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Abstract

We develop a fast, tractable, and robust method for solving the transition path of dy-
namic rational inattention problems (DRIPs) in LQG settings. As an application of
our general framework, we develop an attention-driven analytical theory of dynamic
pricing in which the Phillips curve slope is endogenous to systematic aspects of mon-
etary policy. In our model, when the monetary authority is more committed to stabi-
lizing nominal variables, rationally inattentive firms pay less attention to changes in
their input costs, which leads to a flatter Phillips curve and more anchored inflation
expectations. This effect, however, is not symmetric. A more dovish monetary policy
flattens the Phillips curve in the short-run but generates a steeper Phillips curve in the
long-run. In a quantitative exercise, we calibrate our general equilibrium model with
TFP and monetary policy shocks to post-Volcker U.S. data and find that our mech-
anism quantifies a 75% decline in the slope of the Phillips curve in the post-Volcker
period, relative to the period before it.
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“The relationship between the slack in the economy or unemployment and inflation
was a strong one 50 years ago...and has gone away” –Jerome Powell (2019)

1 Introduction

A recent growing literature documents that the slope of the Phillips curve has flattened
during the last few decades.1 Since the trade-off between inflation and unemployment is
at the core of the monetary theory, understanding the sources of this change is important
for studying the impact of monetary policy.

While benchmark New Keynesian models relate this flattening to changes in the model’s
structural parameters, in an analytical framework with rationally inattentive firms, we
show that the Phillips curve slope is endogenous to the conduct of monetary policy. In
our model, when monetary authority puts a larger weight on stabilizing the nominal
variables, firms endogenously choose to pay less attention to changes in their input costs.
Accordingly, when monetary policy is more stabilizing, prices are less sensitive to the
slack in the economy, and the Phillips curve is flatter. Therefore, our theory suggests that
the decline in the slope of the Phillips curve can be explained, at least partially, by the
more hawkish monetary policy adopted at the beginning of the Great Moderation.2

This effect, however, is not symmetric in our model. While more hawkish monetary
policy flattens the Phillips curve, a more dovish monetary policy completely flattens the
Phillips curve in the short-run but eventually leads to a steeper Phillips curve in the long-
run. The key to this asymmetry lies in the dynamic incentives in information acquisition.
In our model, forward-looking firms learn about their input costs’ persistent changes and
invest in a stock of knowledge about these processes. When monetary policy becomes
more dovish, firms suddenly find themselves in a more uncertain environment where
their stock of knowledge depreciates faster. Hence, a more dovish monetary policy de-
creases the net present value of knowledge, and crowds out firms’ information acquisition
in the short-run, a period during which prices are not sensitive to changes in input costs
and the Phillips curve is completely flat. However, this effect dissipates as firms’ uncer-
tainty about their input costs grow, and they eventually restart paying attention to their
costs once their knowledge has depreciated enough. In this new regime, firms have a
lower stock of knowledge, but they acquire information at a higher rate. The higher rate

1See, for instance, Coibion and Gorodnichenko (2015b); Blanchard (2016); Bullard (2018); Hooper,
Mishkin and Sufi (2019); Del Negro, Lenza, Primiceri and Tambalotti (2020).

2See Clarida, Galí and Gertler (2000); Coibion and Gorodnichenko (2011) for evidence on more hawkish
monetary policy in the post-Volcker period.
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of information acquisition makes prices more sensitive to changes in input costs and leads
to a steeper Phillips curve relative to the previous regime.

Furthermore, our model provides an endogenous explanation for how monetary pol-
icy’s conduct affects the anchoring of inflation expectations. Since attention is endoge-
nous, firms’ expectations of inflation are less sensitive to short-run fluctuations and co-
move less with the output gap when monetary policy is more hawkish. Moreover, the
asymmetries outlined above also appear in how inflation expectations are formed. When
monetary policy becomes more dovish, the pass-through of changes in input costs to
firms’ inflation expectations is zero as long as the Phillips curve is flat. It is only in the
long-run, when firms restart paying attention to input costs, that inflation expectations
become more sensitive to changes in those costs.

Methodological Contributions. Our theory of the Phillips curve is an application of
a tractable method that we develop for solving dynamic rational inattention problems
(DRIPs) with multiple shocks and actions in linear quadratic Gaussian (LQG) settings.
Our first methodological contribution in this area is to formulate and analytically char-
acterize the full transition dynamics of DRIPs. We show that the transition dynamics in
DRIPs are characterized by inaction regions for the decision maker’s uncertainty in dif-
ferent state dimensions.

Our second contribution is that we use our theoretical results to develop a computa-
tional toolbox that decreases the solution times for these problems by several orders of
magnitude. Furthermore, as far as we are aware, we provide the first solution method
that characterizes the transition dynamics of DRIPs. To demonstrate our computational
toolbox’s accuracy and efficiency, we have replicated three canonical papers (Maćkowiak
and Wiederholt, 2009a; Sims, 2010; Maćkowiak, Matějka and Wiederholt, 2018a) that use
three different solution methods. Our algorithm provides equally accurate solutions but
is significantly faster than other available methods because it utilizes our theoretical find-
ings.3 A summary of our computing times are reported in Table 1. Our computational
toolbox is available for public use as the DRIPs.jl Julia package.4 Finally, all examples
and replications are also available as interactive Jupyter notebooks that are accessible on-
line with no software requirements.5

3Our replications of Sims (2010); Maćkowiak and Wiederholt (2009a); Maćkowiak et al. (2018a) is de-
scribed in Section 2.4, Appendix B.1 and Appendix B.2, respectively.

4Link: https://www.afrouzi.com/DRIPs.jl/dev/
5Link: https://mybinder.org/v2/gh/afrouzi/DRIPs.jl/binder?filepath=examples
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Quantitative Results. Our final contribution is to test the quantitative relevance of our
proposed mechanism for the change in the slope of the Phillips curve. Our quantitative
exercise uses our computational toolbox to solve and calibrate a dynamic general equilib-
rium version of our rational inattention model with monetary policy and supply shocks.
To calibrate our model, we estimate a Taylor rule for the post-Volcker era and target the
variance-covariance structure of output and inflation in this period.

To assess the out-of-sample fit of our model, we perform an exercise in the spirit of
Maćkowiak and Wiederholt (2015). In particular, in our calibrated model, we replace the
post-Volcker Taylor rule of monetary policy with an estimated Taylor rule for the pre-
Volcker period and find that our model quantitatively matches the higher variance of
inflation and GDP in the pre-Volcker era as non-targeted moments.

Our main empirical exercise directly assesses whether our proposed mechanism can
explain the decline in the Phillips curve slope. To do so, we simulate data from our cal-
ibrated model using our pre- and post-Volcker monetary policy rule estimates and esti-
mate the implied slope of the Phillips curve in both samples. We find that our model can
explain up to a 75% decline in the Phillips curve slope in the post-Volcker period.

Related Literature. Dynamic rational inattention models have long been applied to dif-
ferent settings in macroeconomics.6 We contribute to a subset of this literature that has
laid the ground for solving dynamic rational inattention problems in LQG settings (Sims,
2003; Maćkowiak, Matějka and Wiederholt, 2018a; Fulton, 2018). These papers make two
simplifying assumptions that we depart from: (1) they abstract away from transition dy-
namics, and (2) they solve for the long-run steady-state information structure that is in-
dependent of time and state. However, two papers study the same problem as we do and
are the closest to our study. The first paper is Sims (2010) who formulates the dynamic
rational inattention problem on the transition path, but only provides solutions for two
special cases: first, an example with two shocks and one action, and second, a first-order
condition to the general problem assuming that the solution is interior. The second paper
is Miao, Wu and Young (2020), who also study the same problem as we do, but provide
an approximate solution to the steady-state information structure, which they call the

6See, for instance, Maćkowiak and Wiederholt (2009a); Paciello (2012); Melosi (2014); Pasten and
Schoenle (2016); Matějka (2015); Afrouzi (2020); Yang (2019) for applications to pricing; Sims (2003); Luo
(2008); Tutino (2013) for consumption; Luo, Nie and Young (2012) for current account; Zorn (2016) for
investment; Woodford (2009); Stevens (2019); Khaw and Zorrilla (2018) for infrequent adjustments in de-
cisions; Maćkowiak and Wiederholt (2015) for business cycles; Paciello and Wiederholt (2014) for optimal
policy; Peng and Xiong (2006); Van Nieuwerburgh and Veldkamp (2010) for asset pricing; Mondria and Wu
(2010) for home bias; and Ilut and Valchev (2017) for imperfect problem solving. See also Angeletos and
Lian (2016); Maćkowiak, Matějka and Wiederholt (2018b).
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Golden rule approximation.
We make two main contributions relative to this literature. (1) We provide an analyti-

cal characterization of the solution to the general problem, both on the transition path and
in the steady-state. Our solution goes beyond the one in Sims (2010) in that we fully char-
acterize the optimal information structure, taking corner solutions into account. We show
that these cases are not rare and arise under fairly general circumstances—most notably
when the number of actions is smaller than the number of shocks.7 Relative to Miao et
al. (2020), we go beyond studying the steady-state information structure and characterize
transition dynamics as well. Moreover, our solution does not restrict us to the Golden rule
approximation but embeds it as a special case. (2) Our second contribution is to provide
a fast and robust algorithm and a software package that utilize our theoretical results. As
far as we are aware, our solution method is the first one that allows for solving the tran-
sition dynamics of these problems without value function iteration, which significantly
improves computing times. For instance, Miao et al. (2020) report that it takes 18 min-
utes to solve for Sims (2010)’s example using value function iteration and 3 seconds to
solve for the Golden rule approximation of the solution. It takes our algorithm 7.9× 10−4

seconds to solve for the steady-state as well as the transition dynamics and 1.6 × 10−4

seconds to solve for the Golden rule approximation of the solution.
Our attention-driven theory of the Phillips curve is motivated by the evidence for the

flattening of the Phillips curve in the last few decades (Blanchard, 2016; Bullard, 2018;
Hooper et al., 2019; Del Negro et al., 2020).8 Another literature that motivates our model
provides evidence for the information rigidities that economic agents exhibit in forming
their expectations.9

We also contribute to the literature that considers how imperfect information affects
the Phillips curve (Lucas, 1972; Mankiw and Reis, 2002; Woodford, 2003; Nimark, 2008;

7These corner solutions arise when the agent values information in a particular dimension of the state
less than the cost of acquiring it. Similar corner solutions arise in Van Nieuwerburgh and Veldkamp (2010)
who refer to these as no-forgetting constraints.

8A recent study by Hazell, Herreño, Nakamura and Steinsson (2020) also documents that the Phillips
curve is flatter in the post-Volcker era, but once viewed through the lens of benchmark New Keynesian
models, the slope implied by their estimates is so small that the flattening is irrelevant. Our model has
different implications for their estimates as we do not rely on the benchmark New Keynesian models.
According to our model, the benchmark New Keynesian Phillips curve is “too” forward-looking, which is
why the implied slope in Hazell et al. (2020) is small.

9For recent progress in this literature, see for instance, Kumar, Afrouzi, Coibion and Gorodnichenko
(2015); Coibion and Gorodnichenko (2015a); Ryngaert (2017); Roth and Wohlfart (2018); Gaglianone, Giaco-
mini, Issler and Skreta (2019); Coibion, Gorodnichenko and Ropele (2020) for survey evidence, and Khaw,
Stevens and Woodford (2017); Khaw and Zorrilla (2018); Afrouzi, Kwon, Landier, Ma and Thesmar (2020)
for experimental evidence.
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Angeletos and La’O, 2009; Angeletos and Huo, 2018).10 Our main departure is to derive a
Phillips curve in a model with rational inattention and study how monetary policy shapes
and alters the incentives in information acquisition of firms. Specifically, a notable im-
plication of our model is the different short-run and long-run implications of changes in
monetary policy for the slope of the Phillips curve.

Finally, while we provide an attention-based theory for the Phillips curve slope, a
series of alternative explanations have been proposed by other recent studies. These ex-
planations include non-linearities in the slope of the Phillips curve (Kumar and Orrenius,
2016; Babb and Detmeister, 2017; Hooper et al., 2019), identification issues due to optimal
monetary policy (McLeay and Tenreyro, 2020), changes in the input-output structure of
the economy (Rubbo, 2020), or changes in price stickiness due to pursuit of price stability
by the central bank (L’Huillier and Zame, 2020). Instead, our Phillips curve model focuses
on how the conduct of monetary policy affects the attention allocation of firms.

Layout. The paper is organized as follows. In Section 2, we start by setting up the dy-
namic rational inattention problem and then characterize the solution for the LQG case.
We conclude Section 2 by outlining our solution method and studying the transition dy-
namics of attention in an extension of the example from Sims (2010). In Section 3, we
outline our attention driven theory of the Phillips curve with analytical solutions. In Sec-
tion 4, we present our quantitative model and results. Section 5 concludes. Proofs for
Sections 2 and 3 are included in Appendices A and C respectively.

2 Theoretical Framework

In this section we formalize the choice problem of an agent who chooses her information
structure endogenously over time. We start by setting up the general problem without
making assumptions on payoffs and information structures. We then derive and solve
the implied LQG problem. We then present our algorithm for solving DRIPs.

2.1 Environment

Preferences. Time is discrete and is indexed by t ∈ {0, 1, 2, . . . }. At each time t the agent
chooses a vector of actions~at ∈ Rm and gains an instantaneous payoff of v(~at;~xt) where
{~xt ∈ Rn}∞

t=0 is an exogenous stochastic process, and v(.; .) : Rm ×Rn → R is strictly
concave and bounded above with respect to its first argument.

10See, also, Reis (2006); Angeletos and Lian (2016, 2018); Gabaix (2020).
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Set of Available Signals. We assume that at any time t, the agent has access to a set
of available signals in the economy, which we call S t. Signals in S t are informative of
Xt ≡ (~x0, . . . ,~xt). In particular, we assume:

1. S t is rich: for any posterior distribution on Xt, there is a set of signals St ⊂ S t that
generate that posterior.

2. Available signals do not expire over time: S t ⊂ S t+h, ∀h ≥ 0.

3. Available signals at time t are not informative of future innovations to ~xt: ∀St ∈
S t, ∀h ≥ 1, St ⊥ ~xt+h|Xt.

Information Sets and Dynamics of Beliefs. Our main assumption here is that the agent
does not forget information over time, which is commonly referred to as the “no-forgetting
constraint”. The agent understands that any choice of information will affect their priors
in the future and that information has a continuation value.11 Formally, a sequence of
information sets {St ⊆ S t}t≥0 satisfy the no-forgetting constraint for the agent if St ⊆
St+τ, ∀t ≥ 0, τ ≥ 0.

Cost of Information and the Attention Problem. We assume cost of information is lin-
ear in Shannon’s mutual information function.12 Formally, let {St}t≥0 denote a set of in-
formation sets for the agent which satisfies the no-forgetting constraint. Then, the agent’s
flow cost of information at time t is ωI(Xt; St|St−1), where

I(Xt; St|St−1) ≡ h(Xt|St−1)−E[h(Xt|St)|St−1]

is the reduction in the entropy of Xt that the agent experiences by expanding her knowl-
edge from St−1 to St, and ω is the marginal cost of a nat of information.

We can now formalize the rational inattention problem (henceforth RI Problem) of the

11Although we assume perfect memory in our benchmark, these dynamic incentives exist as long as the
agent can carry a part of her memory with her over time. For a model with fading memory with exogenous
information, see Nagel and Xu (2019). Furthermore, da Silveira, Sung and Woodford (2019) endogenize
noisy memory in a setting where carrying information over time is costly.

12For a discussion of Shannon’s mutual information function and generalizations see Caplin, Dean and
Leahy (2017). See also Hébert and Woodford (2018) for an alternative cost function.
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agent in our setup:

V0(S−1) ≡ sup
{St⊂S t,~at :St→Rm}t≥0

∞

∑
t=0

βtE[v(~at;~xt)−ωI(Xt; St|St−1)|S−1] (2.1)

s.t. St = St−1 ∪ St, ∀t ≥ 0, (2.2)

S−1 given. (2.3)

where Equation (2.1) is the RI Problem in which the agent maximizes the net present
value of her payoffs minus the cost of attention; Equation (2.2) captures the evolution of
the agent’s information set over time and Equation (2.3) specifies the initial condition for
the dynamic problem.

It is important to note that this problem is a dynamic problem only because of infor-
mation acquisition: any information acquired in a given period potentially reduces the
expected costs of information acquisition in the future by expanding the agent’s informa-
tion set.

2.1.1 Two General Properties of the Solution

Solving the RI problem in Equation (2.1) is complicated by two issues: (1) the agent can
choose any subset of signals in any period and (2) the cost of information depends on the
whole history of actions and states, which increases the dimensionality of the problem
with time. The following two lemmas present results that simplify these complications.

Sufficiency of Actions for Signals. An important consequence of assuming that the
cost of information is linear in Shannon’s mutual information function is that it implies
actions are sufficient statistics for signals over time (Steiner, Stewart and Matějka, 2017;
Ravid, 2019). The following lemma formalizes this result in our setting.

Lemma 2.1. Suppose {(St ⊂ S t,~at : St → Rm}∞
t=0 ∪ S−1 is a solution to the 2.1. ∀t ≥ 0, define

at ≡ {~aτ}0≤τ≤t ∪ S−1. Then, Xt → at → St forms a Markov chain, i.e. at is a sufficient statistic
for St with respect to Xt.

Proof. See Appendix A.1.

Lemma 2.1 allows us to directly substitute actions for signals. In particular, we can
impose that the agent directly chooses {~at ∈ S t}t≥0 without any loss of generality.
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Conditional Independence of Actions from Past Shocks. It follows from Lemma 2.1
that if an optimal information structure exists, then ∀t ≥ 0 : I(Xt; St|St−1) = I(Xt; at|at−1).
Here we show this can be simplified if {~xt}t≥0 follows a Markov process.

Lemma 2.2. Suppose {~xt}t≥0 is a Markov process and {~at}t≥0 is a solution to the 2.1 given an
initial information set S−1. Then ∀t ≥ 0:

I(Xt; at|at−1) = I(~xt;~at|at−1), a−1 ≡ S−1.

Proof. See Appendix A.2.

When {~xt}t≥0 is Markov, at any time t, ~xt is all the agent needs to know to predict the
future states. Therefore, it is suboptimal to acquire information about previous realiza-
tions of the state.

2.2 The Linear-Quadratic-Gaussian Problem

In this section, we characterize the necessary and sufficient conditions for the optimal
information structure in a Linear-Quadratic-Gaussian (LQG) setting. In particular, we
assume that {~xt ∈ Rn : t ≥ 0} is a Gaussian process and the payoff function of the agent
is quadratic and given by:

v(~at;~xt) = −
1
2
(~a′t −~x′tH)(~at −H′~xt)

Here, H ∈ Rn×m has full column rank and captures the interaction of the actions with the
state.13 The assumption of rank(H) = m is without loss of generality; in the case that any
two column of H are linearly dependent, we can reclassify the problem so that all colinear
actions are in one class.

Moreover, we have normalized the Hessian matrix of v with respect to ~a to negative
identity.14

Optimality of Gaussian Posteriors. We start by proving that optimal actions are Gaus-
sian under quadratic payoff with a Gaussian initial prior. Maćkowiak and Wiederholt

13While we take this as an assumption, this payoff function can also be derived as a second order approx-
imation to a twice differentiable function v(.; .) around the non-stochastic optimal action and disregarding
the terms that are independent of the agent’s choices.

14This is without loss of generality; for any negative definite Hessian matrix −Haa ≺ 0, normalize the

action vectors by H−
1
2

aa to transform the payoff function to our original formulation.
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(2009b) prove this result in their setup where the cost of information is given by

lim
T→∞

1
T

I(XT; aT)

Our setup is marginally different as in our case the cost of information is discounted at
rate β and is equal to (1− β)∑∞

t=0 βtI(Xt; at), as derived in the proof of Lemma 2.1. The
following lemma presents a modified proof that applies to our specification.

Lemma 2.3. Suppose the initial conditional prior, ~x0|S−1, is Gaussian. If {~at}t≥0 is a solution to
the 2.1 with quadratic payoff given S−1, then ∀t ≥ 0, the posterior distribution ~xt|{~aτ}0≤τ≤t ∪
S−1 is also Gaussian.

Proof. See Appendix A.3.

The Equivalent LQG Problem. Lemma 2.3 simplifies the structure of the problem in
that it allows us to re-write the RI problem in Equation (2.1) in terms of choosing a set
of Gaussian joint distributions between the actions and the state. This is a canonical for-
mulation of the rational inattention problems in LQG settings and it appears in different
forms throughout the literature. For completeness, the following Lemma derives the LQG
problem in our setting that follows from the RI problem in Equation (2.1). A similar for-
mulation appears in Equation (27) in Sims (2010).

Lemma 2.4. Suppose the initial prior ~x0|S−1 is Gaussian and that {~xt}t≥0 is a Markov process
with the following state-space representation:

~xt = A~xt−1 + Q~ut,

~ut ⊥ ~xt−1, ~ut ∼ N (0, Ik×k), k ∈N,

Then, the RI problem in Equation (2.1) with quadratic payoff is equivalent to choosing a set of
symmetric positive semidefinite matrices {Σt|t}t≥0:

V0(Σ0|−1) = max
{Σt|t∈Sn

+}t≥0

−1
2

∞

∑
t=0

βt

[
tr(Σt|tΩ) + ω ln

(
|Σt|t−1|
|Σt|t|

)]
(2.4)

s.t. Σt+1|t = AΣt|tA
′ + QQ′, ∀t ≥ 0, (2.5)

Σt|t−1 − Σt|t � 0, ∀t ≥ 0 (2.6)

0 ≺ Σ0|−1 ≺ ∞ given. (2.7)
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Here, |.| is the determinant operator, � denotes positive semidefiniteness, Σt|t ≡ var(~xt|at),
Σt|t−1 ≡ var(~xt|at−1), Ω ≡ HH′ and Sn

+ is the n-dimensional symmetric positive semidefinite
cone.

Proof. See Appendix A.4.

Lemma 2.4 reformulates the RI problem in Equation (2.1) into an LQG problem in
Equation (2.4) subject to the law of motion for the agent’s priors in Equation (2.5), a set of
no-forgetting constraints in Equation (2.6) that require agent’s posterior to be at least as
precise as their prior, and an initial condition in Equation (2.7).

This characterization of the problem matches the formulation in Sims (2010) but differs
from the one in Sims (2003) and the “Golden rule approximation” in Miao, Wu and Young
(2020) who solve a problem in which the cost of attention is not discounted.15

Solution. Sims (2010) derives a first order condition for the solution to this problem
when the no-forgetting constraints do not bind, and also provides a solution for n = 2
and m = 1 when these constraints do bind. It follows from 2.2 that binding no-forgetting
constraints are cases that should arise frequently. In fact, for any m < n, at least n −
m constraints always bind since actions are sufficient statistics for signals. Thus, any
approach to solve the general case of arbitrary n and m should characterize when and
which constraints bind at any given time.

The problem in Proposition 2.1 can be solved using the standard Karush-Kuhn-Tucker
(KKT) conditions for elements of the posterior matrix Σt|t. The one potential complica-
tion in doing so is that the no-forgetting constraints in Equation (2.6) are a set of n non-
negativity constraints that operate only on the eigenvalues of the matrix Σt|t−1 − Σt|t,
which are themselves affected by the choice of Σt|t. One of our theoretical contributions
is to transform these constraints to a form that makes the application of KKT conditions
straightforward. The core idea here is to take advantage of the fact that positive semi-
definiteness is independent of rotation. Hence, the constraints on the eigenvalues of
Σt|t−1 − Σt|t can be written in any basis with no loss of generality. We formalize this
idea in the proof of the following proposition and derive the following KKT conditions
for the solution.

15The implied problem under the second approach is

max
Σ�0
−tr(ΣΩ)−ω ln

( |Σ−1|
|Σ|

)
s.t. Σ−1 = AΣA′ + QQ′, Σ−1 � Σ.

11



Proposition 2.1. Suppose Σ0|−1 is strictly positive definite, and AA′ + QQ′ is of full rank.
Then, all the future priors {Σt+1|t}t≥0 are invertible under the optimal solution to the 2.4, which
is characterized by

ωΣ−1
t|t −Λt = Ω + βA′(ωΣ−1

t+1|t −Λt+1)A, ∀t ≥ 0, (2.8)

Λt(Σt|t−1 − Σt|t) = 0, Λt � 0, Σt|t−1 − Σt|t � 0, ∀t ≥ 0, (2.9)

Σt+1|t = AΣt|tA
′ + QQ′, ∀t ≥ 0, (2.10)

lim
T→∞

βT+1tr(ΛT+1ΣT+1|T) = 0 (2.11)

where Λt and Σt|t−1 − Σt|t are simultaneously diagonalizable.

Proof. See Appendix A.5.

Here, Equation (2.8) is the first order condition for the problem with eigenvalues of
Λt being the Lagrange multipliers on the no-forgetting constraints. If none of these con-
straints are binding under the optimal solution, then Λt = 0 and this first order condition
collapses to Equation (31) in Sims (2010). Here we allow for the possibility of binding
no-forgetting constraints, so Λt is possibly non-zero and characterized by the comple-
mentarity slackness condition in Equation (2.9). Furthermore, Equation (2.10) is the law
of motion for the agent’s prior and finally, Equation (2.11) is the transversality condition
on information acquisition of the agent.

With these equations at hand, one can obtain the solution to the problem. However,
we can go further in interpreting and adjusting these equations to fit the standard char-
acterizations of dynamic problems in economics. In particular, we can reformulate these
conditions to derive a forward-looking Euler equation that captures the contemporaneous
and continuation value of information and a policy function that given the value of infor-
mation, maps the state variable of the agent at time t (prior uncertainty denote by Σt|t−1)
to a choice variable (posterior uncertainty denoted by Σt|t). To present these two equa-
tions as concisely as possible, we start by introducing the following two matrix operators:

Definition 2.1. For a diagonal matrix D = diag(d1, . . . , dn) let

Max(D, ω) ≡ diag(max(d1, ω), . . . , max(dn, ω))

Min(D, ω) ≡ diag(min(d1, ω), . . . , min(dn, ω))
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Moreover, for a symmetric matrix X with spectral decomposition X = U′DU, we define

Max(X, ω) ≡ U′Max(D, ω)U, Min(X, ω) ≡ U′Min(D, ω)U.

In short, Max(X, ω) preserves the X′s eigenvectors but replaces its eigenvalues with ω

if they are smaller than ω. Similarly, Min(X, ω) preserves X’s eigenvectors but replaces
its eigenvalues with ω if they are larger than ω.

Theorem 2.1. Let Ωt ≡ Ω + βA′(ωΣ−1
t+1|t −Λt+1)A denote the forward-looking component of

the FOC in Proposition 2.1. Then,

Σt|t = ωΣ
1
2
t|t−1

[
Max

(
Σ

1
2
t|t−1ΩtΣ

1
2
t|t−1, ω

)]−1

Σ
1
2
t|t−1 (2.12)

Ωt = Ω + βA′Σ−
1
2

t+1|t Min
(

Σ
1
2
t+1|tΩt+1Σ

1
2
t+1|t, ω

)
Σ
− 1

2
t+1|tA (2.13)

Proof. See Appendix A.6.

Equation (2.12) is the policy function that characterizes the optimal posterior of the
agent given the state Σt|t−1 and the benefit matrix Ωt. Furthermore, Equation (2.13) is
the forward-looking Euler equation that characterizes Ωt that captures the dynamics of
attention. Together with the law of motion for the agent’s prior in Equation (2.10) as
well as the transversality condition in Equation (2.11), these equations characterize the
solution to the dynamic rational inattention problem.

While we have characterized the optimal posterior as a function of the agent’s prior,
the underlying assumption is that this posterior is generated by a vector of signals about
~xt. Both the number of these signals as well as how they load on different elements of the
vector ~xt are endogenous. Our next result characterizes these signals.

Theorem 2.2. ∀t ≥ 0, let {di,t}1≤i≤n be the set of eigenvalues of the matrix Σ
1
2
t|t−1ΩtΣ

1
2
t|t−1 in-

dexed in descending order. Moreover, let {ui,t}1≤i≤n be orthonormal eigenvectors that correspond
to those eigenvalues. Then, the agent’s posterior belief at t is spanned by the following 0 ≤ kt ≤ m
signals

si,t = y′i,t~xt + zi,t, 1 ≤ i ≤ kt,

where

1. kt is the number of the eigenvalues that are at least as large as ω: kt = max{i|di,t ≥ ω}.
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2. ∀i ∈ {1, . . . , kt}, yi,t ≡ Σ
− 1

2
t|t−1ui,t.

3. ∀i ∈ {1, . . . , kt}, zi,t ∼ N (0, ω
di,t−ω ), zi,t ⊥ (~xt, zj,t)j 6=i.

Proof. See Appendix A.7.

Evolution of Optimal Beliefs and Actions. While Theorems 2.1 and 2.2 provide a rep-
resentation for the optimal posteriors and signals, we are often interested in the evolution
of the agents’ beliefs and actions. Our next theorem characterizes how beliefs and actions
evolve over time.

Proposition 2.2. Let {(yi,t, di,t, zi,t)1≤i≤kt}t≥0 be defined as in Theorem 2.2, and let x̂t ≡ E[~xt|at]

be the mean of agent’s posterior about ~xt at time t. Then, x̂t and optimal actions evolve according
to:

x̂t = Ax̂t−1︸ ︷︷ ︸
prior belief

+
kt

∑
i=1

Kalman gain vector of i︷ ︸︸ ︷
(1− ω

di,t
)︸ ︷︷ ︸

signal-to-noise
ratio of i

Σt|t−1yi,t ×
[
y′i,t(~xt −Ax̂t−1) + zi,t

]︸ ︷︷ ︸
surprise in signal i

~at = H′ x̂t

Proof. See Appendix A.8.

2.3 Solution Algorithm, Computational Accuracy and Efficiency

Given an initial prior Σ−1|0, the solution to the LQG problem in Equation (2.4) is charac-
terized by a sequence of matrices {Σt|t, Σt+1|t, Ωt}t≥0 that satisfy the policy function and
Euler equation in Theorem 2.1, the law of motion for the priors in Equation (2.5) as well
as the transversality condition in Equation (2.11).

Our main methodological contribution here is that, based on our theoretical findings
in Theorems 2.1 and 2.2, we provide a new algorithm for characterizing the sequence of
these matrices. We also provide a software package for solving dynamic rational inatten-
tion problems (DRIPs) based on this algorithm that is available as the DRIPs.jl package
to the Julia programming language.16

16See https://afrouzi.com/DRIPs.jl/dev/ for installation and usage instructions. A Matlab code for
the algorithm is also available at https://github.com/choongryulyang/dynamic_multivariate_RI.
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We have also used our software package to replicate results from three canonical pa-
pers (Maćkowiak and Wiederholt, 2009a; Sims, 2010; Maćkowiak et al., 2018a) that use
different methods for solving DRIPs and assess the accuracy and the efficiency of our
algorithm. Our algorithm produces identical results to each of these papers but is consid-
erably faster than alternative solution methods. A summary of computing times for these
papers are reported in Table 1. Moreover, the replication files for these three papers are
available at the link above and are also accessible as executable Jupyter notebooks that
accompany this manuscript.

Table 1: Summary of computing times

Dimension DRIPs.jl Alternative Algorithms

Computing time for: n2 Time (s) Time (s) Source

Sims (2010)

Benchmark parameterization:
steady state 22 1.6× 10−4

transition dynamics 22 6.3× 10−4 1.08× 103 Miao, Wu and Young (2020)
“Golden rule” approximation 22 1.6× 10−4 3.00× 100 Miao, Wu and Young (2020)

Maćkowiak and Wiederholt (2009a)

Benchmark parameterization:
problem without feedback 202 1.83× 10−1 4.58× 101 original (published)
problem with feedback 202 3.97× 100 1.72× 102 replication files

Maćkowiak, Matějka and Wiederholt (2018a)

Price setting with rational inattention
without feedback 22 0.45× 10−3

with feedback 402 4.42× 10−1

Business cycle model with news shocks 402 9.40× 10−1

Notes: This table shows the summary of computing times for our replication of Sims (2010), Maćkowiak and Wiederholt
(2009a) and Maćkowiak et al. (2018a) (discussed in Section 2.4, Appendix B.1 and Appendix B.2 respectively). Tolerance level
for convergence is 10−4 for the solution to rational inattention problem in all cases. Statistics from Miao et al. (2020) are taken
directly from their manuscript. All other calculations were performed on a 2019 MacBook Pro with 16GB of memory, a 2.3
GHz processor and 8 cores (but no multi-core functionality was used).

The general outline of our algorithm is to solve the problem in two stages: first, we
solve for the steady state of the problem that is independent of the initial prior, and sec-
ond, we use a shooting algorithm on the Euler equation (Equation 2.13) and the law of
motion for the prior (Equation 2.5) to characterize the transition path. We now describe
these two stages in more detail.

Solving for the Steady State Information Structure. By the “steady state” information
structure, we mean a triple (Σ̄−1, Σ̄, Ω̄) that satisfy the stationary versions of the policy
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function, the law of motion for the prior and the Euler equation (Equations 2.12, 2.5 and
2.13 respectively):

Σ̄ = ωΣ̄
1
2
−1

[
Max

(
Σ̄

1
2
−1Ω̄Σ̄

1
2
−1, ω

)]−1

Σ̄
1
2
−1 (2.16)

Σ̄−1 = AΣ̄A′ + QQ′ (2.17)

Ω̄ = Ω + βA′Σ̄−
1
2
−1 Min

(
Σ̄

1
2
−1Ω̄Σ̄

1
2
−1, ω

)
Σ̄
− 1

2
−1 A

One can then solve for this steady state triple by the following iterative algorithm, starting
with an initial guess for Σ̄−1 = Σ̄−1,(0) and Ω̄ = Ω̄(0). Then, in any iteration j ≥ 1:

1. Obtain the eigenvalue and eigenvector decomposition of

X(j) ≡ Σ̄
1
2
−1,(j−1)Ω̄(j−1)Σ̄

1
2
−1,(j−1)

2. Use the steady state policy function in Equation (2.16) to form a guess about the
steady state posterior covariance matrix:

Σ̄(j) = ωΣ̄
1
2
−1,(j−1)

[
Max

(
X(j), ω

)]−1
Σ̄

1
2
−1,(j−1)

3. Use the steady state law of motion for the prior in Equation (2.17) and the steady
state Euler equation in 2.3 to update the guesses for Σ̄−1 and Ω̄:

Ω̄(j) = Ω + βA′Σ̄−
1
2
−1,(j−1) Min

(
X(j), ω

)
Σ̄
− 1

2
−1,(j−1)A

Σ̄−1,(j) = AΣ̄(j)A
′ + QQ

4. Repeat with j+=1 if ‖Σ−1,(j) − Σ−1,(j−1)‖/‖Σ−1,(j−1)‖ > tolerance.

Solving for the Transition Dynamics. The objective here is to solve for the transition
path of the triple (Σt|t, Σt+1|t, Ωt) to the steady state conditional on a given initial prior,
Σ−1|0. We use a shooting algorithm to solve for this. In particular, we start with the guess
that after some large T, the sequence has converged to the steady state solution from the
previous step so that, up to some tolerance,

Σt+1|t = Σ̄−1, Σt|t = Σ̄, Ωt = Ω̄, ∀t ≥ T + 1
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Therefore, conditional on this guess, we only need to solve for a finite sequence

{Σt|t, Σt+1|t, Ωt}0≤t≤T, Σ−1|0 given.

We find this sequence using the following iterative procedure:

1. Start with the guess that ∀0 ≤ t ≤ T, Ωt,(0) = Ω̄.

2. At iteration j ≥ 1, given the sequence {Ωt,(j−1)}0≤t≤T and Σ−1|0,(j) ≡ Σ−1|0, iterate
forward in time using the policy function from Theorem 2.1 and the law of motion
for priors:

for t = 0 ↑ T :

Σt|t,(j) ≡ ωΣ
1
2
t|t−1,(j)

[
Max

(
Σ

1
2
t|t−1,(j)Ωt,(j−1)Σ

1
2
t|t−1,(j), ω

)]−1

Σ
1
2
t|t−1,(j)

Σt+1|t,(j) ≡ AΣt|t,(j)A
′ + QQ′

3. At iteration j ≥ 1, given the sequence {Σt+1|t,(j)}0≤t≤T ∪ {ΣT+1|T,(j) ≡ Σ̄−1} and
ΩT+1,(j) ≡ Ω̄, iterate backward in time using the Euler equation from Theorem 2.1:

for t = T ↓ 0 :

Ωt,(j) ≡ Ω + βA′Σ−
1
2

t+1|t,(j) Min
(

Σ
1
2
t+1|t,(j)Ωt+1,(j)Σ

1
2
t+1|t,(j), ω

)
Σ
− 1

2
t+1|t,(j)A

4. Repeat Steps 2 to 4 with j+=1 if

‖(Σt+1|t,(j))
T
t=0 − (Σt+1|t,(j−1))

T
t=0‖/‖(Σt+1|t,(j−1))

T
t=0‖ > tolerance.

5. Finally, check if T was large enough for convergence to the steady state. If not,
repeat starting from Step 1 with larger T.

2.4 Example: Transition Dynamics in Sims (2010)

In his Handbook of Monetary Economics chapter, Sims (2010) provides an example with
two shocks (n = 2) and one action (m = 1). He then characterizes the steady state posterior
covariance matrix under the rational inattention problem. A discussion of the steady state
solution to this problem also appears in the recent paper by Miao et al. (2020) based on
the solution method proposed by them. What is novel here is that our solution method
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allows us to extend the solution and study its transition dynamics to that steady state from
any initial prior.17

Background. The example in Sims (2010) is of a monopolist who chooses its price to
match the sum of two AR(1) processes, where one is more persistent than the other. The
contemporaneous profit of the monopolist is decreasing in the distance of its price from
this linear sum and is given by v(at, x1,t, x2,t) = −(at − x1,t − x2,t)

2 where at is the agent’s
action (here the monopolist’s price). Moreover, x1,t and x2,t are both shocks with AR(1)
processes. Assuming the agent discounts future payoffs at an exponential rate β, Equation
(10) in Sims (2010) derives the equivalent LQG rational inattention problem as:

min
{Σt|t�0}t≥0

∞

∑
t=0

βt

[
tr(Σt|tHH′) + ω log

(
|Σt|t−1|
|Σt|t|

)]
s.t. Σt+1|t = AΣt|tA

′ + QQ′, Σt|t−1 − Σt|t � 0, Σ−1|0 � 0 given.

with the following parameterization:

β = 0.9, ω = 1, H =

[
1
1

]
, A =

[
0.95 0

0 0.4

]
, Q =

[ √
0.0975 0

0
√

0.86

]

Here, we have renamed the parameters so that the problem directly maps to our formu-
lation in Equation (2.4). Otherwise, the problem is the same as in Sims (2010).

Steady State Solution. The steady state information structure has appeared prior to our
paper in Sims (2010) and Miao et al. (2020). Our objective here is to compare the solution
based on our algorithm with these benchmarks. Our solution method yields the following
posterior and prior covariance matrices for the steady state information structure up to a
tolerance of 10−4:

Σ̄ ≡ lim
t→∞

Σt|t =

[
0.3592 −0.1770

−0.1770 0.7942

]
, Σ̄−1 ≡ lim

t→∞
Σt+1|t =

[
0.4217 −0.0673

−0.0673 0.9871

]
(2.18)

This solution is close to the posterior covariance reported in Sims (2010).18 Moreover,
it is almost identical to the one reported in Miao et al. (2020) who use conventional value

17See Table 1 for how our algorithm compares to the one proposed by Miao et al. (2020) in computing
times.

18Sims (2010) reports the following posterior covariance matrix: Σ̄ =

[
0.373 −0.174
−0.174 0.774

]
.
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function iteration methods to calculate this solution.19

Transition Dynamics of the Optimal Information Structure. In this section we report
results for the transition path of the optimal information structure from a highly certain
prior. In particular, we assume that in the steady state of the information acquisition
problem, the agent’s prior is affected by a one time “knowledge shock” that reduces their
prior uncertainty to 1 percent of its long-run value. We refer to period -1 as the period in
which this knowledge shock happens. This implies that at time 0, the agent’s prior about
~x0 is given by

~x0 ∼ N (0, Σ0|−1), Σ0|−1 = 0.01× Σ̄−1

where ~x0 = (x1,0, x2,0) is the vector of the transitory and persistence shocks at time 0 and
Σ̄−1 is the prior covariance matrix in the steady state from Equation (2.18). By assuming
that the mean of this prior is 0, we are implicitly assuming that both shocks were at their
steady state values when the knowledge shock happened. We use the shooting algorithm
outlined in Section 2.3 to solve for this transition path. It takes our code 630 microseconds
to obtain the solution (See Table 1 for details).

Number of Signals Over Time. We start by characterizing the number of signals
that the agent observes over time. It follows from Theorem 2.2 that this number is equal

to the number of the eigenvalues of the matrix Σ
1
2
t|t−1ΩtΣ

1
2
t|t−1 that are at least as large as

ω. Since the dimension of the state in this problem is 2, there are two eigenvalues—or in
other words, two dimensions to which the agent can pay attention.

Figure 1 plots these eigenvalues over time. At time 0, none of these eigenvalues are
larger than ω, which implies that the agent acquires no information right after the knowl-
edge shock. Starting at time 1, one of eigenvalues is larger than 1, which implies that the
agent receives one signal starting at t = 1. It takes approximately 10 periods for these
eigenvalues to reach their steady state, at which point only one of them remains above ω.
This implies that even in the steady state the agent receives only one signal.20

19Miao et al. (2020) report the following posterior covariance matrix: Σ̄ =

[
0.3590 −0.1769
−0.1769 0.7945

]
.

20This is consistent with Lemma 2.2 which specifies that the number of signals should be bounded above
by the agent’s number of actions. Since the number of actions in this example is 1, the number of signals
received by the agent should always be less than or equal to 1.
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Figure 1: Marginal Value of Information on the Transition Path

Notes: This figure shows the marginal values of information in orthogonal dimensions for our extension
of the example in Sims (2010). The transition dynamics are from an initial prior Σ0|−1 = 0.01× Σ−1,
where Σ−1 is the steady state prior covariance matrix reported in Equation (2.18). Following Theorem
2.2, these marginal values are defined as the eigenvalues of the matrix Σ1/2

t|t−1ΩtΣ
1/2
t|t−1. The agent receives

a signal in a particular dimension if the corresponding marginal value is larger than ω. In this example,
the agent observes no signals in period 0, and only one signal after that, including in the steady state.

Signal-to-noise Ratio and Pass-through of Shocks on the Transition Path. Although
the agent receives one signal starting at time 1, the signal-to-noise ratio and the loading
of this signal on each of the two shocks still varies over the transition path. This implies
that, in contrast to the steady state information structure, there is time variation in how
the monopolist’s beliefs and price responds to shocks. We use our results in Proposition
2.2 to study these time varying responses. In particular, we focus on two different set of
statistics in this section:

1. The first quantity is the signal-to-noise itself, which according to Proposition 2.2 is
defined as 1− ω

d1,t
. The left panel of Figure 2 plots this quantity after the knowledge

shock happens at time −1. At time 0, the signal-to-noise ratio is zero since the
agent is not receiving any signals, but starting at time 1, this quantity is positive
and converges to its steady state value of around 0.4 from below in approximately
10 periods. This shows that the initial knowledge shock at t = −1 has dynamic
consequences and crowds out information acquisition in later periods.

2. The second set of quantities are the pass-through of shocks to the monopolist’s price,
which we define as the elasticity of price to innovations to each of the persistent and
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Figure 2: Signal Informativeness and Price Responsiveness on the Transition Path

Notes: The left panel shows the transition path of the Kalman gain for the optimal signal for our extension
of the example from Sims (2010). Moreover, the right panel shows the instantaneous pass-through of the
persistence and transitory shocks to the agent’s action on the transition path. All values are constant
in the steady state. Transition dynamics are from an initial prior Σ0|−1 = 0.01× Σ−1, where Σ−1 is the
steady state prior covariance matrix reported in Equation (2.18).

transitory components of the cost:

Pass-throughs,t ≡
∂at

∂us,t
, s ∈ {1, 2}.

Here, at is the action (price) of the monopolist and us,t is an innovation to the AR(1)
process xs,t, s ∈ {1, 2}, that is realized at time t. The right panel of Figure 2 plots
these two quantities over time. At time 0, because the monopolist receives no sig-
nals, both shocks have a pass-through of zero. Starting at time 1, both pass-throughs
are positive and converge to their steady state from below—which directly follows
from the crowding out effect of the initial knowledge shock. Moreover, on the transi-
tion path, as well as in the steady state, the more persistent shock has a higher pass-
through relative to the transitory shock. This is due to the fact that the acquiring
more information about the persistent shock is more valuable for a forward-looking
agent.

Finally, it is important to note that all three of these quantities are constant under the
steady state information structure, and the time-varying responses shown in Figure 2 are
all due to the transition dynamics of attention.

21



Impulse Response Functions. How important can the transition dynamics of attention
be? One way of answering this question is to compare how the impulse response func-
tions of the monopolist’s price to shocks vary between the steady state and the transition
path of the optimal information structure.
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Figure 3: Impulse Response Functions in Steady State versus on the Transition Path

Notes: This figure the impulse response functions of the price with both the steady state information
structure as well as the information structure on the transition path in our extension of the example
from Sims (2010). Transition dynamics are from an initial prior Σ0|−1 = 0.01× Σ−1, where Σ−1 is the
steady state prior covariance matrix reported in Equation (2.18). The agent consistently acquires less
information relative to the steady state on the transition path and the impulse responses are more muted.
In particular, price does not respond to shocks at all at time 1 as the agent receives no signals in that
period.

Figure 3 plots these impulse response functions for a one standard deviation innova-
tion at time 0 to both components of the cost and under both information structures. The
main observation is that the impulse responses are significantly muted under the informa-
tion structure in the transition path. The monopolist, being certain about both shocks at
t = −1, substitutes temporarily substitutes away from information acquisition and pays
little attention to costs after the initial knowledge shock. At time 0, it receives no signal
about any of the two AR(1) processes and has no reaction to their innovations. Starting at
time 1, the reaction is larger than zero but significantly below what it is under the steady
state information structure. This directly follows from the fact that the signal-to-noise
ratio on the transition path is significantly smaller than its steady state value.

2.5 Further Discussion of Dynamic Rational Inattention Problems

In this section we further discuss properties of the solution to the dynamic rational inat-
tention problem.
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Incentives. Underneath its technical representation, Theorem 2.1 encodes an intuitive
economic result. It shows that in acquiring information, the agent first decomposes the

matrix Σ
1
2
t|t−1ΩtΣ

1
2
t|t−1, which captures the marginal benefit of information, into its orthog-

onal eigenspaces. At the extensive margin, the agent ignores eigenspaces whose eigenval-
ues are less than ω: the marginal benefit of acquiring information in these dimensions is
outweighed by its marginal cost. On the intensive margin, the agent acquires signals for
eigenspaces whose eigenvalues are larger than ω. Moreover, Theorem 2.2 shows that the
loading of each of these signals on the state ~xt is given by the eigenvector associated with
the signal’s eigenspace.

Endogenous Sparsity. The extensive margin of information acquisition under dynamic
rational inattention provides a microfoundation for why an agent might decide to com-
pletely ignore certain shocks or dimensions of the state in acquiring information and con-
stitutes a microfoundation for sparsity of attention as in Gabaix (2014). This microfounda-
tion endogenizes two objects relative to previous models of sparsity: (1) the dimensions

of sparsity – which are pinned down by the eigenvectors of Σ
1
2
t|t−1ΩtΣ

1
2
t|t−1 with eigenval-

ues less than ω, and (2) the size of the information inaction region that is generated by the
extensive margin as a function of the marginal benefit of information.

In our framework, sparsity is governed by the corner solutions generated through the
no-forgetting constraints in Equation (2.6). The most obvious and likely case for binding
no-forgetting constraints is when the number of actions m is strictly less than the dimen-
sion of the state n—as was the case in the example from Sims (2010) in Section 2.4. This
follows directly from Lemma 2.1 which states that the agent’s actions at any given pe-
riod are sufficient statistics for the underlying signals that she receives under the optimal
solution.21

In static environments, the fact that actions are sufficient statistics for the underlying
signals follows directly from optimality (Matějka and McKay, 2015). If the agent’s action
does not reveal the underlying signal, then he must have received information that was
not used in choosing the action. Nonetheless, such a strategy is suboptimal given that
information is costly. In dynamic settings, however, this is not necessarily true due to
smoothing incentives. The agent might find it optimal to acquire signals about future
actions before-hand in which case the history of actions at a given time is no longer suffi-
cient for the information set of the agent. Lemma 2.1 rules out this case by showing that if

21Therefore, rank(Σt|t−1 − Σt|t) ≤ m < n and the constraint binds as its nullity is at least n−m > 0.
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the chain-rule of mutual information holds, then the agent has no smoothing incentives.22

The economic consequence of this result is that independent of how many shocks
they face, rationally inattentive agents are only interested in how those shocks affect their
actions. An important reference for why this matters in an economic sense is Hellwig
and Venkateswaran (2009) which shows that when firms receive signals about a suffi-
cient statistic for their prices, they charge the right prices even though they cannot tell
aggregate and idiosyncratic shocks apart.23

Information Spillovers. Sufficiency of actions for signals also generates endogenous
correlation across exogenously independent shocks and provides a microfoundation for
information spillovers across different actions (Sims, 2010). These effects are uniquely char-

acterized by the eigenvectors of Σ
1
2
t|t−1ΩtΣ

1
2
t|t−1 with eigenvalues larger than ω. Therefore,

information about an action can effect other actions either through a subjective correlated
posterior (Σt|t−1) or through complementarities or substitutabilies in actions captured by
Ωt.24

3 An Attention Driven Phillips Curve

In this section we introduce a tractable general equilibrium model with rationally inat-
tentive firms and provide an attention driven theory of the Phillips curve.

3.1 Environment

Households. Consider a fully attentive representative household who supplies labor
Nt in a competitive labor market with nominal wage Wt, trades nominal bonds with net

22The chain-rule of mutual information implies that for every three random variables:

I(X; (Y, Z)) = I(X; Y) + I(X; Z|Y).

Intuitively, it imposes a certain type of linearity: mutual information is independent of whether information
is measured altogether or part by part.

23Hellwig and Venkateswaran (2009) do not endogenize information choice, but the exogenous signal
structure that they consider is optimal under our model with a particular parametrization.

24For instance, Kamdar (2018) documents that households have countercyclical inflation expectations –
an observation that is contradictory to the negative comovement of inflation and unemployment in the
data but is consistent of optimal information acquisition of households under substitutability of leisure and
consumption. Similarly, Kőszegi and Matějka (2020) show that complementarities or substitutabilities in
actions give rise to mental accounting in consumption behavior through optimal information acquisition.
While these two papers use static information acquisition, our framework allows for dynamic spillovers
through information acquisition.
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interest rate of it, and forms demand over a continuum of varieties indexed by i ∈ [0, 1].
Formally, the representative household’s problem is

max
{(Ci,t)i∈[0,1],Nt}∞

t=0

E
f
0 [

∞

∑
t=0

βt(log(Ct)− Nt)]

s.t.
∫ 1

0
Pi,tCi,tdi + Bt ≤WtNt + (1 + it−1)Bt−1 + Πt + Tt

Ct =

[∫ 1

0
C

θ−1
θ

i,t di
] θ

θ−1

where E
f
t [.] is the expectation operator of this fully informed agent at time t, Πt is the

aggregated profits of firms, and Tt is the net lump-sum transfers to the household at t.

For ease of notation, let Pt ≡
[∫ 1

0 P1−θ
i,t

] 1
1−θ denote the aggregate price index and Qt ≡

PtCt be the nominal aggregate demand in this economy. The solution to the household’s
problem is summarized by:

Ci,t = CtPθ
t P−θ

i,t , ∀i ∈ [0, 1], ∀t ≥ 0,

1 = β(1 + it)E
f
t

[
Qt

Qt+1

]
, ∀t ≥ 0,

Wt = Qt, ∀t ≥ 0.

Monetary Policy. We assume that the monetary authority targets the growth of the nom-
inal aggregate demand. This can be interpreted as targeting inflation and output growth
similarly:

it = ρ + φ∆qt − σuut, ut ∼ N (0, 1)

where ρ ≡ − log(β) is the natural rate of interest, qt ≡ log(PtCt) is the log of the nomi-
nal aggregate demand, and ut is an exogenous shock to monetary policy that affects the
nominal interest rates with a standard deviation of σu.

Lemma 3.1. Suppose φ > 1. Then, in the log-linearized version of this economy, the aggregate
demand is uniquely determined by the history of monetary policy shocks, and is characterized by
the following random walk process:

qt = qt−1 +
σu

φ
ut.

Proof. See Appendix C.1.
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Assuming that the monetary authority directly controls the nominal aggregate de-
mand is a popular framework in the literature to study the effects of monetary policy on
pricing.25 We derive this as an equilibrium outcome in Lemma 3.1 in order to relate the
variance of the innovations to the nominal demand to the strength with which the mone-
tary authority targets its growth: a larger φ stabilizes the nominal demand while a larger
σu increases its variance.

Firms. Every variety i ∈ [0, 1] is produced by a price-setting firm. Firm i hires labor
Ni,t from a competitive labor market at a subsidized wage Wt = (1− θ−1)Qt where the
subsidy θ−1 is paid per unit of worker to eliminate steady state distortions introduced by
monopolistic competition. Firms produce their product with a linear technology in labor,
Yi,t = Ni,t. Therefore, for a particular history {(Pt, Qt)}t≥0 and set of prices {Pi,t}t≥0, the
net present value of the firms’ profits, discounted by the marginal utility of the household
is given by

∞

∑
t=0

βt 1
PtCt

(Pi,t − (1− θ−1)Qt)CtPθ
t P−θ

i,t

=− (θ − 1)
∞

∑
t=0

βt(pi,t − qt)
2 +O(‖(pi,t, qt)t≥0‖3) + terms independent of {pi,t}t≥0

where the second line is a second order approximation with small letters denoting
the logs of corresponding variables.26 This approximation states that for a monopolistic
competitive firms, their loss from not matching their marginal cost in pricing, which is this
setting is the nominal demand, is quadratic and proportional to θ− 1, with θ denoting the
elasticity of demand.

We assume prices are perfectly flexible but firms are rationally inattentive and set their
prices based on imperfect information about the underlying shocks in the economy. The
rational inattention problem of firm i in the notation of the previous section is then given
by

V(p−1
i ) = max

{pi,t∈S t}t≥0

∞

∑
t=0

βtE[−(θ − 1)(pi,t − qt)
2 −ωI(pt

i , qt)|p−1
i ]

25See, for instance, Mankiw and Reis (2002), Woodford (2003), Golosov and Lucas (2007), Maćkowiak and
Wiederholt (2009a) and Nakamura and Steinsson (2010). This is also analogous to formulating monetary
policy in terms of an exogenous rule for money supply as in, for instance, Caplin and Spulber (1987) or
Gertler and Leahy (2008).

26For a detailed derivation of this second order approximation see, for instance, Maćkowiak and Wieder-
holt (2009a).
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where pt
i ≡ (pi,τ)τ≤t denotes the history of firm’s prices over up to time t. It is important

to note that {pi,t}t≥0 is a stochastic process that proxies for the underlying signals that the
firm receives over time – a result that follows from Lemma 2.2.

Assuming that the distribution of q0 conditional on p−1
i is a Gaussian process, and

noting that {qt}t≥0 is itself a Markov Gaussian process, this problem satisfies the assump-

tions of Proposition 2.4. Formally, let σi,t|t−1 ≡
√

var(qt|pt−1
i ), σi,t|t ≡

√
var(qt|pt

i) denote
the prior and posterior standard deviations of firm i belief about qt at time t. Then, the
corresponding LQG problem to the one in Proposition 2.4 is

V(σi,0|−1) = max
{σi,t|t,σi,t+1|t}∞

t=0

∞

∑
t=0

βt

[
−(θ − 1)σ2

i,t|t −ω ln

(
σ2

i,t|t−1

σ2
i,t|t

)]

s.t. σ2
i,t+1|t = σ2

i,t|t +
σ2

u
φ2

0 ≤ σi,t|t ≤ σi,t|t−1

3.2 Characterization of Solution

The solution to this problem follows from Proposition 2.1, and is characterized by the
following proposition.

Proposition 3.1. Firms only pay attention to the monetary policy shocks if their prior uncertainty
is above a reservation prior uncertainty. Formally,

1. the policy function of a firm for choosing their posterior uncertainty is

σ2
i,t|t = min{σ2, σ2

i,t|t−1}, ∀t ≥ 0

where σ2 is the positive root of the following quadratic equation:

σ4 +

[
σ2

u
φ2 − (1− β)

ω

θ − 1

]
σ2 − ω

θ − 1
σ2

u
φ2 = 0

2. the firm’s price evolves according to:

pi,t = pi,t−1 + κi,t(qt − pi,t−1 + ei,t)

where κi,t ≡ max{0, 1− σ2

σ2
i,t|t−1
} is the Kalman-gain of the firm under optimal solution and

ei,t is the firm’s rational inattention error.
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Proof. See Appendix C.2.

The first part of Proposition 3.1 shows that firms pay attention to nominal demand
only when they are sufficiently uncertain about it. The result follows from the fact that
the marginal benefit of a bit of information is increasing in the prior uncertainty of a firm
but the marginal cost is constant. Thus, for small levels of prior uncertainty where the
marginal benefit of acquiring a bit of information falls below the marginal cost, the firm
pays no attention to the nominal demand. However, once the prior uncertainty is at least
as large as the reservation uncertainty, the firm always acquires enough information to
maintain that level of uncertainty.

The second part of Proposition 2.4 shows that in the region where the firm does not
pay attention to the nominal demand, their price does not respond to monetary policy
shocks as the implied Kalman-gain is zero and the price is constant: pi,t = pi,t−1.

Nonetheless, as the nominal demand follows a random walk, it cannot be that the firm
stays in the no-attention region forever. The variance of a random walk grows linearly
with time, and it would only be below the reservation uncertainty for a finite amount of
time. Once the firm’s uncertainty reaches this level, the problem enters its steady state
and the Kalman-gain is

κi,t = κ ≡ σ2
u

φ2σ2 + σ2
u

.

Comparative Statics. It is useful to study how the reservation uncertainty, σ2 and the
steady state Kalman-gain κ change with the underlying parameters of the model.

Corollary 3.1. The following hold:

1. The reservation uncertainty of firms increases with ω and σu, and decreases with φ, θ as
well as β.

2. The steady state Kalman-gain of firms increases with σu, θ and β, and decreases with φ and
ω.

Proof. See Appendix C.3.

While Corollary 3.1 holds for all values of the underlying parameters, a simple first
order approximation to the reservation uncertainty and steady state Kalman-gain can be
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derived when firms are perfectly patient (β → 1) and σ2
u is small relative to the cost of

information ω:27

[σ2]β=1,σ2
u�ω ≈

σu

φ

√
ω

θ − 1

[κ]β=1,σ2
u�ω ≈

σu

φ

√
θ − 1

ω

3.3 Aggregation

For aggregation, we make two assumptions: (1) firms all start from the same initial prior
uncertainty, σ2

i,0|−1 = σ2
0|−1, ∀i ∈ [0, 1], and (2) firms’ rational inattention errors are inde-

pendently distributed.28

Notation-wise, we define the log-linearized aggregate price as the average price of
all firms, pt ≡

∫ 1
0 pi,tdi, the log-linearized inflation as πt = pt − pt−1 and log-linearized

aggregate output as the difference between the nominal demand and aggregate price,
yt ≡ qt − pt.

Proposition 3.2. Suppose all firms start from the same prior uncertainty. Then,

1. the Phillips curve of this economy is

πt = max{0,
σ2

t|t−1 − σ2

σ2
t|t

}yt

2. Suppose σ2
T|T−1 ≤ σ2, then ∀t ≤ T:

πt = 0, yt = yt−1 +
σu

φ
ut.

27This approximation becomes the exact solution to the analogous problem in continuous time. This
follows from the fact that in continuous time the variance of the innovation is arbitrarily small because it is
proportional to the time between consecutive decisions.

28Our second assumption is not without loss of generality once we assume that the cost of information is
Shannon’s mutual information (Denti, 2015; Afrouzi, 2020). With other classes of cost functions, however,
non-fundamental volatility can be optimal – see Hébert and La’O (2019) for characterization of these cost
functions.
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3. Suppose σ2
T|T−1 > σ2, then for t ≥ T + 1:

πt = (1− κ)πt−1 +
κσu

φ
ut

yt = (1− κ)yt−1 +
(1− κ)σu

φ
ut

where κ ≡ σ2
u

φ2σ2+σ2
u

is the steady-state Kalman-gain of firms.

Proof. See Appendix C.4.

3.4 Implications for the Slope of the Phillips Curve

Proposition 3.2 shows that this economy has a Phillips curve with a time-varying slope,
which is flat if and when the no-forgetting constraint binds. At a time when firm’s uncer-
tainty is below the reservation uncertainty, firms pay no attention to the monetary policy
and the inflation does not respond to monetary policy shocks.

Nonetheless, since nominal demand follows a random walk process and the attention
problem is deterministic, Proposition 3.2 also shows that the rational inattention prob-
lem will eventually enter and remain at its steady state where firms do pay attention to
the nominal demand. In this section, we start by analyzing this steady state, and then
consider the dynamic consequences of unanticipated disturbances (MIT shocks) to the
parameters of the model.

3.4.1 The Long-run Slope of the Phillips Curve

It follows from Proposition 3.2 that once the inattention problem settles in its steady-state,
the Phillips curve is given by

πt =
κ

1− κ
yt

where κ is the steady state Kalman gain. Moreover, the last part of the Proposition also
shows that in this steady state, both output and inflation follow AR(1) processes whose
persistence are given by 1− κ.

Thus, in the long-run, the parameter κ is sufficient for determining the slope of the
Phillips curve as well as the magnitude and persistence of the real effects of monetary
policy shocks in this economy: a lower value for κ leads to a flatter Phillips curve, a
more persistent process for inflation and output, and larger monetary non-neutrality. The
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intuition behind all of these is that a lower value for κ is equivalent to lower attention
to monetary policy shocks on the part of firms. It takes longer for less attentive firms to
learn about monetary policy shocks and respond to them. In the meantime, since firms
are not adjusting their prices one to one with the shock, their output has to compensate.
Thus, less attention, leads to a longer half-life for – and a larger degree of – monetary
non-neutrality.

Comparative statics of κ with respect to the underlying parameters of the model are
derived in Corollary 3.1. In particular, we would like to focus on how the rule of monetary
policy affects the slope of the Phillips curve and consequently the persistence and the
magnitude of the real effect so of monetary policy shocks.

Corollary 3.1 shows that κ is increasing with σu
φ . We interpret this ratio as a measure

for how dovish the monetary policy is in this economy since a larger σu
φ corresponds to a

lower relative weight on stabilizing inflation. It follows that in the long-run, the Phillips
curve is steeper in more dovish economies. If the monetary authority opts for a lower
weight on the stabilization of the nominal variables, the firms face a more volatile process
for their marginal cost and optimally choose to pay more attention to monetary policy
shocks in the steady state of their attention problem. As a result, such firms are more
responsive to monetary policy shocks and are quicker in adjusting their prices.

3.4.2 The Aftermath of An Unexpectedly More Hawkish Monetary Policy

An interesting exercise is to consider an unexpected decrease in σu
φ . This can correspond

to lower variance of monetary policy shocks or a higher weight on stabilizing inflation in
the rule of monetary policy.

Corollary 3.2. Suppose the economy is in the steady state of its attention problem, and consider
an unexpected decrease in σu

φ . Then, the economy immediately jumps to a new steady state of the
attention problem, in which:

1. The Phillips curve is flatter.

2. Output and inflation responses are more persistent.

Proof. See Appendix C.5.

The comparative statics follow directly from Corollary 3.1 and are straight forward;
however, the reason that the economy jumps to its new steady state needs some intu-
ition. The reason for this jump is that a more hawkish economy has a less volatile nomi-
nal demand process and firms have lower reservation uncertainties in less volatile envi-
ronments. Therefore, once the monetary policy rule becomes more hawkish, firms find
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themselves with a prior uncertainty that is higher than their new reservation uncertainty.
Consequently, they acquire enough information to immediately reduce their uncertainty
to the new reservation level. The key observation is that once they reach this new lower
level of uncertainty they need a lower rate of information acquisition to maintain that
level of uncertainty. Hence, while the reservation uncertainty decreases with a more
hawkish rule, the steady state Kalman-gain also decreases and leads to flatter Phillips
curve and a higher persistence in responses of output and inflation.

Conceptually, our results speak to, and are consistent with, the post-Volcker era in the
U.S. monetary policy. A large strand of the literature has documented that the slope of
the Phillips curve has become flatter in the last few decades.29 Our theory provides a
new perspective on this issue. Firms do not need to be attentive to monetary policy in an
environment where the policy makers follow a hawkish rule.

3.4.3 The Aftermath of An Unexpectedly More Dovish Monetary Policy

The model is non-symmetric in response to changes in the rule of monetary policy. While
the economy jumps to the new steady state of the attention problem after a decreases in
σu
φ , as shown in Corollary 3.2, the reverse is not true. An unexpected increase in σu

φ has
different short-run implications due to its effect on reservation uncertainty.

Corollary 3.3. Suppose the economy is in the steady state of its attention problem, and consider
an unexpected increase in σu

φ . Then,

1. The Phillips curve becomes temporarily flat until firms’ uncertainty increases to its new
reservation level.

2. Once firms’ uncertainty reaches to its new reservation level, the economy enters its new
steady state in which:

(a) the Phillips curve is steeper.

(b) output and inflation responses are less persistent.

Proof. See Appendix C.6.

The intuition follows from Corollary 3.1. An increase in σu
φ makes the nominal demand

more volatile and raises the reservation uncertainty of firms. Hence, immediately after

29See Coibion and Gorodnichenko (2015b) who do separate estimations for the pre- and post-Volcker pe-
riod and document a decrease in the slope. See also, for instance, Blanchard (2016); Bullard (2018); Hooper
et al. (2019).
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such a shock, firms find themselves with an uncertainty that is below this reservation
level; the no-forgetting constraint binds and they temporarily stop paying attention to
the monetary policy shocks until their uncertainty grows to its new reservation level. In
the meantime, the Phillips curve is flat and inflation is non-responsive to monetary policy
shocks.

Once firms’ uncertainty reaches its new reservation level, however, they start paying
attention at a higher rate to maintain this new level as the process is now more volatile.
Thus, while a more dovish policy leads to a temporarily flat Phillips curve, it eventually
leads to a steeper Phillips curve once firms adapt to their new environment.

These findings provide a new perspective on the recent perceived disconnect between
inflation and monetary policy. If the Great Recession was followed by a period of higher
uncertainty about monetary policy shocks or more lenient policy, then our model predicts
that it would be optimal for firms to stop paying attention to monetary policy in the
transition period to the new steady state.

3.5 Implications for Anchoring of Inflation Expectations

One of the most salient indicators to which monetary policymakers pay specific attention,
especially under inflation targeting regimes, is the anchoring of inflation expectations. “Well-
anchored” inflation expectations are considered a sign of success for monetary policy as
they imply that the publics’ inflation expectations are not very sensitive to temporary
disturbances in economic variables. Moreover, the extent to which inflation expectations
are anchored in the U.S. economy seem to have increased over time. Since the onset
of the Great Moderation, inflation expectations are more stable and seem to have lower
sensitivity to short-run fluctuations in the economic data (Bernanke, 2007; Mishkin, 2007).

The dependence of firms’ information acquisition incentives on the rule of monetary
policy in our framework provides a natural explanation for this trend. Intuitively, when
monetary policy becomes more Hawkish in stabilizing prices, firms pay less attention to
shocks that affect their nominal marginal costs and hence their beliefs become less sensi-
tive to short-run fluctuations in economic data. The following proposition characterizes
the dynamics of firms’ inflation expectations in our simple model.

Proposition 3.3. Let π̂t ≡
∫ 1

0 Ei,t[πt]di denote the average expectation of firms about aggregate
inflation at time t. Then, in the steady state of the attention problem,
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1. the relationship between inflation expectations, π̂t, and output gap, yt, is given by

π̂t = (1− κ)π̂t−1 +
κ2

(2− κ)(1− κ)
yt

2. dynamics of π̂t is captured by the following AR(2) process:

π̂t = 2(1− κ)π̂t−1 − (1− κ)2π̂t−2 +
κ2

2− κ

σu

φ
ut

where κ is the steady-state Kalman-gain of firms.

Proof. See Appendix C.7.

Proposition 3.3 illustrates the degree of anchoring in firms’ inflation expectations from
two perspectives. The first part of the Proposition, derives relationship between inflation
expectations and output gap and shows that the sensitivity of inflation expectations with
respect to the output gap depends positively on κ. The second part of the proposition
then recasts this relationship in terms of the exogenous monetary policy shocks, which
are the sole drivers of short-run fluctuations in this economy.

The AR(2) nature of these expectations indicate the inherent inertia that expectations
inherit from firms’ imperfect information – the counterfactual being full-information ra-
tional expectations, in which case both inflation and inflation expectations are i.i.d. over
time.30

Moreover, both the degree of the inertia in firms’ inflation expectations, which is de-
termined by 1− κ, as well as the sensitivity of firms’ inflation expectations to output gap
or monetary policy shocks depend on the conduct of monetary policy through κ. The
following Corollary formalizes this relationship.

Corollary 3.4. Firms’ inflation expectations are less sensitive to both output gap and short-run
monetary policy shocks (are more “anchored”) and are more persistent when monetary policy is
more hawkish – i.e. σu

φ is smaller.

Proof. See Appendix C.8.

The intuition behind the result in Corollary 3.4 is the same as for the slope of the
Phillips curve. With more Hawkish monetary policy, firms pay lower attention to mon-
etary policy shocks which decreases the sensitivity of their beliefs to these shocks and
increases their persistence.

30With full-information rational expectations,
∫ 1

0 Ei,t[πt] = πt = ∆qt = σuφ−1ut.
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Figure 4: Impulse Responses to a 1 Std. Dev. Expansionary Monetary Policy Shock

Notes: This figure plots a numerical example for impulse responses of inflation, output, and firms’ infla-
tion expectations to a one standard deviation expansionary shock to monetary policy under two different
values for φ ∈ {1, 1.5}.

Figure 4 illustrates these results. The top two panels in the Figure show the impulse
responses of output and inflation to a one standard deviation expansionary monetary
policy shock under two different values for φ ∈ {1, 1.5}. Moreover, the bottom panel of
Figure 4 shows the impulse responses of firms average inflation expectations under these
two parameters: with more Hawkish monetary policy, expectations are less sensitive to
monetary policy shocks, but their responses are more persistent.31

4 Quantitative Analysis

Our simple model from the previous section illustrates the mechanism of how the slope
of the Phillips curve depends on the rule of monetary policy. In this section, we relax
the simplifying assumptions and extend that model to a general equilibrium model with
rational inattention to assess whether our mechanism is quantitatively valid.

Our exercise in this section is very much in the spirit of the literature that interprets
the Great Moderation, at least partially, through the lens of a shift in monetary policy in

31While in our setup higher anchoring of the expectation are generated by a combination of higher order
beliefs and lower information acquisition on the part of firms, it is also important to note that higher persis-
tence and anchoring can be generated in a context that takes the role of strategic interactions into account
(see, e.g., Angeletos and Huo, 2018).
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the post-Volcker era (Clarida et al., 2000; Coibion and Gorodnichenko, 2011; Maćkowiak
and Wiederholt, 2015). In particular, we are interested in the following question: can
the shift in the rule of monetary policy in the post-Volcker era explain the decline in the
slope of the Phillips curve, and if so by how much? To answer this question, we calibrate
a quantitative version of our model with TFP and monetary policy shocks to the U.S.
inflation and output data in the post-Volcker era and examine whether the model can
generate a quantitatively relevant shift in the slope of the Phillips curve.

4.1 Setup of the Quantitative Model

Household. The representative household forms demand over a unit measure of weakly
substitutable varieties, indexed by i ∈ [0, 1], supplies labor in segmented but competitive
labor markets for each variety, and has access to a risk-free nominal bond. For simplic-
ity, we assume that the representative household is fully informed about all prices and
wages as the main purpose of this paper is to study the effects of rational inattention
among firms on price setting decisions. Formally, the household solves:

max{
Ct,{Ci,t,Li,t}i∈[0,1]

,Bt

}
t≥0

E
f
t

 ∞

∑
t=0

βt

C1−σ
t

1− σ
−
∫ 1

0 L1+ψ
i,t di

1 + ψ

 (4.0)

s.t.
∫ 1

0
Pi,tCi,tdi + Bt ≤ Rt−1Bt−1 +

∫ 1

0
Wi,tLi,tdi + Πt

Ct =

[∫ 1

0
C

θ−1
θ

i,t di
] θ

θ−1

Here E
f
t [·] is the full-information rational expectation operator at time t, Bt is the demand

for nominal bonds and Rt−1 is the nominal interest rate. Li,t is the firm-specific labor
supply of the household, Wi,t is the firm-specific nominal wage, and Πt is the aggregate
profit of firms. Ct is the aggregator over the consumption of goods produced by firms. θ

is the constant elasticity of substitution across different firms.

Firms. There is a measure one of firms, indexed by i, that operate in monopolistically
competitive markets. Firms take wages and demands for their goods as given, and choose
their prices Pi,t based on their information set, St

i , at that time. After setting their prices,
firms hire labor from a competitive labor market and produce the realized level of de-
mand that their prices induce with a production function, Yi,t = AtLd

i,t, where Ld
i,t is firm
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i’s demand for labor and At is an aggregate TFP shock. We assume at ≡ log(At), follows
a AR(1) process:

at = ρaat−1 + εa,t, εa,t ∼ N(0, σ2
a )

It follows that firm i’s nominal profit at time t is given by

Π(Pi,t, At, Wi,t, Pt, Yt) =

(
Pi,t −

Wi,t

At

)(
Pi,t

Pt

)−θ

Yt,

where Yt is the aggregate output, Pt is the aggregate price index and Pi,t is the firm’s price.
Firms are rationally inattentive and choose their prices subject to a cost that is linear

in Shannon’s mutual information function, as in the RI problem in Equation (2.1). Firm
i’s dynamic rational inattention problem is given by:

max
{Si,t⊆Si,t,Pi,t(St

i )}t≥0

E

[
∞

∑
t=0

βtC−σ
t

{
Π(Pi,t, At, Wi,t, Pt, Yt) (4.1)

−ωI(St
i ; (Aτ, Wi,τ, Pτ, Yτ)τ≤t|St−1

i )

}∣∣∣∣∣S−1
i

]
s.t. St

i = St−1
i ∪ Si,t,

where Si,t is the set of available signals for the firm that satisfies the assumptions specified
in Section 2.1.

Monetary Policy. Monetary policy is specified as a standard Taylor rule:

Rt

R̄
=

(
Rt−1

R̄

)ρ
((

Pt

Pt−1

)φπ
(

Yt

Yn
t

)φx ( Yt

Yt−1

)φ∆y
)1−ρ

exp(ut)

where R̄ is the steady-state nominal rate, Yn
t is the natural level of output and ut ∼

N(0, σ2
u) is the monetary policy shock.

Definition of Equilibrium. Given exogenous processes for productivity and monetary
policy shocks {at, ut}t≥0, a general equilibrium of this economy is an allocation for the
representative household,

ΩH ≡
{

Ct, {Ci,t, Li,t}i∈[0,1] , Bt

}∞

t=0
,
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an allocation for every firm i ∈ [0, 1] given their initial set of signals,

ΩF
i ≡

{
si,t ∈ Si,t, Pi,t, Ld

i,t, Yi,t

}∞

t=0
,

a set of prices
{

Pt, Rt, {Wi,t}i∈[0,1]

}∞

t=0
, and a stationary distribution over firms’ states such

that

1. given the set of prices and
{

ΩF
i
}

i∈[0,1], the household’s allocation solves the problem
in Equation (4.1),

2. given the set of prices and ΩH, and the implied labor supply and output demand,
firms’ allocation solve their problem in Equation (4.1),

3. monetary policy satisfies the specified rule in Equation (4.1) ;

4. markets clear:

Yi,t = Ci,t, ∀i ∈ [0, 1], ∀t ≥ 0

Li,t = Ld
i,t, ∀i ∈ [0, 1], ∀t ≥ 0

Yt = Ct, ∀t ≥ 0

4.2 Computing the Equilibrium

We use our theoretical framework for solving dynamic rational inattention problems to
solve for the equilibrium by taking a second-order approximation to firms’ profit function
in Equation (4.1).32 This problem is given by a similar expression in our simple model but
now includes a role for strategic complementarities:

min
{pi,t}t≥0

∞

∑
t=0

βtE
[
(θ − 1)(pi,t − pt − αxt)

2 + ωI(pi,t, {pt−j + αxt−j}∞
j=0|pt−1

i )|p−1
i

]
Here, α ≡ σ+ψ

1+θψ is the degree of strategic complementarity that is pinned down by the
underlying deep parameters of the model, xt ≡ yt− yn

t is the log output gap in the model
defined as the log difference between output and its natural level in the economy with no
frictions, and pt is the log of aggregate price. Moreover, we have already incorporated the
result from Lemma 2.2 that with Shannon’s mutual information as the cost of attention,
the history of prices is sufficient statistics for the firm’s signals at any given time.

32This approach is commonly used to turn firms’ problems to quadratic objectives – see, e.g., Maćkowiak
and Wiederholt 2009a, 2015.
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Consequently, our general equilibrium model, up to a first order approximation, is
characterized by the following three equations with two stochastic processes of technol-
ogy (yn

t ) and monetary policy shocks (ut):

xt = E
f
t

[
xt+1 −

1
σ
(it − πt+1)

]
+ E

f
t
[
yn

t+1
]
− yn

t

pi,t = Ei,t [pt + αxt]

it = ρit−1 + (1− ρ)
(
φππt + φxxt + φ∆y∆yt

)
+ ut

where Ei,t[·] is firm i’s expectation operator conditional on its time t information set under
the solution to its rational inattention problem.

Lastly, as firms’ rational inattention problem depends on the state-space representa-
tion of pt + αxt, which is itself an endogenous object to the model, we use the following
iteration algorithm to solve for the equilibrium: we start by guessing for the MA represen-
tation of pt + αxt and solve the firms’ rational inattention problem. Under the solution to
that problem, we then solve for the implied state-space representations of the output gap
and prices and then update our guess. The equilibrium is then characterized as a fixed
point of this mapping. A detailed description of matrix representations and our solution
algorithm are provided in Appendix D.1.

4.3 Calibration

Our benchmark model is calibrated at a quarterly frequency with a time discount factor
of β = 0.99 to the post-Volcker U.S. data ending at the onset of the Great Recession (1983–
2007). A summary of the calibrated values of the parameters is presented in Table 2. In
the remainder of this section we go over the details of our calibration strategy.

Assigned parameters. We set the elasticity of substitution across firms to be ten (θ = 10),
which corresponds to a markup of 11 percent. We set the inverse of the Frisch elasticity
(ψ) to be 2.5 and the elasticity of intertemporal substitution (1/σ) to be 0.4, which are
consistent with estimates presented in Aruoba et al. (2017).

Monetary policy rule(s). We set the standard deviation of monetary policy shocks (σu)
in our benchmark model to match the size of the identified monetary policy shocks con-
structed by Romer and Romer (2004) for the period 1983–2007.33

33Original data on monetary policy shocks in Romer and Romer (2004) are available until 1996, while we
use extended data, which are available until 2007, from Coibion, Gorodnichenko, Kueng and Silvia (2017).
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Table 2: Calibrated and Assigned Parameters

Parameter Value Moment Matched / Source

Panel A. Calibrated parameters

Information cost (ω) 0.70× 10−3 Cov. matrix of GDP and inflation
Persistence of productivity shocks (ρa) 0.850 Cov. matrix of GDP and inflation
S.D. of productivity shocks (σa) 1.56× 10−2 Cov. matrix of GDP and inflation

Panel B. Assigned parameters

Time discount factor (β) 0.99
Elasticity of substitution across firms (θ) 10 Firms’ average markup
Elasticity of intertemporal substitution (1/σ) 0.4 Aruoba et al. (2017)
Inverse of Frisch elasticity (ψ) 2.5 Aruoba et al. (2017)
Taylor rule: smoothing (ρ) 0.946 Estimates 1983–2007 (Table A.1)
Taylor rule: response to inflation (φπ) 2.028 Estimates 1983–2007 (Table A.1)
Taylor rule: response to output gap (φx) 0.168 Estimates 1983–2007 (Table A.1)
Taylor rule: response to output growth (φ∆y) 3.122 Estimates 1983–2007 (Table A.1)
S.D. of monetary shocks (σu) 0.28× 10−2 Romer and Romer (2004)

Panel C. Counterfactual model parameters (Pre-Volcker: 1969–1978)

Taylor rule: smoothing (ρ) 0.918 Estimates 1969–1978 (Table A.1)
Taylor rule: response to inflation (φπ) 1.589 Estimates 1969–1978 (Table A.1)
Taylor rule: response to output gap (φx) 0.292 Estimates 1969–1978 (Table A.1)
Taylor rule: response to output growth (φ∆y) 1.028 Estimates 1969–1978 (Table A.1)
S.D. of monetary shocks (σu) 0.54× 10−2 Romer and Romer (2004)

Notes: The table presents the baseline parameters for the general equilibrium model. Panel A shows
the calibrated parameters which match the three key moments shown in Table 3. Panel B shows values
and the source of the assigned model parameters. Panel C shows the parameters for the counterfactual
analysis in Section 4.5. See Section 4.3 for details.

Furthermore, for the parameters describing the monetary policy rule (ρ, φπ, φ∆y, φx),
we estimate the Taylor rule in Equation (4.2) using real-time U.S. data. Specifically, follow-
ing Coibion and Gorodnichenko (2011), we use the Greenbook forecasts of inflation and
real GDP growth. The measure of the output gap is also based on Greenbook forecasts.
We consider two time samples: the pre-Volcker period (1969–1978) and the post-Volcker
period (1983–2007).34 The point estimates are reported in Panel B of Table 2, and more

34Coibion and Gorodnichenko (2011) use data from 1983 through 2002 for the post-Volcker period esti-
mation. We extend the sample period until 2007. Another difference is that our specification allows for
interest rate smoothing of order one, while they consider the smoothing of order two.
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detailed results including standard errors are reported in Appendix Table A.1. These es-
timates point to strong long-run responses by the central bank to inflation and output
growth (2.03 and 3.12, respectively) and a moderate response to the output gap (0.17).35

Finally, for our counterfactual analysis in later sections, we do a similar estimation of
these parameters for the pre-Volcker era (1969–1978). The point estimates are reported in
Panel C of Table 2, and more detailed results, including standard errors, are reported in
Appendix Table A.1.

Calibrated Parameters. We calibrate the three remaining parameters of the model –
marginal costs of information processing (ω) as well as the persistence (ρa) and the size
(σa) of productivity shocks – jointly by targeting the covariance matrix of inflation and
real GDP in post-Volcker U.S. data (1983–2007). The covariance matrix is measured after
we detrend the CPI core inflation and real GDP data using log-quadratic trends. The three
moments (variances of inflation and GDP along with their covariance) exactly identify the
three model parameters, as reported in Table 2.

The standard deviation of the productivity shocks (σa) is around 1.56 percent per quar-
ter, which is about six times bigger than the standard deviation of the monetary policy
shock (σu) for the post-Volcker period.

Moreover, the calibrated cost of information processing, ωI(., .), is 0.1 percent of firms’
steady-state real revenue.36 This small calibrated cost implies that imperfect information
models do not require large information costs to match the data. The cost is negligible
compared to firms’ revenue. One relevant measure that one could use to relate the degree
of information acquisition to that of professional forecasters is the firms’ Kalman gain
on their signals under the optimal information structure. The implied Kalman gain for
firms in the model is 0.8, which implies a large degree of information acquisition relative
to professional forecasters – Coibion and Gorodnichenko (2015b) estimate professional
forecasters’ Kalman gain to be around 0.5.

35Because empirical Taylor rules are estimated using annualized rates while the Taylor rule in the model
is expressed at quarterly rates, we rescale the coefficient on the output gap in the model such that φx =
0.673/4 = 0.168. Also, because we use the Greenbook forecast data prepared by staff members of the Fed a
few days before each FOMC meeting, the sample from 1969 through 1978 was monthly, whereas the sample
from 1983 through 2007 was every six weeks. Thus, we convert the estimated AR(1) parameters from
monthly or six-week frequency to quarterly and use the converted parameters for our model simulations.

36This number is on the lower end of the cost of pricing frictions that have been estimated in the literature.
For instance, Levy, Bergen, Dutta and Venable (1997) estimate the cost of menu cost frictions as 0.7 percent
of firms’ steady state revenue.
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4.4 Model Fit

Targeted Moments. Table 3 reports our targeted moments both in the data and as im-
plied by the model. All three targeted moments, variances of GDP and inflation and their
covariance, are matched by the model.

Table 3: Targeted Moments

Moment Data Model

Standard deviation of inflation (1983–2007) 0.015 0.015

Standard deviation of real GDP (1983–2007) 0.018 0.018

Correlation between inflation and real GDP (1983–2007) 0.209 0.209

Notes: The table presents moments of the data and simulated series from the model parameterized at the
baseline values in Table 2. See Section 4.3 for details.

Non-targeted moments. To examine the model’s ability to capture the out-of-sample
behavior of GDP and inflation, following Maćkowiak and Wiederholt (2015), we compare
the implied variance–covariance matrix of GDP and inflation for the pre-Volcker era with
the one measured from the U.S. data.

To do so, we first replace the parameters related to monetary policy with the pre-
Volcker era estimates. Specifically, we replace the estimates of the Taylor rule for the
post-Volcker period with our estimates for the pre-Volcker period. Furthermore, we re-
estimate the standard deviation of monetary policy shocks (σu) using the pre-Volcker pe-
riod monetary policy shock series from Romer and Romer (2004). As shown in Panel C
of Table 2, monetary policy is less responsive to inflation and output growth in the pre-
Volcker period than in the post-Volcker period. Also, the monetary shock is more volatile
in the pre-Volcker period than in the post-Volcker period.

We then simulate the model under the calibrated values for the cost of attention and
the process for the TFP shocks and calculate the variance–covariance matrix for GDP and
inflation. Table 4 reports the model-generated moments and their analogs in the data.
While we only target the volatility of inflation and GDP for the post-Volcker period, our
model is able to match the high volatility of inflation and GDP in the pre-Volcker period
as a consequence of more dovish monetary policy during that period.

Furthermore, for both the pre- and post-Volcker parameterization of monetary policy,
Figure 5 shows the impulse response functions of the variables of the model with respect
to one standard-deviation TFP and monetary policy shocks. The main takeaway from
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Table 4: Non-targeted Moments

Moment Data Model

Standard deviation of inflation (1969-1978) 0.025 0.025

Standard deviation of real GDP (1969-1978) 0.022 0.020

Correlation between inflation and real GDP (1969-1978) 0.242 0.245

Notes: The table compares the volatility of inflation and output gap and their correlation in the US data
for the pre-Volcker era to the counterparts from the counterfactual model simulation. See Section 4.4 for
details.
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Figure 5: Impulse Responses to Technology and Monetary Shocks

Notes: This figure plots impulse responses of inflation, output, nominal rates, and real interest rates to a
one standard deviation shock to technology (upper panels) and those to a one standard deviation shock
to monetary policy (lower panels). Solid black lines are the responses in the model with the post-Volcker
calibration while dashed gray lines are the responses in the model with the pre-Volcker calibration.

these IRFs is that inflation, output and nominal as well as real interest rates respond more
to shocks under the pre-Volcker parameterization of monetary policy.

It is important to note that a change in the slope of the Phillips curve is neither a neces-
sary condition for higher volatility of inflation and output under a more dovish monetary
policy nor is it necessarily a consequence of it (Clarida et al., 2000). The takeaway from

43



our exercise in matching these moments is to validate our model quantitatively. Whether
the model can match the change in the slope of the Phillips curve is a different question
that we investigate in the remainder of this section.

4.5 Quantification of the Change in the Slope of the Phillips Curve

Because the slope of the Phillips curve is endogenous in the model, the change in the rule
of monetary policy in the post-Volcker period would lead to an endogenous change in the
slope of the Phillips curve. The main question we try to answer in this section is, are the
estimated monetary policy parameters for the pre- and post-Volcker periods consistent
with a flatter Phillips curve in later periods within the model, and if so is the mechanism
quantitatively relevant?

The main challenge here is to constitute the right comparison between the model and
the empirical estimates of the slope of the Phillips curve. While the empirical literature
that documents the change in the slope of the Phillips curve uses the New Keynesian
Phillips curve (NKPC) as the equation guiding their empirical strategy, our model has
a different specification for the Phillips curve that does not necessarily comply with the
NKPC formulation. In particular, our model subscribes that one should control for the
forecast errors of firms regarding the output gap and inflation at different horizons, which
stems from their endogenous information acquisition strategy.

While the ideal case would be to re-estimate the Phillips curve based on the specifica-
tion subscribed by our model, such a strategy requires a time-series on firms’ expectations
that does not exist for the U.S. to our knowledge. Even in countries where a time-series
of firms’ expectations exists, such as in Italy for instance, the data do not go back in time
enough to capture variations in the rule of monetary policy.

The alternative strategy that we employ here, which allows us to compare the pre-
dictions of our model to the empirical literature on the slope of the Phillips curve, is to
simulate data from our model under the two specifications of monetary policy in the pre-
and post-Volcker periods, and run similar regressions as in the empirical literature. While
these regressions are mis-specified from the perspective of our model and are biased due
to omitted variables, namely firms’ expectations, they constitute a fair comparison for the
estimates from the model and in the data.

Formally, we simulate the model for 50,000 periods for both the pre- and post-Volcker
periods and estimate the following hybrid NKPC using GMM estimation.

πt = constant + γEt[πt+1] + (1− γ)πt−1 + κxt + εt.
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We use four lags of both inflation and output gap as instruments. Table 5 shows the
parameter estimates of the NKPC using the simulated data from our model.

Table 5: Estimates of the New Keynesian Phillips Curve Using Simulated Data

(1) Output gap (2) Output (3) Adj. output gap

Pre-
Volcker

Post-
Volcker

Pre-
Volcker

Post-
Volcker

Pre-
Volcker

Post-
Volcker

Slope of NKPC (κ) 1.160*** 0.304*** 0.035*** 0.027*** 0.024*** -0.012***
(0.029) (0.007) (0.001) (0.001) (0.007) (0.003)

Forward-looking (γ) 0.666*** 0.612*** 0.549*** 0.499*** 0.554*** 0.512***
(0.005) (0.003) (0.002) (0.001) (0.002) (0.001)

Notes: This table shows the estimation results of the New Keynesian Phillips curve using simulated data
from the baseline model presented in Section 4.2. Column (1) and (2) show the estimates of the New
Keynesian Phillips curve (4.5) using the simulated output gap and output data, respectively. Column
(3) shows the estimates using the simulated output gap data, which are adjusted by subtracting moving
averages of natural level of output from actual output. Four lags of inflation and output gap (or out-
put) are used as instruments for the GMM estimation. A constant term is included in the regressions
but not reported. Newey-West standard errors are reported in parentheses. ***, **, * denotes statistical
significance at 1%, 5%, and 10% levels respectively.

Another potential issue that the literature has noted and we need to address is the
lack of refined measurements for the output gap in the data. In particular, as pointed out
by McLeay and Tenreyro (2020), if one fails to fully control for the supply shocks in esti-
mating the Phillips curve, the estimates for the slope are going to be downwardly biased.
More importantly, a more hawkish monetary policy would induce a larger downward
bias than a dovish monetary policy. In order to take this force into account, we estimate
the equation above with three different measures of the output gap that vary the extent
to which we control for the supply shocks.

Column (1) in Table 5 shows the estimates of the NKPC when we use the true output
gap (fully controlling for supply shocks). In this scenario, the model predicts that the
slope of the Phillips curve declined from 1.16 in the pre-Volcker era to 0.30 in the post-
Volcker period – a 75% decline. The benefit of this specification is that we are controlling
for the true output gap, which eliminates concerns regarding the downward bias induced
by the omitted variables bias. Therefore, the entire decline in the slope that we observe in
this specification is due to the change in the information acquisition incentives of firms.

Nonetheless, the potential issue with this specification is that it does not directly relate
to the empirical estimates, as fully controlling for supply shocks is not feasible in the data.
In fact, the large magnitude of the estimates and the significantly positive slope, even for
the post-Volcker era, suggests that our model is not over-explaining the decline in the
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slope of the Phillips curve.
To illustrate this point further, Column (2) in Table 5 reports the estimated hybrid

NKPC when we use the output minus the steady-state output as our measure of the out-
put gap – fully omitting the supply shocks. In this case, the estimated slope for both
periods is much smaller compared to the estimates in Column (1), but there is still a 25%
decline in the slope of the Phillips curve from the pre- to post-Volcker period.

Finally, we consider an interim case in Column (3) where we partially control for the
supply shocks by subtracting a moving average of the natural level of output from real-
ized output in the model to construct the output gap. Again, the model predicts a decline
in the slope of the Phillips curve from the pre- to post-Volcker period.37

5 Concluding Remarks

We characterize and solve dynamic multivariate rational inattention models and apply
our findings to derive an attention-driven Phillips curve.

Our theory of the Phillips curve puts forth a new perspective on the flattening of the
slope of the Phillips curve in recent decades and suggests that this was an endogenous
response of the private sector to a more disciplined monetary policy in the post-Volcker
era which put a larger weight on stabilizing nominal variables.

On the policy front, our results speak to an ongoing debate on the trade-off between
stabilizing inflation and maintaining a lower unemployment rate. Our theory suggests
that while a dovish policy might seem appealing in the current climate where inflation
seems hardly responsive to monetary policy, such a policy might have an adverse effect
once implemented.
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APPENDIX

A Proofs for Section 2

A.1 Proof of Lemma 2.1

Proof. First, note that observing {at}∞
t=0 induces the same action payoffs over time as

{St}∞
t=0 because at any time t and for every possible realization of St, the agent gets a(St)

– the optimal action induced by that realization – as a direct signal. Suppose now that at

is not a sufficient statistic for St relative to Xt. Then, we can show that {at}∞
t=0 costs less in

terms of information than {St}∞
t=0. To see this, note that for any t ≥ 1 and St, consecutive

applications of the chain-rule of mutual information imply

I(Xt; St) = I(Xt; St|St−1) + I(Xt; St−1) = I(Xt; St|St−1) + I(Xt−1; St−1) + I(Xt; St−1|Xt−1)︸ ︷︷ ︸
=0

,

where the third term is zero by availability of information at time t− 1; St−1 ⊥ Xt|Xt−1.
Moreover, for t = 0 applying the chain-rule implies:

I(X0; S0) = I(X0; S0|S−1) + I(X0; S−1)

Thus,

∞

∑
t=0

βtI(Xt; St|St−1) =
∞

∑
t=0

βt(I(Xt; St)− I(Xt−1; St−1)) = I(X0; S−1) + (1− β)
∞

∑
t=0

βtI(Xt; St).

Similarly, noting that a−1 is equal to S−1 by definition, we can show

∞

∑
t=0

βtI(Xt; at|at−1) = I(X0; S−1) + (1− β)
∞

∑
t=0

βtI(Xt; at).

Finally, note that Xt → St → at form a Markov chain so that Xt ⊥ at|St. A final applica-
tion of the chain-rule for mutual information implies

I(Xt; at, St) = I(Xt; at) + I(Xt; St|at) = I(Xt; St) + I(Xt; at|St)︸ ︷︷ ︸
=0

.
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Therefore,

∞

∑
t=0

βtI(Xt; St|St−1)−
∞

∑
t=0

βtI(Xt; at|at−1) = (1− β)
∞

∑
t=0

βt[I(Xt; St)− I(Xt; at)]

=
∞

∑
t=0

βtI(Xt; St|at) ≥ 0.

Hence, while {at}∞
t=0 induces the same action payoffs as {St}∞

t=0, it costs less in terms of
information costs, and induce higher total utility for the agent. Therefore, if {St}t≥0 is
optimal, it has to be that

I(Xt; St|at) = 0, ∀t ≥ 0

which implies St ⊥ Xt|at and Xt → at → St forms a Markov chain ∀t ≥ 0.

A.2 Proof of Lemma 2.2

Proof. The chain-rule implies I(Xt; at|at−1) = I(Xt; at, at−1|at−1) = I(Xt; at|at−1). More-
over, it also implies

I(Xt;~at|at−1) = I(~xt;~at|at−1) + I(Xt−1;~at|at−1,~xt).

Since at = arg maxa E[u(a; Xt)|St] and given that at is a sufficient statistic for St, then
optimality requires that I(Xt−1; at|at−1,~xt) = 0. To see why, suppose not. Then, we can
construct a an information structure that costs less but implies the same expected pay-
off. Thus, for the optimal information structure, this mutual information is zero, which
implies

I(Xt; at|at−1) = I(~xt;~at|at−1), ~at ⊥ Xt−1|(~xt, at−1).

A.3 Proof of Lemma 2.3

Proof. We prove this Proposition by showing that for any sequence of actions, we can
construct a Gaussian process that costs less in terms of information costs, but generates
the exact same payoff sequence. To see this, take an action sequence {~at}t≥0, and let
at ≡ {~aτ : 0 ≤ τ ≤ t} ∪ S−1 denote the information set implied by this action sequence.
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Now define a sequence of Gaussian variables {ât}t≥0 such that for t ≥ 0,

var(Xt|ât) = E[var(Xt|at)|S−1].

Note that both these sequence of actions imply the same sequence of utilities for the agent
since they have the same covariance matrix by construction. So we just need to show that
the Gaussian sequence costs less. To see this note:

E

[
∞

∑
t=0

βt
(

I(Xt; at|at−1)− I(Xt; ât|ât−1)
)
|S−1

]

=(1− β)E

[
∞

∑
t=0

βt (I(Xt; at)− I(Xt; ât)
)
|S−1

]

=(1− β)E

[
∞

∑
t=0

βt (h(Xt|ât)− h(Xt|at)
)
|S−1

]
≥ 0,

where the last inequality is followed from the fact that among the random variables with
the same expected covariance matrix, the Gaussian variable has maximal entropy.38

A.4 Proof of Lemma 2.4

Proof. We know from Lemma 2.3 that optimal posteriors, if the problem attains its maxi-
mum, are Gaussian. So without loss of generality we can restrict our attention to Gaussian
signals. Moreover, since {~xt}t≥0 is Markov, we know from Lemma 2.2 that optimal actions
should satisfy~at ⊥ Xt−1|(at−1,~xt) where at = {~aτ}0≤τ≤t ∪ S−1. Thus, we can decompose:

~at −E[~at|at−1] = Y′t(~xt −E[~xt|at−1]) +~zt, ~zt ⊥ (at−1, Xt), ~zt ∼ N (0, Σz,t),

for some Yt ∈ Rn×m. Now, note that choosing actions is equivalent to choosing a sequence
of {(Yt ∈ Rn×m, Σz,t � 0)}t≥0.

Now, let ~xt|at−1 ∼ N (~xt|t−1, Σt|t−1) and ~xt|at ∼ N (~xt|t, Σt|t) denote the prior and
posterior beliefs of the agent at time t. Kalman filtering implies ∀t ≥ 0:

~xt|t = ~xt|t−1 + Σt|t−1Yt(Y′tΣt|t−1Yt + Σz,t)
−1(~at −~at|t−1), ~xt+1|t = A~xt|t

Σt|t = Σt|t−1 − Σt|t−1Yt(Y′tΣt|t−1Yt + Σz,t)
−1Y′tΣt|t−1,

Σt+1|t = AΣt|tA
′ + QQ′.

38See Chapter 12 in Cover and Thomas (2012).
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Note that positive semi-definiteness of Σz,t implies that Σt|t � Σt|t−1. Furthermore, note
that for any posterior Σt|t � Σt|t−1 that is generated by fewer than or equal to m signals,
there exists at least one set of Yt ∈ R and Σv,t ∈ Sm

+ that generates it. Moreover, note that
any linear map of~at, as long as it is of rank m, is sufficient for ~xt|t by sufficiency of action
for signals. So we normalize ~at = H′~xt|t which is allowed as H has full column rank.
Additionally, observe that given at:

E[(~at −~x′tH)(~at −H′~x′t)|at] = E[(~xt −~xt|t)
′HH′(~xt −~xt|t)|at] = tr(ΩΣt|t), Ω ≡ HH′.

Thus, the 2.1 becomes:

sup
{Σt|t∈Sn

+}t≥0

−1
2

∞

∑
t=0

βt

[
tr(Σt|tΩ) + ω ln

(
|Σt|t−1|
|Σt|t|

)]
s.t. Σt+1|t = AΣt|tA

′ + QQ′, ∀t ≥ 0,

Σt|t−1 − Σt|t � 0, ∀t ≥ 0

0 ≺ Σ0|−1 = var(~x0|S−1) ≺ ∞ given.

Finally, note that we can replace the sup operator with max because ∀t ≥ 0 the objective
function is continuous as a function of Σt|t and the set {Σt|t ∈ Sn

+|0 � Σt|t � Σt|t−1} is a
compact subset of the positive semidefinite cone.

A.5 Proof of Proposition 2.1

Proof. We start by writing the Lagrangian. Let Γt be a symmetric matrix whose k’th row is
the vector of shadow costs on the k’th column of the evolution of prior at time t. Moreover,
let λt be the vector of shadow costs on the no-forgetting constraint which can be written
as eig(Σt|t−1 − Σt|t) ≥ 0 where eig(.) denotes the vector of eigenvalues of a matrix.

L0 = max
{Σt|t∈Sn

+}t≥0

1
2

∞

∑
t=0

βt[−tr(Σt|tΩ)−ω ln(|Σt|t−1|) + ω ln(|Σt|t|)

− tr(Γt(AΣt|tA
′ + QQ′ − Σt+1|t)) + λ′t eig(Σt|t−1 − Σt|t)]

But notice that

λ′t eig(Σt|t−1 − Σt|t) = tr(diag(λt)diag(eig(Σt|t−1 − Σt|t))).
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where diag(.) is the operator that places a vector on the diagonal of a square matrix with
zeros elsewhere. Finally notice that for Σt|t such that Σt|t−1 − Σt|t is symmetric and posi-
tive semidefinite, there exists an orthonormal basis Ut such that

Σt|t−1 − Σt|t = Ut diag(eig(Σt|t−1 − Σt|t))U
′
t

Now, let Λt ≡ Ut diag(λt)U′t and observe that

tr(diag(λt)diag(eig(Σt|t−1 − Σt|t))) = tr(Λt(Σt|t−1 − Σt|t)).

Moreover, note that complementary slackness for this constraint requires:

λ′t eig(Σt|t−1 − Σt|t−1) = 0, λt ≥ 0, eig(Σt|t−1 − Σt|t−1) ≥ 0

⇔diag(λt)diag(eig(Σt|t−1 − Σt|t)) = 0, diag(λt) � 0, Σt|t−1 − Σt|t � 0

⇔Λt(Σt|t−1 − Σt|t) = 0, Λt � 0, Σt|t−1 − Σt|t � 0

re-writing the Lagrangian we get:

L0 = max
{Σt|t∈Sn

+}t≥0

1
2

∞

∑
t=0

βt[−tr(Σt|tΩ)−ω ln(|Σt|t−1|) + ω ln(|Σt|t|)

− tr(Γt(AΣt|tA
′ + QQ′ − Σt+1|t)) + tr(Λt(Σt|t−1 − Σt|t))]

Differentiating with respect to Σt|t and Σt|t−1 while imposing symmetry we have

Ω−ωΣ−1
t|t + A′ΓtA + Λt = 0

ωβΣ−1
t+1|t − Γt − βΛt+1 = 0

Notice that the assumptions of the Theorem imply that we can invert the prior matrices
because:

Σt|t−1 � 0⇒ Σt+1|t = AΣt|tA + QQ′ � 0, ∀t ≥ 0

To see why, suppose otherwise, then ∃w 6= 0 such that

w′(AΣt|tA
′ + QQ′)w = 0⇔ w′AΣt|tA

′w = w′QQ′w = 0
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Thus,

(Σ
1
2
t|tA

′w = 0) ∧ (Q′w = 0)

Moreover, note that Σt|t is invertible because the cost of attention has to be finite:

ln

(
det(Σt|t−1)

det(Σt|t)

)
< ∞⇒ det(Σt|t) > 0

Hence, Σ
1
2
t|t is invertible, and we can write the above equations as:

(AA′w = 0) ∧ (QQ′w = 0)⇒ (AA′ + QQ′)w = 0

but since AA′ + QQ′ is invertible by assumption, this implies that w = 0 which is a
contradiction with w 6= 0. Thus, Σt+1|t has to be invertible as well.

Now, replacing for Γt in the first order conditions we get the conditions in the theorem.
Moreover, we have a terminal optimality condition that requires:

lim
T→∞

βTtr(ΓTΣT+1|T) ≥ 0⇔ lim
T→∞

βT+1tr(ΛT+1ΣT+1|T) ≤ 0

Since both ΛT and ΣT+1|T are positive semidefinite, we also have tr(ΛT+1ΣT+1|T) ≥ 0.
Thus, TVC becomes:

lim
T→∞

βT+1tr(ΛT+1ΣT+1|T) = 0

A.6 Proof of Theorem 2.1

Proof. From the FOC in Proposition 2.1 observe that

ωΣ−1
t|t = Ωt + Λt ⇒ Σt|t−1 − Σt|t = Σt|t−1 −ω(Ωt + Λt)

−1.

For ease of notation let Xt ≡ Σt|t−1 − Σt|t. Multiplying the above equation by Ωt + Λt

from right we get

XtΩt − Σt|t−1Λt = Σt|t−1Ωt −ωI,
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where we have imposed the complementarity slackness XtΛt = 0. Finally, multiply this

equation by Σ
1
2
t|t−1 from right and Σ

− 1
2

t|t−1 from left.39 We have

(Σ
− 1

2
t|t−1XtΣ

− 1
2

t|t−1)(Σ
1
2
t|t−1ΩtΣ

1
2
t|t−1)− Σ

1
2
t|t−1ΛtΣ

1
2
t|t−1 = Σ

1
2
t|t−1ΩtΣ

1
2
t|t−1 −ωI

Where Σ
1
2
t|t−1ΩtΣ

1
2
t|t−1 = UtDtU′t is the spectral decomposition stated in the Theorem.

Now, for ease of notation let

X̂t ≡ U′tΣ
− 1

2
t|t−1XtΣ

− 1
2

t|t−1Ut

Λ̂t ≡ U′tΣ
1
2
t|t−1ΛtΣ

1
2
t|t−1Ut

Plugging these in along with the spectral decomposition stated in the Theorem we have

X̂tDt − Λ̂t = Dt −ωI

Now, notice that Xt and Λt are simultaneously diagonalizable if and only if X̂t and Λ̂t are
simultaneously diagonalizable. Combined with complementarity slackness, this implies
Λ̂tX̂t = X̂tΛ̂t = 0. Similarly, note that Xt and Λt are positive semidefinite if and only
if X̂t and Λ̂t are positive semidefinite, respectively. So we need for two simultaneously
diagonalizable symmetric positive semidefinite matrices Λ̂t and X̂t that solve Equation
A.6.

It follows from these that both these matrices are diagonal. To see this, re-write the
above equation as

(X̂t − I)Dt = Λ̂t −ωI

Now, notice that X̂t − I and Λ̂t −ωI are simultaneously diagonalizable. Let α denote this
basis. We have

[X̂t − I]α[Dt]α = [Λ̂t −ωI]α

Note that in this equation, the right hand side is diagonal and the left hand side is the
product of a diagonal matrix with [Dt]α. Thus, [Dt]α has to be diagonal as well. This
implies α is the identity basis and that Λ̂t and X̂t are diagonal matrices. Using comple-
mentarity slackness Λ̂tX̂t = 0, feasibility constraint X̂t � 0, and dual feasibility constraint

39Σ
1
2
t|t−1 exists since Σt|t−1 is positive semidefinite and Σ

− 1
2

t|t−1 exists since we assumed that the initial prior
is strictly positive definite.
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Λ̂t � 0 it is straight forward to show that Λt is strictly positive for the eigenvalues (entries
on the diagonal) of Dt that are smaller than ω.

Λ̂t = Max(ωI−Dt, 0)

Now, using Equation A.6 we get:

Λt = Σ
− 1

2
t|t−1Ut Max(ωI−Dt, 0)U′tΣ

− 1
2

t|t−1

Moreover, recall that ωΣ−1
t|t = Ωt + Λt. Hence, plugging in the spectral decomposition

and the solution for Λt:

ωΣ−1
t|t = Σ

− 1
2

t|t−1UtDtU′tΣ
− 1

2
t|t−1 + Σ

− 1
2

t|t−1Ut Max(ωI−Dt, 0)U′tΣ
− 1

2
t|t−1

= Σ
− 1

2
t|t−1Ut Max(ωI, Dt)U′tΣ

− 1
2

t|t−1

= Σ
− 1

2
t|t−1 Max(Σ

1
2
t|t−1ΩtΣ

1
2
t|t−1, ω)Σ

− 1
2

t|t−1

Inverting this gives us the expression in the Theorem – the matrix is invertible because
all eigenvalues are bounded below by ω. Moreover, using the definition of Ωt in the
statement of the Theorem, and the expression for Λt in Equation A.6 we have:

Ωt = Ω + βA′(ωΣ−1
t+1|t −Λt+1)A

= Ω + βA′Σ−
1
2

t+1|t(ωI−Ut Max(ωI−Dt, 0))Σ−
1
2

t+1|tA

= Ω + βA′Σ−
1
2

t+1|tUt Min (Dt, ωI)U′tΣ
− 1

2
t+1|tA

= Ω + βA′Σ−
1
2

t+1|t Min(Σ
1
2
t+1|tΩt+1Σ

1
2
t+1|t, ω)Σ

− 1
2

t+1|tA

A.7 Proof of Theorem 2.2

Proof. The upper bound m directly follows from Lemma 2.1. Recall from part 2 of Lemma
2.2 that when {~xt} is a Markov process, then~at ⊥ Xt−1|(at−1,~xt). Moreover, since actions
are Gaussian in the LQG setting, we can then decompose the innovation to the action of
the agent at time t as

~at −E[~at|at−1] = Y′t(~xt −E[~xt|at−1]) +~zt, ~zt ⊥ (Xt, at−1)
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where~zt ∼ N (0, Σz,t) is the agent’s rational inattention error – it is mean zero and Gaus-
sian. It just remains to characterize Yt and the covariance matrix of~zt. Now, since actions
are sufficient for the signals of the agent at time t, we have

E[~xt|at] = E[~xt|at−1] + Kt(~at −E[~at|at−1])

= E[~xt|at−1] + KtY′t(~xt −E[~xt|at−1]) + Kt~zt

where Kt ≡ Σt|t−1Yt(Y′tΣt|t−1Yt + Σz,t)−1 is the implied Kalman gain by the decomposi-
tion. The number of the signals that span the agent’s posterior is therefore the rank of this
Kalman gain matrix. Moreover, note that if the decomposition is of the optimal actions,
then the implied posterior covariance should coincide with the solution:

Σt|t = Σt|t−1 −KtY′tΣt|t−1 ⇒ KtY′t = I− Σt|tΣ
−1
t|t−1

Let UtDtU′t denote the spectral decomposition of Σ
1
2
t|t−1ΩtΣ

1
2
t|t−1. Then, using Theorem

2.1, we have:

KtY′t = Σ
1
2
t|t−1Ut(I−ω Max(Dt, ω)−1)U′tΣ

− 1
2

t|t−1

=
n

∑
i=1

max(0, 1− ω

di,t
)Σt|t−1yi,ty′i,t

where di,t is the i’th eigenvalue in Dt and yi,t is the i’th column of the matrix Σ
− 1

2
t|t−1Ut.

Notice that for any i, yi,t = Σ
− 1

2
t|t−1ui,t is an eigenvector for ΩtΣt|t−1:

ΩtΣt|t−1yi,t = Σ
− 1

2
t|t−1(Σ

1
2
t|t−1ΩtΣ

1
2
t|t−1)ui,t = di,tΣ

− 1
2

i,t ui,t = di,tyi,t

Moreover, note that only eigenvectors with eigenvalue larger than ω get a positive weight
in spanning KtY′t, meaning that we can exclude eigenvectors associated with di,t ≤ ω.
Formally, let Y+

t be a matrix whose columns are columns of Yt whose eigenvalue is larger
than ω. Let D+

t be the diagonal matrix with these eigenvalues, and let Σ+
z,t be the corre-
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sponding principal minor of Σz,t. Then,

Yt(Y′tΣt|t−1Yt + Σz,t)
−1Y′t =

n

∑
i=1

max(0, 1− ω

di,t
)yi,ty′i,t

= ∑
di,t≥ω

(1− ω

di,t
)yi,ty′i,t

= Y+
t (Y

+′
t Σt|t−1Y+

t + Σ+
z,t)
−1Y+′

t

Now we just need Σ+
z,t to fully characterize the signals. For this, note that ∀i, j:

y′i,tΣt|t−1yj,t =

u′i,tui,t = 1 if i = j

u′i,tuj,t = 0 if i 6= j

Thus, Y+′
t Σt|t−1Y+

t = Ik where Ik is the k-dimensioanl identity matrix with k being the
number of eigenvalues in Dt that are larger than ω. Combining this with Equation A.7
we have:

Σt|t−1 − Σt|t = Σt|t−1Y+
t (Y

+′
t Σt|t−1Y+

t + Σ+
z,t)
−1Y+′

t Σt|t−1

⇒Y+′
t (Σt|t−1 − Σt|t)Y

+
t = Y+′

t Σt|t−1Y+
t (Y

+′
t Σt|t−1Y+

t + Σ+
z,t)
−1Y+′

t Σt|t−1Y+
t

(Y+′
t Σt|t−1Y+

t )⇒Σ+
z,t = (Ik − Y+′

t Σt|tY
+
t )
−1 − Ik

Plugging in for Σt|t from the 2.12 we have:

Σ+
z,t = (Ik −ω(D+

t )
−1)−1 − Ik = (ω−1D+

t − Ik)
−1

Note that Σ+
z,t is diagonal where the i’th diagonal entry is 1

ω−1di,t−1 .
Thus, the agent’s posterior is spanned by the following k signals:

~st = Y+′~xt +~zt, Y+′
t Σt|t−1Y+

t = Ik,~zt ∼ N (0, (ω−1D+
t − Ik)

−1)
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A.8 Proof of Proposition 2.2

Proof. From the proof of the last Theorem, recall that the Kalman gain for predicting the
state is given by

Σt|t = Σt|t−1 −KtY′tΣt|t−1 ⇒ KtY′t = I− Σt|tΣ
−1
t|t−1.

Plugging this into Equation A.7, multiplying it by H′ from left, and substituting ~at =

H′E[~x|at] we have:

~at −E[~at|at−1] = H′(I− Σt|tΣ
−1
t|t−1)(~xt −E[~xt|at−1]) + H′Kt~zt

Notice that this implies (H′Kt − I)~zt = 0. Now, taking the variance of the two sides we
get

var(~at|at−1) = H′(Σt|t−1 − Σt|t)H

= H′(I− Σt|tΣ
−1
t|t−1)Σt|t−1(I− Σ−1

t|t−1Σt|t)H + Σz,t.

where the first line follows from leaving H′Kt as is, and the second line follows from
plugging in H′Kt~zt = ~zt. Solving for Σz,t we get:

Σz,t = H′(Σt|t − Σt|tΣ
−1
t|t−1Σt|t)H

B Replications

In this appendix, we present briefly two models we replicate in Section 2.3.
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B.1 Replication of Maćkowiak and Wiederholt (2009a)

The rational inattention problem in Maćkowiak and Wiederholt (2009a) is

min
{∆̂i,t,ẑi,t}

E
[
(∆t − ∆̂i,t)

2
]
+

(
π̂14

π̂11

)
︸ ︷︷ ︸
≡ξ

2

E
[
(zi,t − ẑi,t)

2
] ,

s.t. I({∆t}; {∆̂i,t}) + I({zi,t}; {ẑi,t}) ≤ κ,

{∆t, ∆̂i,t} ⊥ {zi,t, ẑi,t}

where ∆t ≡ pt +
(
|π̂13|
|π̂11|

)
(qt − pt) is the profit-maximizing response to aggregate condi-

tions and zi,t is an idiosyncratic shock. Also, ∆̂i,t ≡ Ei,t[∆t] and ẑi,t ≡ Ei,t[zi,t] are firm i’s
subjective expectation of ∆t and zi,t, respectively. I(·; ·) is Shannon’s mutual information
and κ is a fixed capacity of processing information. Lastly, notice that aggregate price pt

and exogenous shock processes are defined:

pt =
∫ 1

0
∆̂i,tdi

qt = ρqt−1 + νt, νq,t ∼ N (0, σ2
q )

zi,t = ρzi,t−1 + νz,t, νz,t ∼ N (0, σ2
z ).

To solve the model using our method, we translate the problem above into a DRIPs

structure. The most efficient way, due to the independence assumption, is to write it as the
sum of two DRIPs: one that solves the attention problem for the idiosyncratic shock, and
one that solves the attention problem for the aggregate shock which also has endogenous
feedback.

Moreover, since the problem above has a fixed capacity, instead of a fixed cost of atten-
tion (ω) as in DRIPs pacakge, we need to iterate over ω’s to find the one that corresponds
with κ. Lastly, the attention problem in this model coincides with our model when β = 1.
The full documentation for replication is available in https://afrouzi.com/DRIPs.jl/

dev/examples/ex3_mw2009/ex3_Mackowiak_Wiederholt_2009/.

B.2 Replication of Maćkowiak, Matějka and Wiederholt (2018a)

We first describe the model of price-setting in Maćkowiak et al. (2018a). We solve this
model with and without endogenous feedback in firms’ optimal prices.
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B.2.1 A Model of Price-Setting

There is a measure of firms indexed by i ∈ [0, 1]. Firm i chooses its price pi,t at time t to
track its ideal price p∗i,t. Formally, her flow profit is

−(pi,t − p∗i,t)
2

Without Endogenous Feedback We first consider the case without endogenous feed-
back in the firm’s optimal price by assuming that p∗i,t = qt where

∆qt = ρ∆qt−1 + ut, ut ∼ N (0, σ2
u)

Here qt can be interpreted as money growth or the nominal aggregate demand. Therefore,
the state-space representation of the problem is

~xt =

[
qt

∆qt

]
=

[
1 ρ

0 ρ

]
︸ ︷︷ ︸

A

~xt−1 +

[
σu

σu

]
︸ ︷︷ ︸

Q

ut,

p∗i,t =

[
1
0

]
︸ ︷︷ ︸

H

′

~xt

Endogenous Feedback with Strategic Complementarity Now we consider the case
where there is general equilibrium feedback with the degree of strategic complementarity
α:

p∗i,t = (1− α)qt + αpt

where
∆qt = ρ∆qt−1 + ut, ut ∼ N (0, σ2

u)

pt ≡
∫ 1

0
pi,tdi

Note that now the state space representation for p∗i,t is no longer exogenous and is de-
termined in the equilibrium. However, we know that this is a Guassian process and by
Wold’s theorem we can decompose it to its MA(∞) representation:

p∗i,t = Φ(L)ut
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where Φ(.) is a lag polynomial and ut is the shock to nominal demand. Here, we have
basically guessed that the process for p∗i,t is determined uniquely by the history of mon-
etary shocks which requires that rational inattention errors of firms are orthogonal. Our
objective is to find Φ(.).

Since we cannot put MA(∞) processes in the computer, we approximate them with
truncation. In particular, we know for stationary processes, we can arbitrarily get close to
the true process by truncating MA(∞) processes to MA(T) processes. Our problem here
is that p∗i,t has a unit root and is not stationary. We can bypass this issue by re-writing the
state space in the following way:

p∗i,t = φ(L)ũt, ũt = (1− L)−1ut =
∞

∑
j=0

ut−j

here ũt−j is the unit root of the process and basically we have differenced out the unit root
from the lag polynomial, and φ(L) = (1− L)Φ(L). Notice that since the original process
was difference stationary, differencing out the unit root means that φ(L) is now in `2, and
the process can now be approximated arbitrarily precisely with truncation.

B.2.2 A Business Cycle Model with News Shocks

In this subsection, we describe the business cycle model with news shocks in Section 7 in
Maćkowiak et al. (2018a).

The techonology shock follows AR(1) process:

zt = ρzt−1 + σεt−k

and the total labor input is:

nt =
∫ 1

0
ni,tdi.

Under perfect information, the households chooses the utility-maximizing labor sup-
ply, all firms choose the profit-maximizing labor input, and the labor market clearing
condition is:

1− γ

ψ + γ
wt =

1
α
(zt − wt).
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Then, the market clearing wages and the equilibrium labor input are:

wt =
1
α

1−γ
ψ+γ + 1

α

zt ≡ ξzt

nt =
1
α
(1− ξ)zt.

Firms are rationally inattentive and want to keep track of their ideal price,

n∗t =
1
α

zt −
1
α

ψ + γ

1− γ
nt

where nt =
∫ 1

0 ni,tdi. Then, firm i’s choice depends on its information set at time t:

ni,t = Ei,t[n∗t ].

Note that now the state space representation for n∗t is determined in the equilibrium.
As we describe above, we can decompose it to its MA(∞) representation by Wold’s theo-
rem:

n∗t = Φ(L)εt

where Φ(.) is a lag polynomial and εt is the shock to technology. We have again guessed
that the process for n∗t is determined uniquely by the history of technology shocks. Then,
we transform the problem to a state space representation. The full documentation for
replication is available in https://afrouzi.com/DRIPs.jl/dev/examples/ex5_mmw2018/

ex5_Mackowiak_Matejka_Wiederholt_2018/.

C Proofs for Section 3

C.1 Proof of Lemma 3.1

Proof. The log-linearized Euler equation from the household side is

it = ρ + Et[∆qt+1]

Combining this with the monetary policy rule, we have

∆qt = φ−1E
f
t [∆qt+1] +

σu

φ
ut
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Iterating this forward and noting that limh→∞ φ−hE
f
t [∆qt+h] = 0 due to φ > 1, we get the

result in the Lemma.

C.2 Proof of Proposition 3.1

Proof. Part 1. For ease of notation we drop the firm index i in the proof. The FOC in
Proposition 2.1 in this case reduces to

λt = 1− θ +
ω

σ2
t|t
− βω

σ2
t+1|t

+ βλt+1

Since the problem is deterministic and the state variables grows with time when the con-
straint is binding, then there is a t after which the constraint does not bind. Given such a
t, suppose λt = λt+1 = 0, then noting that σ2

t+1|t = σ2
t|t + σ2

uφ−2, the FOC becomes:

σ4
t|t +

[
σ2

u
φ2 − (1− β)

ω

θ − 1

]
σ2

t|t −
ω

θ − 1
σ2

u
φ2 = 0

Note that given the values of parameters, this equation does not depend on any other
variable than σ2

t|t (in particular it is independent of the state σ2
t|t−1). Hence, for any t, if

λt = 0, then the σ2
t|t = σ2, where σ2 is the positive root of the equation above. However,

for this solution to be admissible it has to satisfy the no-forgetting constraint which holds
only if σ2 ≤ σ2

t|t−1. Thus,

σ2
t|t = min{σ2

t|t−1, σ2}.

Part 2. The Kalman-gain can be derived from the relationship between prior and posterior
uncertainty:

σ2
i,t|t = (1− κi,t)σ

2
i,t|t−1 ⇒ κi,t = 1−min{1,

σ2

σ2
i,t|t−1

} = max{0, 1− σ2

σ2
i,t|t−1

}.

C.3 Proof of Corollary 3.1

Proof. Follows from differentiating the expression for σ2 in Proposition 3.1.

67



C.4 Proof of Proposition 3.2

Proof. Part 1. Recall from the proof of Proposition 3.1 that

pi,t = pi,t−1 + κi,t(qt − pi,t−1 + ei,t)

Aggregating this up and imposing κi,t = κt since all firms start from the same uncertainty
and solve the same problem, we get:

πt =
κt

1− κt
yt.

Plug in κt from Equation C.2 to get the expression for the slope of the Phillips curve.
Part 2. In this case the Phillips curve is flat so it immediately follows that πt = 0.

Moreover, since πt + ∆yt = ∆qt, plugging in πt = 0, we get yt = yt−1 + ∆qt.
Part 3. If σ2

T|T−1 ≥ σ2, then ∀t ≥ T + 1, σ2
t|t = σ2 and σ2

t|t−1 = σ2 + σ2
uφ−2. Hence, for

t ≥ T + 1, the Phillips curve is given by πt =
κ

1−κ yt. Combining this with πt + ∆yt = ∆qt

we get the dynamics stated in the Proposition.

C.5 Proof of Corollary 3.2

Proof. The jump to the new steady state follows from the result in Corollary 3.1 that σ2

increases with σu
φ . The comparative statics follow from the fact that κ is the positive root

of

βκ2 + (1− β + ξ)κ − ξ = 0

where ξ ≡ σ2
u(θ−1)
φ2ω

. It suffices to observe that κ decreases with ξ, and ξ increases with
σu
φ .

C.6 Proof of Corollary 3.3

Proof. The transition to the new steady state follows from the fact that reservation uncer-
tainty increases with a positive shock to σ2. The policy function of the firm in Proposition
3.1 that firms would wait until their uncertainty reaches this new level. Comparative
statics in the steady state follow directly from Corollary 3.1.
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C.7 Proof of Proposition 3.3

Proof. Note that in the steady state of the attention problem, inflation and nominal de-

mand,~st ≡
[

qt

πt

]
, jointly evolve according to

~st =

[
1 0
0 1− κ

]
︸ ︷︷ ︸

≡As

~st−1 +

[
σu
φ

κσu
φ

]
︸ ︷︷ ︸
≡Qs

ut

Moreover, given that we know that a firm’s history of prices is a sufficient statistics for
their information set at that time, we can solve for their belief about the vector ~st by
applying the Kalman filtering:

∫ 1

0
E[~st|pt

i ]di =
∫ 1

0
E[~st|pt−1

i ]di + Ks(qt −E[qt|pt−1
i ])

It follows that the steady-state covariance matrix, Σs ≡ limt→∞ var(~st|pt−1
i ), solves the

following Riccati equation:

Σs = AsΣsA′s − κ
Σse1e′1Σs

e′1Σse1

where κ is the steady-state Kalman-gain of firms and e′1 ≡ (1, 0). The solution to this
Riccati equation is given by

Σs ≡
[

1
κ

1
2−κ

1
2−κ

(3−2κ)κ
(2−κ)3

]
σ2

u
φ2

which then implies that the Kalman-gain vector, Ks is given by

Ks = κ
Σse1e′1
e′1Σse1

=

[
κ
κ2

2−κ

]
e1
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Thus, noticing that the firms average inflation expectations is given by the second element
of the vector

∫ 1
0 E[~st|pt

i ]di, we have

π̂t = (1− κ)π̂t−1 +
κ2

2− κ
(qt − pt−1) = (1− κ)π̂t−1 +

κ2

(2− κ)(1− κ)
yt

where in the second line we have plugged in yt ≡ qt − pt and the Phillips curve πt =
κ

1−κ yt. Finally, multiplying the lag of the above equation by 1− κ and differencing them
out we have

π̂t − (1− κ)π̂t−1 = (1− κ)π̂t−1 − (1− κ)2π̂t−2 +
κ2

(2− κ)(1− κ)
(yt − (1− κ)yt−1)

= (1− κ)π̂t−1 − (1− κ)2π̂t−2 +
κ2

2− κ

σu

φ
ut.

C.8 Proof of Corollary 3.4

Proof. Note that the sensitivity of firms’ inflation expectations to a one standard deviation
shock to monetary policy (σu

φ ut) is

∂π̂t

∂(σu
φ ut)

=
κ2

2− κ

Now, note that

∂

(
∂π̂t

∂( σu
φ ut)

)
∂
(

σu
φ

) =
4κ − κ2

(2− κ)2 =

[
1 +

(
2

2− κ

)2
]

∂κ

∂
(

σu
φ

) < 0

where the negative sign follows from the fact that κ is decreasing in σu
φ (Corollary 3.1).

D Computing the Equilibrium

D.1 Matrix Representation and Solution Algorithm

Firms wants to keep track of their ideal price, p∗i,t = pt + αxt. Notice that the state space
representation for p∗i,t is no longer exogenous and is determined in the equilibrium. How-
ever, we know that this is a Guassian process and by Wold’s theorem we can decompose
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it to its MA(∞) representation:

p∗i,t = Φa(L)εa,t + Φu(L)εu,t

where Φa(.) and Φu(.) are lag polynomials. Here, we have basically guessed that the
process for p∗i,t is determined uniquely by the history of monetary shocks which requires
that rational inattention errors of firms are orthogonal.

We cannot put MA(∞) processes in the computer and have to truncate them. How-
ever, we know that for stationary processes we can arbitrarily get close to the true process
by truncating MA(∞) processes. Our problem here is that p∗i,t has a unit root and is not
stationary. We can bypass this issue by re-writing the state space in the following way:

p∗i,t = Φa(L)εa,t + φu(L)ε̃u,t, ε̃u,t = (1− L)−1εu,t =
∞

∑
j=0

εu,t−j

here ε̃u,t is the unit root of the process and basically we have differenced out the unit
root from the lag polynomial, and φu(L) = (1− L)Φu(L). Notice that since the original
process was difference stationary, differencing out the unit root means that φu(L) is now
in `2, and the process can now be approximated arbitrarily precisely with truncation.

For ease of notation, let zt = (εa,t, εu,t) and z̃t = (εa,t, ε̃u,t). For a length of truncation L,
let ~x′t ≡ (zt, zt−1, . . . , zt−(L+1)) ∈ R2L and~x′t ≡ (z̃t, z̃t−1, . . . , z̃t−(L+1)) ∈ R2L. Notice that

~xt = (I−ΛM′)~xt

~xt = (I−ΛM′)−1~xt

where I is a 2L × 2L identity matrix, Λ is a diagonal matrix where Λ(2i,2i) = 1 and
Λ(2i−1,2i−1) = 0 for all i = 1, 2, · · · , L, and M is a shift matrix:

M =

[
02×(2L−2) 02×2

I(2L−2)×(2L−2) 0(2L−2)×2

]

Then, note that p∗i,t ≈ H′~xt where H ∈ R2L is the truncated matrix analog of the lag
polynominal, and is endogenous to the problem. Our objective is to find the general
equilibrium H along with the optimal information structure that it implies.
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Moreover, note that

at = H′a~xt, H′a = (1, 0, ρa, 0, ρ2
a, 0, . . . , ρL−1

a , 0)

ut = H′u~xt, H′u = (0, 1, 0, ρu, 0, ρ2
a, . . . , 0, ρL−1

u )

We will solve for H by iterating over the problem. In particular, in iteration n ≥ 1,
given the guess H(n−1), we have the following state space representation for the firm’s
problem

~xt =



0 0 0 · · · 0 0 0 0
0 1 0 · · · 0 0 0 0
1 0 0 · · · 0 0 0 0
0 1 0 · · · 0 0 0 0
0 0 1 · · · 0 0 0 0
...

...
... . . . ...

...
...

...
0 0 0 · · · 1 0 0 0
0 0 0 · · · 0 1 0 0


︸ ︷︷ ︸

A

~xt−1 +



1 0
0 1
0 0
...

...
0 0


︸ ︷︷ ︸

Q

zt,

p∗i,t = H′(n−1)~xt

Now, note that

pt =
∫ 1

0
pi,tdi = H′(n−1)

∫ 1

0
Ei,t[~xt]di

= H′(n−1)

∞

∑
j=0

[(I−K(n)Y
′
(n))A]jK(n)Y

′
(n)~xt−j

≈ H′(n−1)

[
∞

∑
j=0

[(I−K(n)Y
′
(n))A]jK(n)Y

′
(n)M

′j
]

︸ ︷︷ ︸
≡X(n)

~xt

= H′(n−1)X(n)~xt = H′p~xt

Let xt = H′x~xt, it = H′i~xt, and πt = H′π~xt = H′p(I−ΛM′)−1(I−M′)~xt. Then from the
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households Euler equation, we have:

xt = E
f
t

[
xt+1 −

1
σ
(it − πt+1)

]
+ E

f
t [y

n
t+1]− yn

t

=⇒ Hi = σ
(
M′ − I

)
Hx +

σ(1 + ψ)

σ + ψ

(
M′ − I

)
Ha + M′Hπ

Also, the Taylor rule gives:

it = ρit−1 + (1− ρ)
(
φππt + φxxt + φ∆y (yt − yt−1)

)
+ ut

=⇒ (I− ρM)Hi = (1− ρ) φπHπ + (1− ρ) φxHx

+ (1− ρ) φ∆y (I−M)

(
Hx +

1 + ψ

σ + ψ
Ha

)
+ Hu

These give us Hx and Hi and we update new H(n) using:

H(n) = Hp + α(I−MΛ′)Hx

We iterate until convergence of H(n).

E Appendix Tables

Table A.1: Estimates of the Taylor Rule

constant ρ φπ φ∆y φx

Pre-Volcker 0.096 0.957*** 1.589* 1.028* 1.167**
(1969–1978) (0.187) (0.022) (0.847) (0.601) (0.544)

Post-Volcker -0.310*** 0.961*** 2.028*** 3.122*** 0.673***
(1983–2007) (0.062) (0.015) (0.617) (1.090) (0.234)

Notes: This table reports least squares estimates of the Taylor rule. We use the Greenbook forecasts of
current and future macroeconomic variables. The interest rate is the target federal funds rate set at each
meeting from the Fed. The measure of the output gap is based on Greenbook forecasts. We consider two
time samples: 1969–1978 and 1983–2007. Newey-West standard errors are reported in parentheses. ***,
**, * denotes statistical significance at 1%, 5%, and 10% levels respectively.
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Table A.2: Estimates of the New Keynesian Phillip Curve

(1) Output gap (2) Output (3) Adj. output gap

Pre-
Volcker

Post-
Volcker

Pre-
Volcker

Post-
Volcker

Pre-
Volcker

Post-
Volcker

Panel A. Standard New Keynesian Phillips Curve

Slope of NKPC (κ) 2.751*** 0.846*** -0.347*** -0.231*** -0.278*** -0.057***
(0.101) (0.020) (0.020) (0.007) (0.034) (0.013)

Forward-looking (γ) 0.901*** 0.894*** 2.459*** 1.649*** 2.399*** 1.592***
(0.055) (0.016) (0.043) (0.013) (0.041) (0.011)

Panel B. Hybrid New Keynesian Phillips Curve

Slope of NKPC (κ) 1.020*** 0.249*** -0.128*** -0.07*** -0.057*** -0.021***
(0.063) (0.012) (0.013) (0.004) (0.016) (0.005)

Forward-looking (γ f ) 0.738*** 0.649*** 1.420*** 0.931*** 1.299*** 0.848***
(0.027) (0.006) (0.049) (0.016) (0.038) (0.010)

Backward-looking (γb) 0.335*** 0.393*** 0.304*** 0.356*** 0.332*** 0.392***
(0.005) (0.003) (0.011) (0.007) (0.009) (0.004)

Panel C. Hybrid New Keynesian Phillips Curve (γ f + γb = 1)

Slope of NKPC (κ) 1.160*** 0.304*** 0.035*** 0.027*** 0.024*** -0.012***
(0.029) (0.007) (0.001) (0.001) (0.007) (0.003)

Forward-looking (γ f ) 0.666*** 0.612*** 0.549*** 0.499*** 0.554*** 0.512***
(0.005) (0.003) (0.002) (0.001) (0.002) (0.001)

Notes: This table shows the estimates of the New Keynesian Phillips curves using simulated data from
the baseline model presented in Section 4.2. Column (1) and (2) show the estimates of the New Keynesian
Phillips curve using the simulated output gap and output data, respectively. Column (3) shows the
estimates using the simulated output gap data, which are adjusted by subtracting moving averages of
natural level of output from actual output. Panel A shows the estimates of the standard New Keynesian
Phillips curve without backward-looking inflation and Panel B shows the estimates of the hybrid New
Keynesian Phillips curve. Panel C shows the estimates of the hybrid New Keynesian Phillips curve
with a coefficient restriction, γ f + γb = 1. Four lags of inflation and output gap (or output) are used as
instruments for the GMM estimation. A constant term is included in the regressions but not reported.
Newey-West standard errors are reported in parentheses. ***, **, * denotes statistical significance at 1%,
5%, and 10% levels respectively.
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