st) ∈ F t be a possible

realization of the signals until time t, and let St ≡ {st|st ∈ F t} be the set of all possible

realizations of signals until time t.

At each time t, having observed st ∈ St the agent chooses an action at ∈ R. Therefore,

an action profile is a sequence of functions that map the set of signals to an action in R. Let

Ã be the set of all possible action profiles:

Ã ≡
{
ã = (at)

∞
t=0|at : St → R,∀t ≥ 0

}
,

then the agent’s problem in choosing the optimal action profile is

L0 ≡ min
ã∈Ã

∞∑
t=0

βt
∫
st∈St

∫
xt∈R

(
at(s

t)− xt
)2
ft
(
xt, s

t
)
dxtds

t

where for st ∈ St and xt ∈ R, ft (xt, s
t) is their joint density. The first order condition with

respect to at(s
t) is then

∫
xt∈R (a∗t (st)− xt) ft (xt, s

t) = 0

⇒ a∗t (st) =
∫
xt∈R xt

ft(xt,st)∫
xt∈R

ft(xt,st)dxt
dxt

⇒ a∗t (s
t) = E {xt|st} ,

where E{.} is the mathematical expectation operator. Under this optimal action profile,

the expected net present value of all future losses boils down to a weighted average of the

conditional variances of xt:

L0 =
∞∑
t=0

βt
∫
st∈St

∫
xt∈R

(
E{xt|st} − xt

)2
ft
(
xt, s

t
)
dxtds

t

=
∞∑
t=0

βtvar
{
xt|St

}
. (1)

Hence, the agent’s objective in choosing her information structure would be minimize this

weighted average of conditional variances over time subject to the informational constraints

that she faces.
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2.2 The Information Choice Problem

To characterize the agent’s attention problem we need to specify two things; (1) the set of

the objects to which the agent can pay attention at each time, and (2) the constraint that

she faces in allocating her attention among those objects.

To specify the first one, since xt is a covariance stationary Gaussian process, by Wold’s

theorem it can be decomposed to its innovation process:

xt =
∞∑
j=0

wjut−j,

where ut−j’s are uncorrelated and the unconditional distribution of each of them is the stan-

dard normal. Since {xt : t ≥ 0} is stationary,
∑∞

j=0w
2
j is finite. This implies that for any

arbitrary ε > 0, ∃T ∈ N such that
∑∞

j=T+1 w
2
j < ε, meaning that xt can be approximated in

a probabilistic sense by an MA(T ) process:

∀ε > 0,∃T ∈ N, P r

(∣∣∣∣∣xt −
T∑
j=0

wjut−j

∣∣∣∣∣ > ε

)
< ε.

This approximation will be helpful in later sections in avoiding infinite dimensional covariance

matrices, which may not exist or may not inherit the properties of their finite counterparts.

Also, it justifies using a truncation of the process as we are going to use computational

methods to solve for the solution, when a closed form does not exist.

For an arbitrarily large T ∈ N, we use this approximation for the rest of the paper. Now,

In matrix notation

xt ≈ w′ut,

where w = (w0, w1, w2, . . . , wT )′ is the vector of weights, and ut = (ut, ut−1, ut−2, . . . , ut−T )′.

We assume that at time zero, in addition to u0, the nature also draws a sequence of (u−i)
T
i=1

from the standard normal. This decomposition gives us the finest set of independently dis-

tributed set of random variables that the agent might want to know, depending on her optimal

attention strategy. Intuitively, since ut−i’s are independent, paying attention to each of them

does not reveal any information about the rest. Moreover, since at any given time ∀τ > t, uτ

is not drawn by the nature yet, the vector ut contains all the elements that agent can pay

attention to at time t.

Also, to specify the information constraint, following the rational inattention literature,

we assume that at any given point in time the agent cannot process more than κ bits of

10



information, as measured by the reduction in entropy. Formally, this constraint is given by

I
(
st,ut|St−1

)
=

∫
(st,ut)

log2

(
ft(ut, st)

ft(st)ft−1(ut)

)
d (st,ut)

≤ κ.

where ft(.) and ft−1(.) denote densities generated by St and St−1 respectively. The informa-

tion choice of the agent can in fact be viewed as choosing these joint distributions over time:

at any time t, the agent inherits her chosen distribution, ft−1, which gives her a prior about

ut, and then chooses a new ft subject to the above information constraint. We assume that

at the beginning of time, t = 0, as the nature draws u0, the agent is born with a prior f−1(.)

over u−1.

Therefore, the information problem of the agent at time zero is

min{ft}∞t=0
L0(f−1) =

∑∞
t=0 β

t
∫
st∈St

∫
xt∈R (E{xt|st} − xt)2

ft (xt, s
t) dxtds

t

s.t. I (st,ut|St−1) ≤ κ

Maćkowiak and Wiederholt (2009) show that when the period loss functions are quadratic

and priors are Gaussian, then the optimal signals under rational inattention are also Gaussian.

While this result remains to be proven in this setting, for now, we assume that given a

Gaussian initial prior at time zero the agent will choose Gaussian signals over time.

Hence, at any point in time, t ≥ 0, the agent is born with a Gaussian prior over ut.

Formally,

ut|St−1 ∼ N
(
ut|t−1,Σt|t−1

)
where Σt|t−1 ≡ Et−1

{(
ut − ut|t−1

) (
ut − ut|t−1

)′}
is the covariance matrix of the agent’s prior

over ut at time t.

Moreover, the set of all signals at time t is given by all the stationary Gaussian signals

over ut:

SFt ≡
{
st = y′ut + et|y ∈ RT , et ∼ N

(
0, σ2

e

)
, et ⊥ ut

}
.

While it remains to be proven rigorously, for now we assume that at any t ≥ 0, the agent

only chooses to see a single signal in SFt 7.

7This should follow from the fact that the agent only chooses a single action, at, at any t ≥ 0: Suppose
there is a solution in which the agent gets more than one signal at any time. Since the agent chooses a single
action at any time, ultimately they combine these signals through an optimal policy function to their action.
From previous section we know that given any information structure this action is simply the conditional
expectation of xt. As conditional expectations of Gaussian variables, given Gaussian signals, are linear,
the optimal policy function for the agent’s action is also linear in the underlying signals. However, since
SFt is closed under linear operations, there is a single signal in SFt that generates the same process for the
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Lemma 1. Assume that the agent gets Gaussian signals over time. At any t ≥ 0, given

that ut|St−1 ∼ N
(
ut|t−1,Σt|t−1

)
, for any st ∈ SFt , such that st = y′ut + et, the information

capacity constraint reduces to

y′Σt|t−1y ≤
(
1− 2−2κ

)
var

{
st|St−1

}
.

Proof. We use the entropy definition of the mutual information, and the fact that entropy of

a Gaussian is a constant plus the log of its variance:

I
(
st,ut|St−1

)
= h

(
st|St−1

)
− h

(
st|ut, St−1

)
=

1

2
log2

(
var {st|St−1}

var {st|St−1} − y′Σt|t−1y

)
Thus I (st,ut|St−1) ≤ κ⇔ y′Σt|t−1y ≤ (1− 2−2κ) var {st|St−1} . Q.E.D.

Moreover, since inference is independent of scale, meaning that for α 6= 0, st and αst

contain the same information about ut, we can normalize the signals such that var {st|St−1} =

1, ∀t ≥ 0. Let ŜFt =
{
y|st = y′ut + et ∈ SFt , var {st|St−1} = 1

}
be the set of all feasible

signals that satisfy this normalization. Notice that the objects of ŜFt are vectors of y’s and

not signals, as there is a one to one mapping between the two: every signal is a weighted

average of the elements of ut, plus a white noise. From now on, we will refer to signals

through these weight vectors. Intuitively, choosing a signal for the agent is nothing more

than choosing how much weight she wants to put on each of ut−i’s, for i ≥ 0.

To pin down the dynamics of the attention problem, we need to specify how priors evolve

over time as a function of the signal choices of the agent. Given a prior at time t, ut|St−1 ∼
N
(
ut|t−1,Σt|t−1

)
, and a signal choice, yt ∈ ŜFt , the agent’s posterior at time t is given by the

Kalman filter:

ut|St ∼ N
(
ut|t,Σt|t

)
such that ut|t = ut|t−1 + Σt|t−1yt

(
st − y′tut|t−1

)
, Σt|t = Σt|t−1 − Σt|t−1yty

′
tΣt|t−1 (2)

Also, to derive the law of motion for the prior, notice that ut itself evolves according to

ut+1 =

[
ut+1

ut

]
= Mut + ut+1e1,∀t ≥ −1

conditional expectations, and hence the same expected loss.
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where M is the lower shift matrix8, and e1 is the first column of the identity matrix. Since

ut+1 is drawn at time t+ 1, it is orthogonal to all the agent’s information until t. Hence,

ut+1|St ∼ N
(
ut+1|t,Σt+1|t

)
such that ut+1|t = Mut|t

, Σt+1|t = MΣt|tM
′ + e1e

′
1 (3)

Therefore, given Σt|t−1, and a signal yt ∈ ŜFt , the agent’s prior at t + 1 is given by (2) and

(3).

Now, by (1), and the fact that var {xt|St} = w′Σt|tw, we can rewrite the agent’s attention

problem as9

L0

(
Σ0|−1

)
= min

{yt∈ŜFt }∞t=0

∞∑
t=0

βtw′Σt|tw (4)

s.t. y′tΣt|t−1yt ≤ 1− 2−2κ

Σt|t = Σt|t−1 − Σt|t−1yty
′
tΣt|t−1

Σt+1|t = MΣt|tM
′ + e1e

′
1

Σ0|−1 � 0 given.

Theorem 1. Given an initial prior, u0 ∼ N
(
u0|−1,Σ0|−1

)
, the signals, {yt}∞t=0, that solve

the agent’s attention problem as specified in (4) are given by the following Euler equation

φtyt = (ww′ + Xt) Σt|t−1yt

Xt = βM′ (ww′ + Xt+1 − φt+1yt+1y
′
t+1

)
M.

where βtφt is the Lagrange multiplier on the information capacity constraint, and Xt is the

matrix of Lagrange multipliers on each constraints of the evolution of the prior. Let X̂t =

ww′ + Xt. Then, this signals, {yt}∞t=0, are optimal if and only if for every t, φt is the

largest eigenvalue of X̂tΣt|t−1 and yt is the corresponding eigenvector. Moreover, let Eft {.} ≡
E {.|ut} be the mathematical expectation operator of an agent with full information about ut.

8M is a T × T matrix with ones on its sub-diagonal and zeros elsewhere. Operating from left, it shifts a
vector down by 1 element and sets the first element of the new vector to zero.

9Σ0|−1 � 0 means that Σ0|−1 is positive semi-definite.
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Then, the optimal signal of the agent at time t is of the following form:

s∗t =
∞∑
j=0

βjbj,tEft {xt+j}+ et.

for a set of real coefficients
{

(bj,t)
∞
j=0

}∞
t=0

, and where et ⊥ ut is the rational inattention error

of the agent.

Proof. See Appendix A.

Definition 1. We call an initial prior, Σ, a steady state prior if it reproduces itself over time,

meaning that for Σ, ∃y such that if Σ0|−1 = Σ, then the constant sequence {y}∞t=0 solves the

agent’s attention problem, and Σt+1|t = Σ,∀t ≥ 0. This implies that (Σ,y) should satisfy the

following conditions:

φy = (ww′ + X) Σy ,

X = βM′ (ww′ + X− φyy′) M ,

Σ = M (Σ− Σyy′Σ) M′ + e1e
′
1 ,

y′Σy = 1− 2−2κ .

Since the agent’s attention problem is deterministic, the steady state prior can be thought

of as the prior that emerges when the agent sees a sufficiently large number of signals. In

later sections, when using computational methods, we will use this steady state prior to avoid

time varying signals.

Corollary 1. Suppose {xt : t ≥ 0} follows an ARMA(p,q) process. Then, the optimal signal

depends only on p − 1 lags of xt and q − 1 lags of ut. Formally, if xt =
∑p

i=1 ρixt−i +∑q
j=0 θjut−j. Then,

s∗t =

p−1∑
i=0

ci,txt−i +

q−1∑
i=0

di,tut−i + et.

for a set of real coefficients
{

(ci,t)
p−1
i=0 , (di,t)

q−1
i=0

}∞
t=0

. Moreover, these coefficients are time

invariant in the steady state of the attention problem.

Proof. See Appendix A.

Theorem 1 shows that the optimal signals are chosen under a forward looking behavior:

each signal not only gives the agent information about the current state of the fundamental,

but also it will be useful by shaping the agent’s future priors. Each period, while the agent
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wants to know the realized value of xt as precisely as possible, they also do not want to be

“too” mistaken about future xt+i’s when those days come. As a result they choose a signal

that incorporates an optimal amount of available information10 about each of xt+i’s at time

t.

This trade-off is represented in the Euler equation: the vector yt, which includes the

optimal weights that the agent puts on each innovation, is a combination of w, which rep-

resents how each innovation will affects current periods fundamental, and matrix Xt, which

represents how today’s information will affect the evolution of the agent’s prior about each

innovation in the next period.

While this solution does not have a closed form in general, the following examples illustrate

some its properties.

Example 1. Suppose β = 0, meaning that the agent fully discounts the future losses; then,

the agent’s optimal signal at time t is to observe xt with the highest possible precision allowed

by their capacity:

s∗t = xt + et, et ∼ N
(

0,
w′Σt|t−1w

22κ − 1

)
, et ⊥ ut−i,∀i ≥ 0.

where et is the agent’s rational inattention error.

This result follows directly from the Euler equation in Theorem 111. Intuitively, when the

agent fully discounts the future, the evolution of the prior becomes irrelevant for them. At

each period, they only care about minimizing that period’s loss, and accordingly, they weigh

each innovation exactly according to how that innovation affects their fundamental.

Nevertheless, this is not the only case where the agent chooses to only see xt. The following

example shows that even when the agent does not fully discount the future, meaning that

β > 0, if xt follows an AR(1) process, the optimal signal is the same as the one above. The

reason is based on the very specific nature of the AR(1) process: while β > 0 implies that

the agent cares about the evolution of its prior and wants to infer the future realizations of

the fundamental, at any given time, the best forecast of any future fundamental is simply

proportional to today’s fundamental12; therefore, seeing xt as precisely as possible is sufficient

for inferring how it will evolve over time.

10Since future innovations are not realized at time t, the best information that the agent can get about
xt+i at time t is Eft {xt+i} = E{xt+i|ut}.

11Here, the optimal signal is normalized such that the coefficient on xt is equal to 1.
12Eft {xt+i} = ρixt.
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Example 2. Suppose xt follows an AR(1) process such that xt = ρxt−1 +ut, then the optimal

signal at time t is given by

s∗t = xt + et, et ∼ N
(

0,
w′Σt|t−1w

22κ − 1

)
, et ⊥ ut−i,∀i ≥ 0.

where w = (1, ρ, ρ2, . . . ), and w′Σt|t−1w =
1−(ρ22−2κ)

t

1−ρ22−2κ + (ρ22−2κ)
t
w′Σ0|−1w,∀t ≥ 1. Also,

agent’s optimal action profile, a∗t (st), is given by

a∗t
(
st
)

= 2−2κρa∗t−1

(
st−1

)
+
(√

(1− 2−2κ) w′Σt|t−1w
)
st

Proof. See Appendix A.

This result immediately breaks down if we move on to other processes as, in general,

seeing xt alone is not sufficient for the best possible inference of its future realizations. This

intuition sheds light on the result in Corollary 1: for any ARMA(p, q) process, all Eft {xt+i}’s
break down to seeing (xt, xt−1, . . . , xt−p+1, ut, ut−1, . . . , ut−q+1).

Example 3. For instance, if xt follows stationary AR(2) such that xt = (0.95 + ρ)xt−1 −
ρxt−2 + ut,

13 in order to form expectations over xt+i, the agent needs to see both xt and

xt−1, and according to Corollary 1, their optimal signal in the steady state of the attention

problem is simply a weighted average of the two:

s∗t = xt + γxt−1 + et,

where et is the rational inattention error of the agent14. While having xt in their signal helps

the agent to both predict the current realization of the fundamental, and prepare themselves

with shaping a better prior for predicting its future values, the presence of the parameter γ

is purely due to the agent’s desire to infer about the future realizations of the fundamental.

In fact, in absence of this desire, as we saw in Example 1, the agent will choose γ to be zero.

Hence, the magnitude of γ is directly linked to the agent’s intertemporal incentive to acquire

information.

An interesting exercise is to analyze how this intertemporal incentive depends on the

underlying parameters of the model, namely the discount factor, β; the inertia parameter, ρ;

and the agent’s capacity of processing information κ. To do so we solve the attention problem

13Here ρ measures the degree of inertia in the AR(2) process. For instance ρ = 0 corresponds to an AR(1),
and ρ > 0 corresponds to AR(2) with a humped shape response to ut.

14Again, since inference is independent of scale, the signal is presented with a normalization such that the
coefficient on xt is equal to 1.
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computationally and plot the magnitude of the coefficient on xt−1 in the optimal signal, γ,

versus different values of these underlying parameters15.

Figure 1a shows that the intertemporal incentive of the agent in acquiring information

increases with β. A higher discount factor means that the agent values future losses more,

and hence has a higher incentive to minimize those losses by being able to predict future

fundamentals more precisely. This, in turns, leads to a higher coefficient on xt−1 in the

optimal signal that the agent gets at time t.

Figure 1b shows the degree of the agent’s forward looking behavior increases with the

degree of inertia in the AR(2) process. To better understand this result, first let us consider

the case of ρ = 0, which corresponds to the AR(1) case in Example 1. Recall that with

an AR(1), knowing xt is sufficient for predicting the future realizations of the fundamental

conditional on time t information. Therefore, the agent chooses to only see xt as precisely as

possible. However, as ρ increases, xt is no longer sufficient for predicting future realizations

of the fundamental, and the agent needs to include xt−1 in their signal to be able to do so.

Therefore, with higher ρ’s the agent will choose a higher weight on xt−1.

Finally, the most interesting case is to see how capacity of processing information affects

the agent’s intertemporal incentive in acquiring information. Figure 1c shows that as the

capacity increases16 the agent’s incentive to infer about future realizations of the fundamental

decreases. The higher the capacity of processing information, the less concerned the agent is

about figuring out what is going to happen in the future, as they will have enough resources

to acquire sufficient information when the time comes. The case of λ = 1 shows that an agent

with infinite capacity17 is completely ignorant of the evolution of xt over time, and chooses

to only see xt at any given time t. Moreover, their infinite capacity, however, guarantees

them a perfectly precise signal that minimizes their life time losses to zero. On the contrary,

when the capacity of processing information is low, the agent’s optimal strategy is to get a

signal that reveals information not only about the current state of their fundamental, but

also about what it will be in the future.

Example 4. It is also an interesting exercise to see how the optimal action of the agent

responds to a shock to the fundamental. Figure 2a shows the impulse response of the agent’s

action18 to a 1% shock to an AR(1) fundamental, xt = 0.9xt−1 + ut. While the fundamental

jumps to 1 on impact and decays exponentially, the agent responds with inertia. The reason

15The baseline values set for the parameters are as follows: β = 0.95, ρ = 0.5 and κ = 1.
16We consider a monotone transformation of the capacity defined as λ ≡ 1− 2−2κ. λ is strictly increasing

in the capacity of processing information. λ = 0 corresponds to zero capacity, κ = 0, and λ = 1 corresponds
to infinite capacity, κ→∞.

17which corresponds to full-information rational expectations.
18As the agent’s optimal action depends also on their rational inattention errors over time, we consider the

mean of their action over time.
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is due to the noisy signal that the agent gets. On impact the agent sees a high signal, that,

from their perspective, can be either due to an increase in their fundamental, or simply a

rational inattention error. However, as time passes and they keep seeing high signals, they

become more sure of the fact that the high signals are due to an increase in the fundamental,

and their action catches up with the fundamental.

Moreover, Figure 2b shows the impulse response of the agent’s average action to a 1%

percent shock to an AR(2) fundamental, xt = 1.45xt−1− 0.5xt−2 +ut. Recall from example 3

that unlike the case of the AR(1) fundamental, in this case the agent’s optimal signal depends

on how much they discount future losses. The dashed curve with circle markers shows the

impulse response of the fundamental to a 1% shock; the dashed curve with square markers

shows the path of the agent’s action when they fully discount their future losses, and the

dash-dotted curve with star markers shows the impulse response of the agent’s action when

they discount the future losses with rate β = 0.99. Again, the agent responds with inertia

due to the same reasons as above.

An interesting observation is the difference between the response of the actions for the

two different discount rates: first notice that both agents operate with the same capacity,

so none of them can act systematically better than the other, meaning that it can not be

the case the one of them has a path for their action that is always closer to the fundamental

compared to the other one. This is represented in the graph by the fact that the patient agent

reacts more confidently on the impact, but falling behind in later periods. In contrast, the

impatient agent is relatively more uncertain of the increase on impact, as a result of which

reacts with more hesitations, but they get to be closer to their ideal action in later periods.

This difference is due to their information acquisition incentives: the patient agent is more

forward looking in getting their signal than the impatient one. Hence, on impact when the

fundamental is going to increase, the patient agent chooses a higher action than the impatient

one. However, as soon as fundamental peaks and starts to decrease, the same forward looking

behavior causes the patient agent to choose a lower action than the impatient one. Thus,

the forward looking behavior created by the rational inattention motives, causes the agent

to change the magnitude of their response due to the future path of the fundamental, even

though that the agent does not face any kind of rigidities in choosing their action.

2.3 Attending to Difference Stationary Processes

So far we have only considered the case of stationary fundamentals, and characterized the so-

lution of the attention problem under this assumption. However, in many economic problems

agent’s do not necessarily follow a stationary process. For instance, firms in the economy
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track their nominal marginal costs, whose levels are not stationary.

In this section, we relax the stationarity assumption, and characterize the attention prob-

lem when the fundamental has a unit root. Suppose the environment is the same as the

previous sections, but with the different that the agent follows a difference stationary Gaus-

sian process {xt : t = 0, 1, 2, . . . }, which implies that xt is integrated of order 1. Therefore,

since ∆xt is a stationary process, by Wold’s theorem it can be decomposed to its innovations

over time:

∆xt = dw′ut,

where dw′ = (dw0, dw1, dw2, . . . ) ∈ `2 is a square-summable sequence and ut = (ut, ut−1, ut−2, . . . )
′

is the sequence of independently distributed innovations of ∆xt, with ut−i ∼ N (0, 1) ,∀i. Now

let M be the infinite dimensional lower shift matrix19. Thus we can write

xt =
∞∑
i=0

dw′ut−i

=
∞∑
i=0

dw′M′iut

= dw′

(
∞∑
i=0

M′i

)
ut.

where M′ is the transpose of M, and the second equality is derived from the fact that20

ut−i = (ut−i, ut−i−1, ut−i−2, . . . ) = M′iut. Notice that
∑∞

i=0 M′i is the upper triangular matrix

whose (i, j)′th element is zero if i > j, and 1 if i ≤ j, ∀i, j. Also, notice that dw′ (
∑∞

i=0 M′i)

is a well-defined infinite dimensional vector whose i’th element is sum of the first i elements

of dw. Thus we can define the vector w such that

w ≡

(
∞∑
i=0

Mi

)
dw.

and

xt = w′ut.

Since the matrix
∑∞

i=0 Mi is infinite dimensional, we have to be careful about inverting

it, since, in general, infinite dimensional matrices do not necessarily inherit the properties

of their finite dimensional counterparts. Let I be the infinite dimensional identity matrix:

first, observe that I −M is a well-defined matrix with ones on its diagonal and −1’s on its

19M is matrix with ones in its sub-diagonal and zero elsewhere. Operated from left, it shifts an infinite
dimensional vector one element down, and replaces the first element of the new vector with zero.

20M′ is simply the matrix representation of the lag-operator: M′ut = ut−1 as L.ut = ut−1.
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sub-diagonal. Second, observe that[
(I−M)

(
∞∑
i=0

Mi

)]
(j,k)

=

1 j = k

0 j 6= k

Thus, (I−M)
∑∞

i=0 Mi = I. Thus, we now define (
∑∞

i=0 Mi)
−1 ≡ I−M, and we have21

dw = (I−M) w, w = (I−M)−1 dw

Thus,

xt = w′ut

= dw′ (I−M′)
−1

ut.

Now, let x̃t be a random walk such that x̃t = x̃t−1+ut =
∑∞

i=0 ut−i. Define ũt ≡ (I−M′)−1 ut

and observe that

(I−M′)−1ut = (x̃t, x̃t−1, x̃t−2, . . . )
′ ,

Now, since dw ∈ `2, we can again truncate the process of xt as follows22

xt ≈ dw′ũt

where, dw = (dw0, dw1, dw2, . . . , dwT )′ and ũt = (x̃t, x̃t−1, x̃t−2, . . . , x̃t−T )′. Similarly, trun-

cate the matrix M to a T × T lower shift matrix. Finally, observe that

ũt =



x̃t−1 + ut

x̃t−1

x̃t−2

...

x̃t−T


= (M + e1e

′
1) ũt−1 + ute1

where e1 is the first column of the T × T identity matrix and ut ∼ N (0, 1) , ut ⊥ ũt−1 is the

time t innovation to the process. This brings us back to a problem similar to the previous

section, but now the agent chooses a signal over ũt. Similar to before, we assume that the

agent starts with an initial prior over ũ0 ∼ N
(
ũ0|−1,Σ0|−1

)
, Σ0|−1 � 0.

21In fact, the matrix M is the matrix representation of the lag-operator. The equation (I −M)w = dw,
simply corresponds to the fact that for any difference stationary process xt, (1−L)φ(L)xt = ut, where φ(L)
is an invertible lag-polynomial.

22An argument similar to the case of stationary processes gives us this result, for any given prior over ũt.

20



Now, to specify the agent’s choice set of signals, we allow them to choose any signal over

ũt:

SFt ≡
{
st = dy′ũt + et|dy ∈ RT , et ∼ N

(
0, σ2

e

)
, et ⊥ ũt

}
.

Moreover, we again normalize the set of signals such vart−1(st) = 1, as inference is indepen-

dent of the scale of the signal. The set of signals at time t become

ŜFt =
{
dy|st = dy′ũt + et ∈ SFt , var

{
st|St−1

}
= 1
}
.

The agent’s attention problem can now be re-written as

L0

(
Σ̂0|−1

)
= min

{dyt∈ŜFt }∞t=0

∞∑
t=0

βtdw′Σt|tdw (5)

s.t. dy′tΣt|t−1dyt ≤ 1− 2−2κ

Σt|t = Σt|t−1 − Σt|t−1dytdy′tΣt|t−1

Σt+1|t = (M + e1e
′
1) Σt|t (M′ + e1e

′
1) + e1e

′
1

Σ0|−1 � 0 given.

This is now a choice problem within stationary signals as before, meaning that we have re-

written the agent’s problem in terms of choosing the stationary part of their signal dyt, given

the stationary part of their fundamental dw. Therefore, we can use the method presented

in Theorem 1 to derive the Euler equation of the agent’s problem:

φtdyt =
(
dwdw′ + X̂t

)
Σt|t−1dyt (6)

X̂t = β (M′ + e1e
′
1)
(
dwdw′ + X̂t+1 − φt+1dyt+1dy′t+1

)
(M + e1e

′
1) .

where φt is the Lagrange multiplier on the information processing constraint, and X̂t is the

matrix of Lagrange multipliers on the evolution of the priors.

Lemma 2. Suppose that the agent’s fundamental follows a first order integrated ARIMA

process xt. Then the optimal signals are of the form

s∗t =
∞∑
j=0

βjbj,tEft {xt+j}+ et

where Eft {.} ≡ E{.|ũt} is the expectation operator of an agent with full information at time

t, and et is the agents rational inattention error, and
{

(bj,t)
∞
j=0

}∞
t=0

is a set of sequences of

real coefficients that are given by the Euler equation above.
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Proof. See Appendix A.

Corollary 2. Suppose the agent’s fundamental follows an ARIMA(p, 1, q) process, then the

optimal signal is a linear combination of (xt, xt−1, . . . , xt−p+1, ut, ut−1, . . . , ut−q+1):

s∗t =

p−1∑
k=0

ck,txt−k +

q−1∑
l=0

dl,tut−k,

where
{

(ck,t)
p−1
k=0 , (dl,t)

q−1
l=0

}
are a set of real coefficients.

Proof. See Appendix A.

After solving for the optimal signal through the Euler equation, the evolution of the

optimal action, a∗t (st) = E {xt|st}, will be then given by the Kalman filter. Also, similar to

before we can define a steady state for the problem as an initial prior that reproduces itself

over time.

3 Application 1: A Rational Inattention Phillips Curve

In this section, we apply the results to derive a Rational Inattention Phillips curve.

3.1 Environment

Assume that there is a measure 1 of firms indexed by i ∈ [0, 1]. There is a price taking

final good producer that assembles the products of these firms to a single consumption good

through a CES aggregater. This implies that the demand function of firm i is given by

Yi,t = Yt

(
Pi,t
Pt

)−σ
where Yi,t is i’s output, Pi,t is its chosen price, Yt is the aggregate output and Pt is the

aggregate level of prices. Firm i’s flow profit function is given by

Π (Pi,t;Pt, Yt) = P 1−σ
i,t P σ

t Yt − TC (Pi,t;Pt, Yt)

where the first term is the firm’s revenue and the second term is a function that maps the firms

price, and the aggregate variables, to its total cost of production23. Let P ∗t = P ∗ (Pt, Yt) ≡
23We assume this function is twice differentiable in all its arguments, and convex in Pi,t so that the

maximum exists. Moreover, assume that TC(.; ., .) is homogeneous of degree zero in its first two arguments
so that only relative price of the firm matters.
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arg maxx Π (x;Pt, Yt) be the maximizer of this flow profit function at time t. Thus,

Π1 (P ∗t ;Pt, Yt) = 0.

A Taylor expansion of this first order condition around an optimal non-stochastic point

(P ;P, Y )24 gives

p∗t = pt +

∣∣∣∣Π13

Π11

Y

P

∣∣∣∣ yt
where small letter denote the log-deviation from the optimal non-stochastic point around

which we have linearized the equation, and α ≡
∣∣∣Π13Y

Π12P

∣∣∣ is the degree of strategic complemen-

tarity. Now, define the function L (Pi,t;Pt, Yt) as the flow loss in the profit of firm i for any

given price Pi,t:

L (Pi,t;Pt, Yt) = Π (P ∗t ;Pt, Yt)− Π (Pi,t;Pt, Yt) .

It is straight forward to show that this loss function, up to a second order approximation is

proportional to the quadratic difference between pi,t and p∗t .

L(Pi,t;Pt, Yt) =
1

2

∣∣Π11P
2
∣∣ (pi,t − p∗t )2 .

Thus p∗t = pt + αyt is the firms’ fundamental, and given its process, the firm’s problem is

the same as the one in section 2.1. Finally, to close the model, following the literature25, we

assume that the aggregate nominal GDP, Qt ≡ PtYt, is exogenous to the decision of firms,

and is set by the monetary authority. This implies

p∗t = (1− α) pt + αqt

Specifically, we assume that the growth rate of nominal GDP follows an ARIMA(1,1,0):

∆qt = ρ∆qt−1 + ut.

3.2 The Equilibrium

Let ũt be the vector of the random walk part of the nominal GDP until time t, as defined in

section 2.3, for an arbitrarily large truncation of the process T ∈ N. Thus,

qt ≈ dw′qũt s.t. dwq ≡ (1, ρ, ρ2, . . . , ρT ).

24The CES aggregation implies that, due to symmetry, in a non-stochastic optimal point all firms charge
the same price which turns to be the aggregate price.

25See, for instance, Maćkowiak and Wiederholt (2009); Woodford (2003); Mankiw et al. (2002).
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Each firm takes the process of p∗t as given and given a prior over ũ0 solves a rational inattention

problem as defined in previous sections. We assume that agents’ rational inattention errors

are orthogonal in the cross section so that the aggregate price only depends on ũt. Since qt

follows a difference stationary process, the attention problem of the agents are similar to the

one discussed in section 2.3.

Thus, a symmetric steady state rational inattention equilibrium to the model is a pair of

steady state prior and signal (Σ,dy), and a set of vectors {dwp∗ ,dwp} such that

1. Given that p∗t = dw′p∗ũt, the constant sequence {(Σt+1|t = Σ,dyt = dy)}∞t=0 is a

solution to each firms’ rational inattention problem

L0(Σ̂) = min
{dyt∈ŜFt }∞t=0

∞∑
t=0

βtdw′p∗Σt|tdwp∗ (7)

s.t. dy′tΣt|t−1dyt ≤ 1− 2−2κ

Σt|t = Σt|t−1 − Σt|t−1dytdy′tΣt|t−1

Σt+1|t = (M + e1e
′
1)Σt|t(M

′ + e1e
′
1) + e1e

′
1

Σ0|−1 = Σ given.

2. Given the the set of {pi,t}i∈[0,1], where each pi,t is implied by the Kalman filtering of

the sequence of optimal signals {s∗i,t = dy′ũt + ei,t}∞t=0,∀i∈[0,1], dwp is such that

pt =

∫ 1

0

pi,tdi = dw′pũt.

3. Given dwq and dwp, dw∗p is such that

p∗t = (1− α)pt + αqt ⇔ dwp∗ = (1− α)dwp + αdwq.

Such a solution can be derived by iteration. we start with guessing a process for wp∗ , in

particular, wp∗ = wq, the solution to the model when κ → ∞. Given the guess, we solve

for (Σ,y) using the steady state Euler equation of the attention problem derived in equation

6. Then, given the sequence of optimal signals implied by (Σ,y), we find dwp such that∫ 1

0
pi,tdi = dw′pũt using the Kalman filter. Finally, given dwp, we update our guess of

dwp∗ = (1− α)dwp + αdwq, and iterate until convergence.
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3.3 Some Special Cases

While the solution to the model does not have a nice representation in general, we can

investigate its properties through some special cases of the model, for which a representation

of the solution can be derived.

Example 5. (The case of a random walk with no strategic complementarity)

Suppose that the aggregate demand is a random walk, meaning that ∆qt = ut. Also assume

that there is no strategic complementarity in pricing, α = 1, then the Phillips curve under

rational inattention is given by

πt = (22κ − 1)yt

which together with the evolution of the aggregate demand implies that output and inflation

both follow an AR(1) process:

yt = 2−2κyt−1 + 2−2κut ,

πt = 2−2κπt−1 + (1− 2−2κ)ut

Proof. See Appendix A.

Woodford (2003) made the argument that noisy information models are well-equipped

for matching the persistence of the real effects of monetary policy, as observed in the data;

a feature that early models of information rigidity, such as Lucas (1972), failed to generate.

In spite of its very restrictive parameterization, the closed form solution of this example

sheds light on how rational inattention can create an endogenous real and persistent effect

for monetary policy, where both directly depend on firms’ capacity of processing information.

Figure 3 shows the impulse responses of inflation and output to a 1% shock to the aggre-

gate demand, for different values of κ. Lower capacity corresponds to a smaller response of

output on impact, which is accompanied by a larger response for inflation. The persistence of

the effect is lower for both inflation and output, when capacity is higher. For instance, for a

very large capacity, the shock has no effect on output at all. Moreover, inflation responds one

to one to the shock and is zero after the first period, meaning that there is zero persistence

in its response.

A shortcoming of this example, however, is that it fails to present the dynamic effects

of rational inattention, as the solution is independent of β, the discount factor of the firms.

The reason for this independence relates to the very specific nature of a random walk. Each

innovation has a symmetrically permanent effect on the optimal price of the firms, which

translates into a signal that is independent of how patient the firms are. Nevertheless, this is
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not true in general. For instance, later in Example 7 we show that even with a random walk

fundamental, the optimal signal depends on β when shocks are announced beforehand.

Example 6. (The effect of strategic complementarity when β = 0) Suppose β = 0,

then the optimal set of signals is given by sit = p∗t + eit,∀t,∀i. Also the Phillips curve under

rational inattention is

πt = Ẽt−1{πt + α∆yt}+ α(22κ − 1)yt

where Ẽt{.} ≡
∫ 1

0
E{.|Si,t}di is the average expectation of firms given the optimal signal

structure.

Proof. See Appendix A.

The full discounting of future profit losses, β = 0, leads firms to choose signals of their

current fundamental, p∗t , and gives rise to a Phillips curve without any forward looking

behavior. The semi-closed form of the Phillips curve, however, allows us to visualize the

effect of firms’ capacity and strategic complementarity on dynamics of inflation, as the slope

of curve depends only on the two. This slope increases with higher capacity or strategic

complementarity, which leads to the intuition that inflation should be more inertial when

either of these parameters are lower.

Moreover, this is an example with endogenous feedback in formation of firms’ expectations:

firms get a signal of their fundamental p∗t = (1 − α)pt + αqt, and choose their price at each

period given the sequence of their signals over time. This, in turn, shapes the path of the

fundamental as it depends on the aggregate price through α. Thus, intuitively, p∗t should

follow a more inertial path as the strategic complementarity increases, which would lead to

a more inertial path for aggregate prices.

Figure 4 shows the impulse responses of inflation and output to a 1% shock to aggregate

demand for two different values of strategic complementarity, when κ = 0.2. As expected,

inflation follows a more inertial path in presence of higher strategic complementarity, which

in turn translates to a more amplified response for output.

Moreover, Figure 5 shows the impulse responses of inflation and output for different levels

of capacity of processing information26. Higher capacity corresponds to a higher response of

inflation on impact, and less persistence as well as less humped-shape behavior for it over

time. In the extreme case of a very high capacity the response of inflation corresponds

one to one to the response of the growth of the aggregate demand, which is an AR(1) by

assumption. Output, on the other hand, responds more strongly to monetary policy when

capacity is lower. In fact, monetary policy is neutral when capacity is very high.

26The value of strategic complementarity in these responses is set to α = 0.5.
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3.4 Attention Allocation under Forward Guidance

So far we have considered some special cases of the model in which either β was assumed

to be zero (Example 6) or it was irrelevant due to strong assumptions on the nature of the

fundamental (Example 5). In this section, we present examples and results that illustrate the

forward looking behavior that a positive β induces through rational inattention, and compare

it to other models of information rigidity such as noisy information and sticky information

models. We start with a simple example of forward guidance, for which a closed form Phillips

curve can be derived.

Example 7. (Forward Guidance under Rational Inattention) Suppose that there

is no strategic complementarity in pricing and ∆qt = ut−1. This corresponds to a monetary

policy in which the shocks are announced a period before they take effect. While the funda-

mental of the firms has the same process as in example 5, the difference is that here firms

have the option to pay attention to the shock that is going to take effect in the following

period. In fact, the optimal signal incorporates information about ∆qt+1, and is given by

st = qt + γ∆qt+1 + et

where γ is implicitly characterized by the following two equations as a function of the discount

factor, β, and the capacity of processing information, κ:

(1−β)γ+βδ
1−γ = β

1−γδ

(1− δ(1− γ))(1− δγ) = 2−2κ

Here, γ is the optimal weight that firms put on ut = ∆qt+1, the news shock about the

next period monetary policy, relative to qt, their current fundamental. The purpose of this

example is therefore to see how this optimal weight depends on the two parameters of the

model, and whether inflation or output respond to the news shock. Even though, δ, which

is shown below to be related to persistence of the response of output, cannot be eliminated

in deriving a closed form solution for γ, we can derive a closed form solution of the Phillips

curve:

πt = δ
γδ

1− δ(1− γδ)
(yt−1 + γut−1) + δ

1− γδ
1− δ(1− γδ)

(yt + γut)

which implies that inflation not only responds to current output yt, and the current shock to

aggregate demand, ut−1, but also to the news shock ut. Notice that the response of inflation

to ut is proportional to γ, the optimal weight on ut in the optimal signal. Moreover, we can
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also characterize the joint equilibrium path of inflation and output over time:

πt = δyt−1 + (1− 2−2κ)ut−1 + γδ(1− γδ)ut

yt = (1− δ)yt−1 + 2−2κut−1 − γδ(1− γδ)ut

The response of output and inflation to the news shock is proportional to γ, and zero in net

as the shock is set to affect the aggregate demand in the next period. Moreover, we now have

an interpretation for 1−δ: it is the persistence of the response of output to the shocks. Figure

6 shows the equilibrium values of γ and 1 − δ for different levels of capacity and patience:

the dashed blue curves depict iso-capacity curves in the (γ, 1 − δ) space, and the red solid

lines are iso-patience curves. Each intersection is an equilibrium that corresponds to that

particular level of capacity and patience. Notice that higher β always corresponds to higher

value of γ: more patient firms have a higher incentive to know about the future path of their

fundamental. The more interesting observation is that higher capacity always corresponds

to a lower γ: firms with a larger capacity are more confident that when the time comes they

will be able to recognize their fundamental and therefore choose to ignore the news shock,

and pay a higher portion of their capacity to their current fundamental. Moreover, higher

capacity also translates to a lower persistence in response of output to shocks, an observation

similar to example 5.

Figure 7 shows the impulse responses of output and inflation in this setting under full

discounting of future losses, β = 0, and β = 0.99. When β = 0, the model behaves the same as

in example 5: firms completely ignore the news shock and wait until the time that the shock

hits to get information and react to it. However, when β > 0, firms optimally choose to pay

attention to the news shock and increases with an announced positive monetary policy shock:

at the time of the announcement firms get a high signal, but as they are not able to perfectly

differentiate between the current shock and the future shock they start increasing their prices

immediately. Since the aggregate demand has not increased yet at time zero, output falls to

compensate for the increase in prices. Intuitively, this result can be interpreted as follows:

a rationally inattentive firm that cares about its future losses will optimally choose to be

informed about news of monetary policy; however, this does not imply that they will have

sufficient information to perfectly differentiate the news about future monetary policy from

current policy. Accordingly, news about future shocks will have a real affect on the current

state of the economy.

Proof. See Appendix A.

To depart from this example, suppose now that ∆qt = ρ∆qt−1 + ut−τ , where τ is the
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degree of forward guidance: shocks to aggregate demand are announced τ periods before

taking effect. The goal here is to compare dynamic inattention with reduced-form noisy

information and sticky information models.

For reduced-form noisy information models, we simply consider the case of β = 0, which

corresponds to a setting when firms choose to only observe their current fundamental, as

shown above in example 6. This corresponds to a setting that is similar to the noisy infor-

mation models, which exogenously assume an information structure for the agents in which

the agent sees their current fundamental with an observation error. Recall from Example 6

that the Phillips curve in this setting is given by

πt = Ẽt−1{πt + α∆yt}+ α(22κ − 1)yt,

Where Ẽt−1{.} ≡
∫ 1

0
E{.|Si,t}di denotes the average expectation of firms conditional on their

time t− 1 information given by the signal vector Si,t = (p∗0 + ei,t, . . . , p
∗
t−1 + ei,t), and α is the

strategic complementarity in pricing.

Sticky information models assume that at each period only a fraction of firms update their

information, but those who do acquire perfect information about the state of the economy

and their expectations correspond to those of fully informed agent. For these models, we use

the Phillips curve derived in Mankiw et al. (2002):

πt = Êt−1{πt + α∆yt}+ α
λ

1− λ
yt,

where λ is the fraction of the firms that update their information at each period, and

Êt−1{.} = λ
∑∞

j=0(1− λ)jEft−j−1{.} is the average expectation of firms at time t− 1.

The similarity of the two Phillips curves is not a coincidence. In both models the response

of inflation, and the real effects of monetary policy, depends on two things: the a priori

expected changes in marginal cost, represented by time t−1 expectation term, and a surprise

element represented by the coefficient on yt: in both models as the degree of friction reduces,

either by a higher capacity of processing information or a higher fraction of firms updating

their information, the slope becomes steeper, and in the limit converges to a vertical Phillips

curve, in which there can be no surprises in monetary policy and therefore no real effects.

The fact that only yt appears in the Phillips curve corresponds to the fact that there is

no forward looking behavior in neither of these models: in the noisy information models it

is by the assumption that firms have no incentive to do so by construction. In the sticky

information model, it is because of the fact that firms who update their information can

perfectly differentiate between current shocks, and future ones. Accordingly, in choosing

their prices, they only incorporate information that is relevant for their current prices, and
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keep the information about future shocks out of their decision.

The Phillips curve under dynamic inattention is harder to derive analytically, but possible

to a degree:

Lemma 3. (The Phillips Curve under Dynamic Inattention) By Lemma 2 that the

optimal signals under dynamic inattention has the form s∗t =
∑∞

j=0 β
jbjEft {p∗t+j}+ et. Then,

given the sequence (bj)
∞
j=0, the Phillips curve under dynamic inattention is given by

πt = Ẽt−1{πt + α∆yt}+ 22κδ0

∞∑
j=0

βjbj(Eft {p∗t+j} − Ẽt{p∗t+j}),

where Eft {.} is the time t expectation operator of a fully informed agent, and Ẽt{.} is the

average expectation of firms at time t.

Proof. See Appendix A.

While we have to solve for (bj)
∞
j=0 numerically, this representation illustrate how dynamic

inattention introduces a forward looking behavior among agents. Each element of the infinite

sum represents the gap between a fully informed agent’s expectation and that of the firms.

The larger these gaps, the larger is the effect of monetary policy. More importantly, current

inflation depends not only on current output, which is embedded in the first element of

the infinite sum27, but also on all the future expectation gaps. Therefore, by altering these

gaps, any forward guidance policy can have immediate effects on inflation, and consequently

output.

Figure 8 shows the impulse responses of the three models to an announced 1% shock to

aggregate demand that is going to take effect in three periods (τ = 3). For this exercise

we have set κ = 0.5, ρ = 0.5, and α = 0.8. Moreover, in the sticky information model,

we have set λ = 0.2, so that the peak of output and inflation in this model and noisy

information (naive inattention) one would be the same28. In both sticky information and

naive inattention models the announced shock has no effect, as in the first firms completely

ignore it due the fact that it does not affect their current fundamental, and in the latter firms

who have updated their information can perfectly differentiate it from the current shocks. In

both these models, it is only after the shock takes effect that firms start to respond to it.

Output and inflation are more persistent in the sticky information model because this model

27Observe that the first element of the infinite sum is p∗t − Ẽt{p∗t } = αyt.
28There is no clear way that how these models should be compared. However, since the goal is to eventually

match these models to the observed behavior of output and inflation in the data, it seems reasonable to
compare them in such a manner.
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needs a relatively large amount of friction, λ = 0.2, to have the same peak effect on output

and inflation.

Unlike the former models, the dynamic inattention model exhibits immediate effects for

the announced shock: rationally inattentive firms who care about their future losses optimally

choose to be informed about future policy, but are not able to perfectly differentiate future

shocks from current ones due to their limited capacity in processing information. Therefore,

upon getting a high signal at time zero, they immediately respond by increasing which trans-

lates to an immediate increase in response of inflation. Since the shock has not taken effect

yet, output starts to fall to compensate for the increase in prices. The peak of output is larger,

however, when the shock takes effect. This is due to the fact that firms are actively paying

attention to future shocks, which comes at the cost of being less informed about past ones

compared to the naive inattention model. Therefore, both inflation and output demonstrate

more inertial behavior under dynamic inattention.

4 Application 2: A General Equilibrium Model of For-

ward Guidance

In this section, we study the effect of forward guidance in a general equilibrium environment

where each firm is rationally inattentive.

4.1 Environment

Households are fully rational and maximize their life-time utilities:

max Eft

[
∞∑
t=0

βt

(
C1−σ
t

1− σ
−
∫ 1

0
L1+ψ
it di

1 + ψ

)]

s.t. PtCt +Bt =

∫ 1

0

WitLitdi+Rt−1Bt−1 + Tt

where Lit is firm-specific labor supply and Rt−1 is nominal interest rate. First-order optimal

conditions are:

C−σt = βRtEft
[
C−σt+1

Pt
Pt+1

]
(8)

Cσ
t L

ψ
it =

Wit

Pt
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Households’ demand for the good for i is given by:

Cit =

[
Pit
Pt

]−ε
Ct

A firm i has a linear production function: Yit = Lit. Firm’s (real) marginal cost is:

mcit =
Wit

Pt

Given the signal choice, a firm maximize their flow profit:

max Eit
[(

Pit
Pt
− MCit

Pt

)
yit

]
= Eit

[(
Pit
Pt
−mcit

)[
Pit
Pt

]−ε
Yt

]

The first-order optimal condition is:

PitEit
[
P−εit P

ε−1
t Yt

]
=

ε

(ε− 1)
Eit
[
P−εit P

ε−1
t Yt (Ptmcit)

]
Market clearing conditions are:

Yit = Cit = Lit

Yt =

∫ 1

0

Yitdi

Combine equations:

P 1+εψ
it Eit

[
P−εit P

ε−1
t Yt

]
=

ε

(ε− 1)
Eit
[
P−εit P

ε−1
t Yt

(
P 1+εψ
t Y σ+ψ

t

)]
(9)

Now, log-linearize the equations around non-stochastic steady-state:

yt = Eft
[
yt+1 −

1

σ
(it − πt+1)

]
(10)

pit = Eit
[
pt +

σ + ψ

1 + εψ
yt

]
(11)

Assume the monetary authority have fully rational expectation and follows the standard

Taylor rule:

it = ρit−1 + (1− ρ) (φππt + φyyt) + ut−k (12)

where ut−k is the k-periods ahead monetary news shock.

Let α = σ+ψ
1+εψ

and p∗t = pt + αyt be firms’ fundamental. Given its process, the firm’s
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information choice problem is the same as the one in paper.

Let ut = (ut, ut−1, ut−2, · · · )′ be the vector of monetary policy shocks announced until

time t. Let πt = w′πut, yt = w′yut and it = w′iut. We guess all these three variables are

stationary so that the tails of (wπ, wi, wy) all converge to zero. Truncate these vectors with

an arbitrary length. Then we can rewrite the equation (3) and (5) using state-space forms

wy
′ut = Eft [wy

′ut+1]− 1

σ
wi
′ut +

1

σ
Eft [w′πut+1]

wi
′ut = σwy

′ (M− I) ut + w′πMut

wi = σ (M′ − I) wy + M′wp (13)

wi
′ut = ρwi

′ut−1 + (1− ρ) (φπw
′
πut + φywy

′ut) + e′1

(
M
′
)k

ut

wi
′ (I− ρM′) ut = (1− ρ)φπw

′
πut + (1− ρ)φywy

′ut + e′1

(
M
′
)k

ut

(I− ρM) wi = (1− ρ)φπ (I−M) wp + (1− ρ)φywy + Mke1 (14)

Now, by combining (1) and (2), we have

(I− ρM) (M′ − I) (σwy + wp) = (1− ρ)φπ (I−M) wp + (1− ρ)φywy + Mke1

[σ (I− ρM) (M′ − I)− (1− ρ)φyI] wy = [(1− ρ)φπ (I−M)− (I− ρM) (M′ − I)] wp + Mke1

(15)

To solve the equilibrium, firstly, we start from geussing the optimal pricing rule: p∗t =

wp∗
′ut . Second, given p∗t = wp∗

′ut, each firm solve the rational inattention problem and

get the optimal signal s∗i,t = ws
′ut + ei,t. Third, given the set of {pi,t}i∈[0,1], where each

pi,t is implied by the Kalman filtering of the sequence of the optimal signals, we find that

pt = wp
′ut. Fourth, using wp and equation (8), find wy and then calculate p∗t = pt+αyt ⇐⇒

wp∗ = wp +αwy. Finally, we update our guess wp∗ and iterate until we have a convergence.

5 Conclusion

This paper proposes a new tractable method for solving dynamic rational inattention prob-

lems with Gaussian fundamentals and shows that rationally inattentive agents manifest a for-

ward looking behavior in choosing their information. This forward looking behavior emerges

due to a dynamic trade-off for the agents: at each period not only the information structure

of the agent serves them by providing a posterior about their current fundamental, and hence

33



their optimal decision, but also by forming a prior about future states of the fundamental

by shaping their future priors. Faced by this trade-off, agents optimally choose to acquire

information about both current and best possible estimates of future fundamentals. Acting

on such an information structure, agents’ actions exhibit a forward looking pattern: these

actions respond to future expectations of fundamentals, even though agents do not face any

rigidity in choosing them.

We apply this result to the pricing theory, and show that a Phillips curve that emerges

under dynamic rational inattention relates current inflation to the expected future inflation, a

feature that been missing from other models of information rigidity such as reduced form noisy

information and sticky information models. Also, since agents choose their actions under

imperfect information, this Phillips curve also replicates the inertial response of inflation and

output to monetary policy shocks.

These two characteristics, the dependence of current inflation to expected future inflation,

and the inertial behavior of it through depending on its past realizations, have been shown

to be necessary to match the observed pattern of it in the data. However, current models

of micro-founded pricing, such as sticky prices, menu costs, and sticky and noisy inflation

models fail to capture both of these features, with the former two missing the inertial pattern

of inflation, and the latter two by missing its forward looking behavior. This has lead to the

use of hybrid Phillips curves, such as sticky prices with indexation, that has been criticized

for ignoring the underlying micro foundation through the assumption that firms with sticky

prices change their prices with a rule of thumb.

In order to demonstrate the forward looking behavior that is micro-founded under dy-

namic rational inattention, we implement a simple forward guidance model, in which shocks

to aggregate demand is announced before taking effect. We show that while sticky informa-

tion and reduced-form noisy information models fail to generate any response to these news

shocks before they affect the aggregate demand, rationally inattentive firms optimally choose

to attend to these news shocks, and respond to them before they take effect.

The huge interest in, and appeal to, forward guidance policies during the years after the

Great Recession, lead by the belief that economies respond to news about future policies has

been dampened by lack of adequate models to analyze the effects of such policies. Conse-

quently, while other models of information rigidity fail to incorporate the dynamic effects of

forward guidance policies, and therefore are incapable for any analysis of forward guidance

policies, the dynamic rational inattention model poses as the sole rigorously micro-founded

information rigidity model that can fill this void.
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Maćkowiak, B. and Wiederholt, M. 2009. Optimal sticky prices under rational inattention.

The American Economic Review, 99(3):769–803.
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IRF of the Average Action to a 1% Shock to xt
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Average Action of the Agent

(a) The figure shows the IRF of the agent’s average action to a 1% shock to the fundamental xt =
0.9xt−1 + ut, with κ = 0.25. See Example 4 for details.
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IRF of the Average Action to a 1% Shock to xt
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Average Action, β=0.99
Average Action, β=0

(b) The figure shows the IRF of the agent’s average action to a 1% shock to the fundamental xt =
1.45xt−1 − 0.5xt−2 + ut. See Example 4 for details.

Figure 2: Impulse Responses of the Agent’s Actions in Example 4.
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Figure 3: IRFs for Example 5: The figure shows the impulse responses of output and in-
flation to a 1% shock to the aggregate demand, for different levels of capacity of processing
information. Rational inattention creates endogenous real and persistent effects for monetary
policy. See Example 5 for details.
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Figure 4: IRFs for Example 6: The figure shows impulse responses of output and inflation
for a capacity parameter of κ = 0.2. The red curves with circle markers are the IRFs of the
model with no strategic complementarity (α = 1), and the blue curves with star markers
are the IRFs when α = 0.5. Higher strategic complementarity introduces higher inertia in
response of inflation, and amplifies the response of the output. See example 6 for details.
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Figure 5: IRFs for Example 6: the figure shows impulse responses of output and inflation for
different values of capacity. Higher capacity leads to less inertial response of inflation and a
smaller and less persistent response of output. When capacity is very large, inflation exactly
follows the AR(1) path of the growth of the aggregates demand, and output does not respond
to monetary policy at all. See Example 6 for details.
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Figure 6: The figure depicts the iso-capacity (measured by λ ≡ 1 − 2−2κ ∈ [0, 1)) curves in
blue dashed lines, and iso-patience (measured by β ∈ [0, 1)) curves in red solid lines. Each
intersection gives an equilibrium pair of (γ, δ). Higher capacity or lower patience correspond
to a less forward looking behavior in the information acquisition of the firms when there is
forward guidance. See Example 7 for details.
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Figure 7: IRFs for Example 7: the figure shows the impulse responses of output and inflation
to a 1% announced shock to the aggregate demand that will take effect in period one. When
β = 0, firms choose to ignore the news about future policy, and the news has no effects at the
time of announcement. However, when β is positive, firms include the news in their optimal
signal, and react to it immediately before the shock affects the aggregate demand.
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Figure 8: The figure shows impulse responses of three different models to a 1% news shock
about aggregate demand that will take effect after three periods. Firms do not respond
to this news shock neither in the sticky information model nor in the reduced-form noisy
information model (myopic inttention), whre firms only observe their current fundamental.
However, under dynamic inattention firms optimally choose to pay attention to the news
shock and respond to it immediately.
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A Proofs

Proof of Theorem 1.

Recall that the agent’s problem is

L0(Σ0|−1) = min
{yt∈ŜFt }∞t=0

∞∑
t=0

βtw′Σt|tw

s.t. y′tΣt|t−1yt ≤ 1− 2−2κ

Σt|t = Σt|t−1 − Σt|t−1yty
′
tΣt|t−1

Σt+1|t = MΣt|tM
′ + e1e

′
1

Σ0|−1 given.

To simplify the problem, combine the law of motions for Σt|t and Σt+1|t to get a single law of

motion for the priors:

Σt+1|t = M(Σt|t−1 − Σt|t−1yty
′
tΣt|t−1)M′ + e1e

′
1 ,∀t ≥ 0.

Finally, as Σt|t−1 is a state variable at time t, we can consider the following change of variables:

zt = Σt|t−1yt, and let agent choose zt. Notice that zt is the covariance vector of agent’s signal

with ut, and if Σt|t−1 is invertible, choosing the covariance vector is equivalent to choosing a

vector yt.
29

This is a standard constrained optimization problem, with a countable number of con-

straints, that can be solved by maximizing the following Lagrangian: (for simplicity of nota-

tion, let Σt ≡ Σt|t−1 denote the agent’s prior at time t.)

L =
∞∑
t=0

βt(−w′Σtw + w′ztz
′
tw)

+
∞∑
t=0

βtφt((1− 2−2κ)− z′tΣ
−1
t zt)

+
∞∑
t=0

βt

(
∞∑
j=1

η′j,t[Σt+1 −M(Σt − ztz
′
t)M

′ − e1e
′
1]ej

)

where ηj,t is the vector of multipliers on the j’th column of the matrix constraint, and ej is a

29Assuming that the initial prior, Σ0|−1, is invertible, meaning that there is strictly positive entropy in
agent’s initial prior over the history of innovations, one can show that under finite capacity all future Σt’s
are also invertible for any set of signals. This is a direct implication of the fact that resolving all uncertainty
about Gaussian variables requires infinite capacity.
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vector with 1 as its j’th element and zero elsewhere. We start with the first order condition

with respect to Σt+1:30

0 = −βt+1[2ww′ − diag(ww′)]

+ βt+1φt+1[2Σ−1
t+1zt+1z

′
t+1Σ−1

t+1 − diag(Σ−1
t+1zt+1z

′
t+1Σ−1

t+1)]

+ βt
T∑
j=1

[ηj,te
′
j + e′jηj,t − diag(ηj,te

′
j)]

− βt+1

T∑
j=1

M′[ηj,t+1e
′
j + e′jηj,t+1 − diag(ηj,t+1e

′
j)]M

take the diagonal of this identity and see that the diag(.) terms sum up to zero, so after

replacing yt = Σ−1
t zt, we are left with

Xt = βM′(ww′ − φt+1yt+1y
′
t+1 + Xt+1)M

where Xt ≡ 1
2

∑T
j=1 M′{ejη′j,t + ηj,te

′
j}M.

Moreover, the first order condition with respect to zt is

(w′zt)w − φtΣ−1
t zt + Xtzt = 0

⇒ (w′Σtyt)w − φtyt + XtΣtyt = 0

Hence the FOCs reduce to

φtyt = ww′Σtyt + XtΣtyt

Xt = βM′(ww′ − φt+1yt+1y
′
t+1 + Xt+1)M

Let X̂t = ww′ + Xt be a symmetric matrix. Then the FOC for yt is

φtyt = X̂tΣtyt.

Note that any φt satisfying the above equation is an eigenvalue of X̂tΣt and yt is the corre-

sponding eigenvector.

We want to find the sufficient and necessary conditions for the optimal solutions of the

problem. First, we consider the necessary condition. Let Φt be the set of all eigenvalues of

X̂tΣt. Let y∗t be a maximizer for the problem and φ∗t be the corresponding eigenvalue which

30For a guide to taking the derivative of symmetric matrices, see for example Petersen and Pedersen.
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satisfies the FOCs together with y∗t .
31 Then, φ∗t should satisfy the following second-order

necessary condition:

X̂tΣt − φ∗t I � 0

Thus, for every non-zero column vector s of T real numbers, φ∗t should satisfy

s′
(
X̂tΣt − φ∗t I

)
s = s′ (V DV ′ − φ∗t I) s

= s̃′ (D − φ∗t I) s̃

≤ 0

where D is a diagonal matrix formed from the eigenvalues of X̂tΣt
32, the columns of V are

the corresponding eigenvectors with V V ′ = V ′V = I and s̃ = V ′s. Since φ∗t is an eigenvalue

of X̂tΣt, the last inequality holds when φ∗t = max{φjt∈Φt} φ
j
t . Thus, among the stationary

points that satisfy the FOCs, the optimal signal y∗t is the eigenvector which corresponds the

largest eigenvalue φ∗t of a symmetric matrix X̂tΣt.

Now, we show that this condition is sufficient for the optimal solution. It is enough to show

that and the largest eigenvalue φ∗t of X̂tΣt and the corresponding eigenvector y∗t satisfy the

second-order sufficient condition. Let S =
{
s 6= 0 | s′∇(yt=y∗t ) (1− 2−2κ − y′tΣtyt) = s′Σty

∗
t = 0

}
.

Then for any s = S, we have

s′
(
∇2L∗

({
y∗t , φ

∗
t , {ηj,t}

∞
j=1

}∞
t=0

))
s = s′

(
X̂tΣt − φ∗t I

)
s

≤ 0

where the equality holds when s = y∗t due to the first-order condition. Note that y∗t /∈ S as

y∗
′
t Σty

∗
t 6= 0. Thus, y∗t and φ∗t satisfy the second-order sufficient condition.

Now, substituting Xt recursively in the second equation of the FOCs gives us

Xt =
∑∞

j=1 β
jM′j (ww′ − φt+jyt+jy′t+j

)
Mj

⇒ XtΣtyt =
∑∞

j=1 β
j (w′MjΣtyt) M′jw −

∑∞
j=1 β

j
(
y′t+jM

jΣtyt
)

M′j (φt+jyt+j)

31Since our objective function is continuous and the constraint is a compact set, the problem attains a
maximum by Weierstrass theorem.

32The matrix X̂tΣt is diagonalizable.

44



Combining this with the first order condition for yt:

φtyt =
∞∑
j=0

βj
(
w′MjΣtyt

)
M′jw −

∞∑
j=1

βj
(
y′t+jM

jΣtyt
)

M′j (φt+jyt+j) .

Now guess that φt+jyt+j =
∑∞

k=0 β
kat+j,kM

′kw. Plugging in this guess in the above equation

2−2κφtyt =
∞∑
j=0

βj
(
w′MjΣtyt

)
M′jw −

∞∑
j=0

∞∑
k=0

βj+kat+j,k
(
y′t+jM

jΣtyt
)
M′j+kw

=
∞∑
j=0

βj

[
w′MjΣtyt −

j∑
k=0

at+k,j−k
(
y′t+kM

kΣtyt
)]

M′jw

which verifies our guess and gives us a series of difference equations in terms of {(at,j)∞j=0}∞t=0

where

at,j = 22κ

[
w′MjΣtyt −

j∑
k=0

at+k,j−k(y
′
t+kM

kΣtyt)

]
.

Finally, assuming that φt > 0, meaning that the information constraint is binding, let bt,j ≡
φ−1
t at,j, so that yt =

∑∞
j=0 β

jbt,jM
′jw. Now, the optimal signal is

s∗t = y′tut + et

=
∞∑
j=0

βjbt,jw
′Mjut + et.

but notice that Mjut = E {ut+j|ut}, and w′Mjut = E {w′ut+j|ut} = E {xt+j|ut} = Eft {xt+j}.
Hence,

s∗t =
∞∑
j=0

βjbt,jEft {xt+j}+ et.

Q.E.D.

Proof of Corollary 1.

Recall

s∗t =
∞∑
j=0

βjbt,jEft {xt+j}+ et.
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If xt follows an ARMA (p, q), then ∃
{(
αji
)p−1

i=0
,
(
γji
)q−1

i=0

}∞
j=0

such that

Eft {xt+j} =

p−1∑
i=0

αjixt−i +

q−1∑
i=0

γji ut−i

so

∞∑
j=0

βjbt,jEft {xt+j} =
∞∑
j=0

βjbt,j

p−1∑
i=0

αjixt−i +
∞∑
j=0

βjbt,j

q−1∑
i=0

γji ut−i

=

p−1∑
i=0

(
∞∑
j=0

βjbt,jα
j
i

)
xt−i +

q−1∑
i=0

(
∞∑
j=0

βjbt,jγ
j
i

)
ut−i

Let ci,t =
∑∞

j=0 β
jbt,jα

j
i ,∀i ∈ {0, 1, . . . , p− 1} ,∀t ≥ 0 and di,t =

∑∞
j=0 β

jbt,jγ
j
i , ∀i ∈

{0, 1, . . . , q − 1}, ∀t ≥ 0. Then

s∗t =

p−1∑
i=0

ci,txt−i +

q−1∑
i=0

di,tut−i + et.

Q.E.D.

Proof of Example 2.

Proof. From Corollary 1 we know that the optimal signal is of the form st = αtxt + et, for

αt ∈ R, meaning that yt = αtw. αt is directly implied by the information capacity constraint

y′tΣt|t−1yt = 1− 2−2κ ⇒ α2
t =

1− 2−2κ

w′Σt|t−1w
.

Also, variance of et is given by the normalization that vart−1 (st) = 1⇒ 1−2−2κ

w′Σt|t−1w
vart−1 (xt)+

var (et) = 1. Since vart−1 (xt) = w′Σt|t−1w, var (et) = 2−2κ.

Moreover, by Σt+1|t = M
(
Σt|t−1 − Σt|t−1yty

′
tΣt|t−1

)
M′ + e1e

′
1, and by the fact that xt =

ρxt−1 + ut implies w = (1, ρ, ρ2, . . . )
′ ⇒M′w = ρw, ∀t ≥ 1, we have

w′Σt|t−1w = w′M

(
Σt−1|t−2 − (1− 2−2κ)

Σt−1|t−2ww′Σt−1|t−2

w′Σt−1|t−2w

)
M′w + 1

= 1 + ρ22−2κw′Σt−1|t−2w

=
1− (ρ22−2κ)

t

1− ρ22−2κ
+
(
ρ22−2κ

)t
w′Σ0|−1w.
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Finally, to get the law of motion for the optimal action, by Kalman filter

a∗t
(
st
)

= E
{
xt|st

}
= E

{
xt|st−1

}
+
cov (xt, st|st−1)

var (st|st−1)

(
st − E

{
st|st−1

})
= ρE

{
xt−1|st−1

}
+
√

(1− 2−2κ) w′Σt|t−1w

(
st − ρ

√
1− 2−2κ

w′Σt|t−1w
E
{
xt−1|st−1

})
= 2−2κρa∗t−1

(
st−1

)
+
(√

(1− 2−2κ) w′Σt|t−1w
)
st

= 2−2κρa∗t−1

(
st−1

)
+
(
1− 2−2κ

)
xt +

(√
(1− 2−2κ) w′Σt|t−1w

)
et.

where var (xt|st−1) ≡ w′Σt|t−1w is the variance of xt conditional on time t information of the

agent. Q.E.D.

Proof of Lemma 2.

To be included. Basically the same as theorem 1.

Proof of Corollary 2.

To be included. Basically the same as corollary 1.

Proof of Example 5.

The fact that ∆qt = ut, implies that qt = e′1ũt, where ũt is a random walk vector as defined

in section 2.3. The fact that there is no strategic complementarity implies that firms’ optimal

price is the nominal GDP itself: dwp∗ = e1. Plugging this into the firms’ steady state first

order condition for the attention problem, we have

φdy = (e′1Σdy) e1 + XΣdy

X = β (M′ + e1e
′
1) (e1e

′
1 − φdydy′ + X) (M + e1e

′
1)

We guess that dy = θe1, for some θ ∈ R. Intuitively, since the firms only care about the first

element of ũt, they choose to only see that element with the highest possible precision. To

verify this guess, guess also that X = ζe1e
′
1 for some ζ ∈ R. Plugging these guesses in the
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second equation we have

X = β
(
1− φθ2 + ζ

)
(M′ + e1e

′
1) e1e

′
1 (M + e1e

′
1)

= β
(
1− φθ2 + ζ

)
e1e

′
1

Thus, ζ = β
1−β (1− φθ2). Now, from the first equation

φdy = (e′1Σdy) e1 +
β

1− β
(
1− φθ2

)
(e′1Σdy) e1

This verifies our guess that dy is proportional to e1. With that in mind, we can get θ directly

from the capacity constraint, and the law of motion for the steady state prior:

θ2e′1Σe1 = 1− 2−2κ ,

e′1Σe1 = e′1 (Σ− θ2Σe1e
′
1Σ) e1 + 1

⇒ θ2 (e′1Σe1)2 = 1

Thus, θ = 1− 2−2κ, and e′1Σe1 = 1
1−2−2κ . Thus, every firm i gets a signal

si,t =
(
1− 2−2κ

)
e′1ũt + eit

=
(
1− 2−2κ

)
qt + eit

meaning that they choose to see qt with the highest possible precision, and where eit is their

rational inattention error.

Now, to get the evolution of prices and inflation, notice that

pt =

∫ 1

0

Eit {qt} di

= e′1

∫ 1

0

Eit {ũt} di

Let ũt|t =
∫ 1

0
Eit {ũt} di, and ũt|t−1 =

∫ 1

0
Eit−1 {ũt} di. By Kalman filtering,

ũt|t = ũt|t−1 + Σdydy′
(
ũt − ũt|t−1

)
.

Plugging in the solution for dy, we have

pt = e′1ũt|t

= 2−2κe′1ũt|t−1 +
(
1− 2−2κ

)
qt
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Moreover, notice that since Eit−1 {ut} = 0,

e′1ũt|t−1 = e′1

∫ 1

0

Eit−1 {ũt} di

= e′1 (M + e1e
′
1)

∫ 1

0

Eit−1 {ũt−1} di

= e′1ũt−1|t−1 = pt−1

Thus,

pt = 2−2κpt−1 + (1− 2−2κ) qt

⇒ πt = (22κ − 1) yt

where πt ≡ pt − pt−1 and yt ≡ qt − pt. The law of motion for output is given by

∆yt = ∆qt − πt
= ut −

(
22κ − 1

)
yt

which implies

yt = 2−2κ (yt−1 + ut) .

Also,

πt = (22κ − 1)yt

= (1− 2−2κ)(yt−1 + ut)

= (1− 2−2κ)
πt−1

22κ − 1
+ (1− 2−2κ)ut

= 2−2κπt−1 + (1− 2−2κ)ut.

Q.E.D.

Proof of Example 6.

Let dwp∗ be the equilibrium Wold decomposition of the firms’ marginal cost, and consider

the first order conditions of the attention problem in the steady state:

φdy =
(
dw′p∗Σdy

)
dwp∗ + XΣdy

X = β (M′ + e1e
′
1)
(
dwp∗dw′p∗ − φdydy′ + X

)
(M + e1e

′
1)
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Notice that when β = 0, X is simply the zero matrix; thus,

dy = δdwp∗

where δ ≡ dw′p∗Σdy

φ
; meaning that firm’s optimal signal is to see their marginal cost at every

period with the highest possible precision allowed by their capacity:

s∗t = δdw′p∗ũt + et

= δp∗t + et

where et is the firm’s rational inattention error and δ is such that

dy′Σdy = 1− 2−2κ ⇒ δ =

√
1− 2−2κ

dw′p∗Σdwp∗
.

Now, similar to the previous example, by the Kalman filter:

ũt|t = ũt|t−1 + δ2Σdwp∗dw′p∗
(
ũt − ũt|t−1

)
⇒ dw′p∗ũt|t = dw′p∗ũt|t−1 + δ2dw′p∗Σdwp∗dw′p∗

(
ũt − ũt|t−1

)
⇒ pt = 2−2κẼt−1 {p∗t}+ (1− 2−2κ) p∗t

⇒ πt = 2−2κẼt−1

{
p∗t − p∗t−1

}
+ (1− 2−2κ) (p∗t − pt−1)

(
as pt−1 = Ẽt−1

{
p∗t−1

})
⇒ πt = Ẽt−1 {πt + α∆yt}+ α (22κ − 1) yt

where the last line is derived from p∗t = pt + αyt. Q.E.D.

Proof of Example 7.

We start with the guess that the optimal signal has the following form

st = qt + γ∆qt+1 + et

where et is the firm’s rational inattention error and γ will be determined after the verification

of the guess, from the optimal behavior of the firm. The fact that the firm can gather

information about ∆qt+1 is due to the forward-guidance policy that ∆qt+1 = ut is announced

at time t.

To translate this environment to our framework, notice that ∆qt = e′2ut, where e2 is the

second column of the identity matrix and ut is the vector of innovations at time t, with its
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first element being the innovation that is going to take effect one period ahead. Our guess of

the optimal signal translates to

y = δ
[
(I−M)−1 e2 + γe1

]
dy = δ [(1− γ) e2 + γe1]

so that st = δ (y′ut + et) = δ (qt + γ∆qt+1 + et), with δ being a normalization such that

vart−1 {st} = 1. To verify the guess, we have to show that this signal solves the firms’ first

order conditions in the steady state:

φdy =
(
e′2Σ̂dy

)
e2 + X̂Σ̂dy

X̂ = β (M′ + e1e
′
1)
(
e2e

′
2 − φdydy′ + X̂

)
(M + e1e

′
1) .

where Σ̂ is such that

Σ̂ = (M + e1e
′
1)
(

Σ̂− Σ̂dydy′Σ̂
)

(M′ + e1e
′
1) + e1e

′
1

and φ is such that dy′Σ̂dy = 1− 2−2κ. To verify the guess for dy, guess also that X̂ = θe1e
′
1

for some θ. Now, plug in both these guesses in the law of motion for X̂, and observe that

X̂ = β(M′ + e1e
′
1)((1− φδ2(1− γ)2)e2e

′
2 − φδ2γ2e1e

′
1

− φδ2γ(1− γ)(e1e
′
2 + e2e

′
1))(M + e1e

′
1)

+ β(M′ + e1e
′
1)(θe1e

′
1)(M + e1e

′
1)

= β(1− φδ2(1− γ)2)e1e
′
1 − 2βφδ2γ(1− γ)e1e

′
1 − βφδ2γ2e1e

′
1 + βθe1e

′
1

=
β

1− β
(1− φδ2)e1e

′
1

Thus, θ = β
1−β (1− φδ2). Now, plug this into the first order condition for dy to get

φdy =
(
e′2Σ̂dy

)
e2 +

β

1− β
(
1− φδ2

) (
e′1Σ̂dy

)
e1.

which verifies our guess that dy is a linear combination of e1 and e2. Before finding γ and

δ, however, we need to find e′1Σ̂dy and e′2Σ̂dy. To do so we need to use the steady state law
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of motion for Σ̂:

Σ̂ = (M + e1e
′
1)
(

Σ̂− Σ̂dydy′Σ̂
)

(M′ + e1e
′
1) + e1e

′
1

⇒ e′1Σ̂e1 = e′1

(
Σ̂− Σ̂dydy′Σ̂

)
e1 + 1

⇒ e′1Σ̂dy = 1

Also, using the guess for dy,

1 = e′1Σ̂dy

= δe′1

(
Σ̂− Σ̂dydy′Σ̂

)
e1 + γδ,

which implies that δe′1

(
Σ̂− Σ̂dydy′Σ̂

)
e1 = 1− γδ. Finally, notice that

e′2Σ̂dy = δ
[
(1− γ) e′2Σ̂e2 + γe′2Σ̂e1

]
= δe′1

(
Σ̂− Σ̂dydy′Σ̂

)
e1

= 1− γδ

Thus,

φdy =
β

1− β
(
1− φδ2

)
e1 + (1− γδ) e2

= φδ [γe1 + (1− γ) e2]

where the second line was our guess. This implies

φδγ = β
1−β (1− φδ2) ,

φδ (1− γ) = 1− γδ .

⇒ (1−β)γ+βδ
1−γ = β

1−γδ

The final equation for characterizing the solution comes from the capacity constraint:

1− 2−2κ = dy′Σ̂dy

= δγe′1Σ̂dy + δ (1− γ) e′2Σ̂dy

= δγ + δ (1− γ) (1− γδ) .

These two equations pin down γ and δ and hence characterize the optimal signal.
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Finally, to derive the Phillips curve, let ut|t =
∫ 1

0
Eit {ut} di, observe that

ut|t = ut|t−1 + Σyy′
(
ut − ut|t−1

)
⇒ (I−M′)−1 ut|t = (I−M′)−1 ut|t−1 + Σ̂dydy′ (I−M′)−1 (ut − ut|t−1

)
Multiply this once by e′1 and once by e′2 from left to get33

(e′1 × .) : Ẽt {qt+1} = Ẽt−1 {qt+1}+ dy′ (I−M′)−1 (ut − ut|t−1

)
(e′2 × .) : pt = Ẽt−1 {qt}+ (1− γδ) dy′ (I−M′)−1 (ut − ut|t−1

)
where Ẽt {.} =

∫ 1

0
Eit {.} di. Now, notice that Ẽt−1 {qt+1} = Ẽt−1 {qt}, as ut is not realized at

t− 1. Moreover, observe that

dy′ (I−M′)
−1 (

ut − ut|t−1

)
= δ

(
qt + γut − Ẽt−1 {qt}

)
.

Thus,

Ẽt {∆qt+1} = (1− δ) Ẽt−1 {∆qt}+ δ (yt + γut)− (1− δ) πt
πt = Ẽt−1 {∆qt}+ (1−γδ)δ

1−δ(1−γδ) (yt + γut) (16)

Finally, substituting for Ẽt−1 {∆qt} in the the first equation using the second one we have

Ẽt {∆qt+1} = (1− δ)
(
πt −

(1− γδ) δ
1− δ (1− γδ)

(yt + γut)

)
+ δ (yt + γut)− (1− δ) πt

= γ
δ2

1− δ (1− γδ)
(yt + γut)

which implies that Ẽt−1 {∆qt} = γ δ2

1−δ(1−γδ) (yt−1 + γut−1). Plugging this into 16 we get the

following Phillip’s curve:

πt = δ
γδ

1− δ (1− γδ)
(yt−1 + γ∆qt) + δ

1− γδ
1− δ (1− γδ)

(yt + γ∆qt+1)

which implies

yt = (1− δ) (yt−1 + ut−1) + δ2γ (1− γ)ut−1 − γδ (1− γδ)ut

Using the fact that ut−1 = ∆qt and ut = ∆qt+1,we get the following laws of motion for

33We use the results form before that e′1Σ̂dy = 1 and e′2Σ̂dy = 1− γδ.
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inflation and output:

yt = (1− δ) yt−1 + 2−2κ∆qt − γδ (1− γδ) ∆qt+1

πt = δyt−1 +
(
1− 2−2κ

)
∆qt + γδ (1− γδ) ∆qt+1

Proof of Lemma 3.

Let ũt be the random walk vector of shocks announced until time t, defined in section 2.3.

Moreover, let dwp∗ be the Wold decomposition of the stationary part of the p∗t in the equi-

librium, and dy =
∑∞

j=0 β
jbjdw′p∗ (M + e1e

′
1) be the representation of the optimal signal

derived in that section. Notice that by Kalman filter

ũt|t = ũt|t−1 + Σdydy′
(
ũt − ũt|t−1

)
⇒ ũt|t = ũt|t−1 + (I− Σdydy′)

−1
Σdydy′

(
ũt − ũt|t

)
Moreover,

(I− Σdydy′)
−1

Σdydy′ = Σdydy′
∞∑
i=0

(Σdydy′)
i

= Σdydy′
∞∑
i=0

(
1− 2−2κ

)i
= 22κΣdydy′

where the second line is derived from the capacity constraint, dy′Σdy = 1− 2−2κ. Thus,

ũt|t = ũt|t−1 + 22κΣdydy′
(
ũt − ũt|t

)
.

Also, by the fact that Eft {ũt+j} = (M + e1e
′
1)j ũt+j, observe that

dy′
(
ũt − ũt|t

)
=

∞∑
j=0

βjbjdw′p∗ (M + e1e
′
1)
(
ũt − ũt|t

)
=

∞∑
j=0

βjbj

(
Eft
{
p∗t+j

}
− Ẽt

{
p∗t+j

})
.
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Therefore,

dw′p∗ũt|t = dw′p∗ũt|t−1 + 22κ
(
dw′p∗Σdy

)
dy′

(
ũt − ũt|t

)
⇒ pt = Ẽt−1 {p∗t}+ 22κδ0

∑∞
j=0 β

jbj

(
Eft
{
p∗t+j

}
− Ẽt

{
p∗t+j

})
Where δ0 ≡ dw′p∗Σdy. Now, subtract pt−1 = Ẽt−1

{
p∗t−1

}
from both sides of this equation to

get

πt = Ẽt−1 {πt + α∆yt}+ 22κδ0

∞∑
j=0

βjbj

(
Eft
{
p∗t+j

}
− Ẽt

{
p∗t+j

})
.

Q.E.D.
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