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1 Introduction

Recent supply chain disruptions have underscored the importance of how production linkages

impact the dynamics of sectoral prices, aggregate inflation, and GDP. For instance, monetary

policymakers have been grappling with whether shocks to sectoral prices, e.g., oil or semiconductors,

played any role in the rise of aggregate inflation, and if so, whether these effects have been persistent.

In this paper, we answer the following question: In an economy with sticky prices and production

networks, what determines each sector’s contribution to the persistence and the magnitude of

sectoral prices, aggregate inflation, and GDP responses to shocks?

In a dynamic multi-sector model, we analytically characterize how arbitrary input-output

linkages interact with staggered heterogeneous sticky prices to amplify the persistence and the

magnitude of inflation and GDP responses to monetary and sectoral shocks. These effects are

quantitatively large. In the case of monetary shocks, production linkages of the U.S. economy

quadruple monetary non-neutrality and double the half-life of the consumer price index (CPI)

inflation response, underscoring the significant lagged effects of monetary policy (Friedman, 1961).

In the case of sectoral shocks, we first show that in the absence of endogenous monetary re-

sponses, inflation in an upstream but flexible price sector such as the Oil and Gas Extraction industry

has a high but transitory pass-through to aggregate inflation. In contrast, inflation in an upstream

but stickier sector such as the Semiconductor Manufacturing Machinery industry has persistent

spillover effects on aggregate inflation with large GDP gap effects. Next, we show how monetary

policies that endogenously respond to such shocks and aim to stabilize aggregate variables such as

CPI inflation or GDP gap affect their pass-through. For instance, stabilizing aggregate inflation in

response to Oil shocks contracts GDP gap significantly. Overall, our findings show that the responses

of aggregate inflation and GDP gap to such endogenous monetary policies interact non-trivially

with their sectoral origins and our theory analytically unveils these interactions.

We derive these results in a production network economy with multiple sectors. Each sector

contains a continuum of monopolistically competitive intermediate goods firms which use labor

and goods from other sectors to produce with sector-specific production functions subject to

sectoral productivity shocks. These firms also make staggered forward-looking pricing decisions,

where price changes arrive at sector-specific Poisson rates as in Calvo (1983). A competitive producer

in each sector aggregates these intermediate products into a final sectoral good and sells it for

household consumption and for intermediate input use across sectors. Importantly, we do not

restrict or impose any symmetries across sectors in terms of price change frequencies or input-

output linkages. In our benchmark, monetary policy controls nominal GDP.1 In this framework, we

derive closed-form solutions for the local dynamics of the model around an efficient steady state.

Our first result is that the local dynamics of this model, in response to any arbitrary path of

1In extensions, we also study rules that aim to fully stabilize arbitrary price indices as well as a Taylor rule.
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shocks, is summarized by a system of second-order differential equations, which can be interpreted

as the economy’s sectoral Phillips curves. Importantly, while such equations are generally necessary

conditions for equilibrium, we show (1) that in our benchmark economy, these are both necessary

and sufficient for characterizing the path of sectoral prices and (2) how particular adjustments

of these sectoral Phillips curves under endogenous monetary policy preserves their sufficiency.

Relying on this sufficiency condition, we show that all model parameters affect the dynamics of the

model exclusively through a novel adjustment of the Leontief matrix that takes the duration of price

spells across sectors into account. The explicit solution to this system reveals that the sufficient

statistic for the dynamics of all model variables in response to any path of shocks is the principal

square root of the duration-adjusted Leontief (PRDL) matrix. Intuitively, a particular interaction

of price stickiness and input-output linkages fully pins down the model IRFs, all of which decay

exponentially at the rate of the PRDL matrix.

Two observations immediately follow from this result. (1) Monetary shocks have distortionary

and asymmetric effects on relative sectoral prices, governed by the eigendecomposition of the PRDL

matrix: All else equal, sectors that spend more on stickier suppliers have more persistent responses

and disproportionally affect the persistence of aggregate inflation. (2) The input-output matrix has

a dual role in the propagation of sectoral shocks. First, consistent with insights from static models,

input-output linkages amplify the effects of sectoral shocks through the inverse Leontief matrix

and increase the pass-through of these shocks on impact. Second, a novel dynamic force amplifies

this total pass-through by increasing the persistence of IRFs. Importantly, this second force is

independent of the role of the inverse Leontief matrix. Instead, it stems from the precise interaction

of input-output linkages with staggered price changes through the PRDL matrix. We show that these

two separate forces accumulate: more input-output linkages amplify static propagation through

the inverse Leontief matrix and create dynamic effects that last longer through the PRDL matrix.

Having established the importance of the PRDL matrix in governing the dynamics of the log-

linearized model, we next derive a series of new analytical results that shed light on the economic

forces encoded by this matrix (through its eigendecomposition). We use perturbation theory to

approximate the eigenvalues and eigenvectors of the PRDL matrix based on the underlying model

parameters.2 This approach allows us to prove three key and novel results on how input-output

linkages amplify (1) the persistence of inflation response to monetary shocks in all sectors, (2) the

degree of monetary non-neutrality, and (3) the pass-through of sectoral inflation to aggregate infla-

tion. These analytical results uncover how stickiness trickles to downstream sectors. In particular,

sectors with large input-output adjusted price spell durations play a disproportionate role (relative

to their expenditure shares) in amplifying monetary non-neutrality and inflation persistence.

Using input-output tables, price adjustment frequencies, and consumption shares, we con-

struct our sufficient statistics for the U.S. and quantify the importance of production networks for

2We later verify that this approximation is remarkably accurate for the measured input-output matrix in the U.S.

2



propagation of shocks. In the case of monetary shocks, we find that production linkages quadruple

the cumulative response of GDP and double the half-life of the consumer price index (CPI) infla-

tion response. Underneath these aggregate responses, we identify a rich distribution of sectoral

responses, with few sectors disproportionately affecting monetary non-neutrality and inflation

persistence. This exercise highlights how distortions in the distribution of relative prices can lead to

a persistent aggregate inflation response that is driven by more flexible sectors in the short run but

by stickier sectors in the long run, with the network amplifying these interconnections. To illustrate

this last point, in a counterfactual exercise, we find that dropping the top three sectors with the

largest input-output adjusted price spell durations reduces monetary non-neutrality by 16 percent,

even though the combined (direct) GDP share of these three sectors is approximately zero.

We then quantify the pass-through of sectoral shocks to aggregate inflation on impact. To do

so, we consider idiosyncratic sectoral shocks that increase the inflation of their corresponding

sector by 1 percent. We then measure the spillover pass-through of this shock as its impact on

aggregate inflation minus the direct effect coming from the expenditure share of its sector (so that

in the absence of production linkages, this pass-through is zero). While we provide comprehensive

rankings of sectors, we use two industries that have been salient recently as informative examples of

our analysis: the Oil and Gas Extraction industry and the Semiconductor Manufacturing Machinery

industry. We find that the Oil and Gas Extraction industry is among the top sectors that have a large

spillover pass-through to aggregate inflation on impact, due to its role as an input to many sectors.

Next, we quantify the effects of these sectoral shocks on the persistence of aggregate inflation

response. Relying on our perturbed eigenvalues, we show that the key determinant of these effects

is an input-output adjusted duration of price spells within these sectors. To provide concrete

examples, this adjusted duration in Oil and Gas Extraction industry is relatively small due to its

high price flexibility. Thus, a shock to this sector does not lead to persistent aggregate inflation

effects. In contrast, the Semiconductor Manufacturing Machinery industry has very persistent

aggregate inflation effects because its adjusted duration is relatively larger. Moreover, to connect

these persistent responses with the real effects of sectoral shocks, we also show that sectoral shocks

that cause more persistent inflation responses also lead to greater GDP gap effects.

Finally, having established these analytical and quantitative results on the separate roles of

monetary and sectoral shocks, we study the propagation of sectoral shocks when monetary policy

endogenously responds to neutralize their inflationary effects. This is non-trivial because while

in benchmark New Keynesian (NK) models inflationary pressures are determined by the slope

of the aggregate Phillips curve (elasticity of inflation to output gap), multisector economies with

input-output linkages can no longer be summarized by one elasticity and the whole distribution

of relative prices, and how they are affected by policy, jointly determine the path of sectoral and

aggregate prices. Nonetheless, our contribution here is to show that the path of prices under

such endogenous policies; i.e., CPI inflation stabilization or GDP gap stabilization, are still fully
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characterized by proper adjustments of the PRDL matrix that take the effects of these policies into

account. This observation also provides a new perspective into understanding how such policies

interact with sectoral origins of shocks: For instance, in the case of GDP gap stabilization, we show

that propagation under such a policy is identical to that of an economy with a richer production

network in which monetary policy keeps interest rates constant. The key driving force for this result

is that endogenous policy creates further interactions across the economy by relating the prices of

different sectors to each other through the objective of policy, which can be captured by adjusting

the PRDL matrix to take such interactions into account. The upshot is that the PRDL matrix remains

a sufficient statistic for the dynamics of the model under these policies.

We then show that these adjustments of the PRDL matrix are crucial for understanding the

real effects of these policies. For instance, we find that stabilizing aggregate inflation in response

to Oil TFP shocks contracts the GDP gap significantly due to the indirect effects of this policy on

other sectors.3 Accordingly, to avoid such large contractionary effects, a GDP gap stabilization

policy lets the inflationary effects of Oil shocks to pass-through almost completely to aggregate

inflation. This is in contrast to inflation originating in sectors with large network-adjusted price

stickiness. For instance, stabilizing aggregate inflation conditional on an inflationary TFP shock

to the Semiconductor Manufacturing Machinery industry is not very costly in terms of GDP gap.

This is because while this industry is also an input to many sectors similar to the Oil industry, it

has a much higher duration-adjusted price stickiness relative to its downstream sectors. Thus, the

contractionary effects of stabilizing aggregate inflation are also smaller because sectoral inflation in

that sector does not distort relative prices as much.

Related Literature. Our paper is related to the recent work studying multi-sector NK models with

production networks and relative price distortions (La’O and Tahbaz-Salehi, 2022, Rubbo, 2023,

Lorenzoni and Werning, 2023a,b).4 In a similar framework, our main contribution is to provide

analytical characterization of shock propagation and inflation dynamics; in particular, by using

spectral approximation methods. Specifically, we provide analytical expressions for (1) propagation

of sectoral shocks and their impact on aggregates, (2) impact of monetary shocks, particularly

focusing on how they distort relative prices leading to disproportionate effects of few sectors on

inflation and GDP dynamics, and (3) how endogenous stabilization monetary policies interact with

the sectoral origins of inflationary shocks and shape the dynamics of aggregate inflation and GDP.

3This result is in contrast to the standard NK model where stabilizing TFP-driven inflation is expansionary to the
output gap because sticky prices do not increase as much as they would under flexible prices. In the extreme case when
monetary policy fully stabilizes TFP-driven inflation in those models, the output gap is also stabilized.

4More broadly, a large sticky price literature discusses the role of relative price distortions in aggregate inflation.
Ball and Mankiw (1995) show how this role arises due to sectoral heterogeneity in the size of shocks. Heterogeneity
in price stickiness across sectors in a multi-sector model was also emphasized in Woodford (2003) and Ruge-Murcia
and Wolman (2022). Moreover, a similar channel exists in multi-country models (Benigno (2004); Gali and Monacelli
(2008)) as well as in models with both sticky prices and wages (Erceg, Henderson, and Levin (2000); Blanchard and Gali
(2007);Gali (2008)). We discuss more precisely the connections of some of these papers with our model and results later.
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Methodologically, our use of spectral methods to analyze shock propagation in production networks

with sticky prices is novel and follows Liu and Tsyvinski (2021) who were the first to use spectral

methods in analyzing the dynamics of a real production network economy with adjustment costs.

Moreover, we contribute further by applying a new spectral approximation method to sticky price

economies with production networks that yields explicit expressions for how individual sectors’

characteristics contribute to the dynamics of GDP and prices.

Our analytical results on the real effects of monetary shocks are related to two broader strands

of the literature. First, they connect to Carvalho (2006) and Nakamura and Steinsson (2010) which

showed that heterogeneous price stickiness amplifies monetary non-neutrality. Second, our find-

ings on how production linkages amplify real effects of monetary shocks build on the insights of

Blanchard (1983), Basu (1995) and more recently La’O and Tahbaz-Salehi (2022) which showed that

such amplification stems from strategic complementarities introduced by production networks.

More recently, Carvalho, Lee, and Park (2021), Pasten, Schoenle, and Weber (2020), Woodford (2021),

and Ghassibe (2021) study the transmission of monetary shocks in specific production networks.5

Our contribution is to study a multi-sector NK model with unrestricted input-output linkages.

Our results on the propagation of sectoral shocks in models with production networks build on

a rich literature, mostly in settings without nominal rigidities. Long and Plosser (1983), Acemoglu,

Carvalho, Ozdaglar, and Tahbaz-Salehi (2012), Jones (2013) are important contributions and Car-

valho (2014), Carvalho and Tahbaz-Salehi (2019) provide comprehensive surveys of the literature.

In more recent work, Guerrieri, Lorenzoni, Straub, and Werning (2020) characterize how supply

shocks to a sector can lead to aggregate contractions, and Minton and Wheaton (2023) provide

empirical support for the dynamic propagation of price stickiness through production networks.

Our contribution is to characterize the forces that determine the propagation of monetary and

sectoral shocks under nominal rigidities in dynamic settings with production networks.6

Finally, our paper also contributes to the literature on aggregate inflation persistence and the

long and variable lags of monetary policy. We show both analytically and numerically how aggregate

inflation persistence is the driver of aggregate GDP dynamics in our model, which relates it to the

important early work on this topic by Fuhrer and Moore (1995); Fuhrer (2010); and Fuhrer (2018).7

Moreover, by emphasizing how production networks increase the persistence of aggregate inflation

following a monetary policy shock, we connect to papers focused on long and variable lags in

monetary policy transmission, starting with the venerable work of Friedman (1961).8

5This also relates our work to Wang and Werning (2021) and Alvarez, Lippi, and Souganidis (2022), which derive
similar statistics with oligopolies and menu costs featuring strategic complementarities, but not production networks.

6Other papers, such as Taschereau-Dumouchel (2020), consider endogenous production networks in real models.
We use exogenous production networks, but we study a dynamic model with sticky prices.

7See also Dittmar, Gavin, and Kydland (2005); Guerrieri (2006); Sbordone (2007); Benati (2008); Kurozumi and
Zandweghe (2023); and Gallegos (2023) for contributions on the drivers of endogenous inflation persistence.

8Other more recent papers on this topic include Bryan and Gavin (1994); Kilponen and Leitemo (2011).
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2 Model

2.1. Environment

Time is continuous and is indexed by t ∈R+. The economy consists of a representative household,

monetary and fiscal authorities, and n sectors with input-output linkages. In each sector i ∈ [n] ≡
{1,2, . . . ,n}, a unit measure of monopolistically competitive firms use labor and goods from all

sectors to produce and supply to a competitive final good producer within the same industry. These

final goods are sold to the household and other industries.

Household. The representative household demands the final goods produced by each industry,

supplies labor in a competitive market, and holds nominal bonds with nominal yield it . Household’s

preferences over consumption C and labor supply L is U (C )−V (L), where U and V are strictly

increasing with Inada conditions, and U ′′(.) < 0, V ′′(.) > 0. Household solves:

max{(Ci ,t )i∈[n],Lt ,Bt }t≥0

∫ ∞
0 e−ρt [U (Ct )−V (Lt )]dt (1)

s.t .
∑

i∈[n] Pi ,tCi ,t + Ḃt ≤Wt Lt + it Bt +Profitst −Tt , Ct ≡Φ(C1,t , . . . ,Cn,t ) (2)

Here, Φ(.) defines the consumption index Ct over the household’s consumption from sectors

(Ci ,t )i∈[n]. It is degree one homogeneous, strictly increasing in each Ci ,t , satisfying Inada conditions.

Lt is labor supply at wage Wt , Pi ,t is sector i ’s final good price, Bt is demand for nominal bonds,

Profitst denote all firms’ profits rebated to the household, and Tt is a lump-sum tax.

Monetary and Fiscal Policy. For our baseline, we assume monetary authority directly controls the

path of nominal GDP, {Mt ≡ PtCt }t≥0, where Pt is the consumer price index (CPI).9 In Section 4, we

study the more general case of policies with endogenous feedback such as those that aim to stabilize

a particular price index or the GDP gap. Moreover, a Taylor rule extension is in Section 5.2. The fiscal

authority taxes or subsidizes intermediate firms’ sales in each sector i at a possibly time-varying

rate τi ,t , lump-sum transferred back to the household. A wedge shock to sector i is an unexpected

disturbance in that sector’s taxes.

Final Good Producers. A competitive final good producer in each industry i buys from a continuum

of intermediate firms in its sector, indexed by i j : j ∈ [0,1], and produces a final sectoral good using

a CES production function. The profit maximization problem of this firm is:

max(Y d
i j ,t ) j∈[0,1]

Pi ,t Yi ,t −
∫ 1

0 Pi j ,t Y d
i j ,t d j s.t . Yi ,t =

[∫ 1
0 (Y d

i j ,t )1−σ−1
i d j

] 1
1−σ−1

i (3)

where Y d
i j ,t is the producer’s demand for variety i j at price Pi j ,t , Yi ,t is its production at price Pi ,t ,

and σi > 1 is the substitution elasticity across varieties in i . Thus, demand for variety i j is:

Y d
i j ,t =D(Pi j ,t /Pi ,t ;Yi ,t ) ≡ Yi ,t

(
Pi j ,t

Pi ,t

)−σi
where Pi ,t =

[∫ 1
0 P 1−σi

i j ,t d j
] 1

1−σi (4)

9Such policy can be implemented by a cash-in-advance constraint (e.g. La’O and Tahbaz-Salehi, 2022), money in
utility (e.g. Golosov and Lucas, 2007) or nominal GDP growth targeting (e.g. Afrouzi and Yang, 2019).
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Final good producers define a unified good for each industry and have zero value added due to

being competitive and constant returns to scale (CRS) production.

Intermediate Goods Producers. The intermediate good producer i j uses labor as well as the

sectoral goods as inputs and produces with the following CRS production function:

Y s
i j ,t = Zi ,t Fi (Li j ,t , Xi j ,1,t , . . . , Xi j ,n,t ) (5)

where Zi ,t is sector i ’s Hicks-neutral productivity, Li j ,t is firm i j ’s labor demand, and Xi j ,k,t is its

demand for sector k’s final good. The function Fi is strictly increasing in all arguments with Inada

conditions. The firm’s total cost for producing output Y , given Pt ≡ (Wt ,Pi ,t )i∈[n], is:

Ci (Y ;Pt , Zi ,t ) ≡ min
Li j ,t ,Xi j ,k,t

Wt Li j ,t +
∑

k∈[n]
Pk,t Xi j ,k,t s.t . Zi ,t Fi (Li j ,t , Xi j ,1,t , . . . , Xi j ,n,t ) ≥ Y (6)

In each sector i , firms set their prices under a Calvo friction, where i.i.d. price change opportunities

arrive at Poisson rates θi . Given its cost in Equation (6) and its demand in Equation (4), a firm i j

that has the opportunity to change its price at time t chooses its reset price, denoted by P #
i j ,t , to

maximize the expected net present value of its profits until the next price change:

P #
i j ,t ≡ argmax

Pi j ,t

∫ ∞

0
θi e−(θi h+∫ h

0 it+s ds)
[

(1−τi ,t+h)Pi j ,tD(Pi j ,t/Pi ,t+h;Yi ,t+h)−Ci (Y s
i j ,t+h ;Pt+h , Zi ,t+h)

]
dh

s.t . Y s
i j ,t+h ≥D(Pi j ,t/Pi ,t+h;Yi ,t+h), ∀h ≥ 0 (7)

where θi e−θi h is the duration density of the next price change, e−∫ h
0 it+h ds is the discount rate based

on nominal rates, and τi ,t is the tax/subsidy rate on sales. Were prices flexible, maximizing net

present value of profits would be equivalent to choosing desired prices, denoted by P∗
i j ,t , that

maximized firms’ static profits within every instant. Desired prices solve:

P∗
i j ,t ≡ argmax

Pi j ,t
(1−τi ,t )Pi j ,t D(Pi j ,t/Pi ,t ;Yi ,t )−Ci (Y s

i j ,t ;Pt , Zi ,t ) s.t . Y s
i j ,t ≥D(Pi j ,t/Pi ,t ;Yi ,t ) (8)

Equilibrium Definition. An equilibrium is a set of allocations for households and firms, monetary

and fiscal policies, and prices such that: (1) given prices and policies, the allocations are optimal for

households and firms, and (2) markets clear. A precise definition is in Appendix B.

2.2. Log-Linearized Approximation

We log-linearize this economy around an efficient zero inflation steady-state, derivations of which

are in Appendix C. For our baseline analysis, we use Golosov and Lucas (2007)’s preferences, U (C )−
V (L) = log(C )−L, which simplifies the analytical expressions. In Section 5.1, we consider a more

general specification with partially elastic labor supply. Going forward, small letters denote the log

deviations of their corresponding variables from their steady-state values.

Sectoral Prices. While prices are staggered within sectors, the Calvo assumption implies that we

can fully characterize aggregate sectoral prices by desired and reset prices. First, desired prices are

equal to firms’ marginal costs, (mci ,t )i∈[n], up to a wedge that captures markups or other distortions,
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(ωi ,t )i∈[n]. With input-output linkages, mci ,t depends on the aggregate wage, wt , sectoral prices,

(pk,t )k∈[n], and the sectoral productivity, zi ,t :

p∗
i ,t ≡ωi ,t +mci ,t , mci ,t ≡αi wt +∑

k∈[n] ai k pk,t − zi ,t , ωi ,t ≡ log( σi
σi−1 × 1

1−τi ,t
) (9)

where αi and ai ,k are sector i ’s firms’ labor share and expenditure share on sector k’s final good in

the steady-state, respectively. Thus, the steady-state input-output matrix is A ≡ [ai k ] ∈Rn×n .

Second, the reset price in sector i is the average of all future desired prices, discounted at rate ρ

and the probability density of the time between price changes, e−(ρ+θi )h :

p#
i ,t = (ρ+θi )

∫ ∞
0 e−(ρ+θi )h p∗

i ,t+hdh (10)

Finally, given sector i ’s initial aggregate price at t = 0, pi ,0− , the aggregate sectoral price pi ,t is an

average of the past reset prices, weighted by the density of time between price changes:

pi ,t = θi
∫ t

0 e−θi h p#
i ,t−hdh +e−θi t pi ,0− (11)

Aggregate Price and GDP. The household’s demand for goods defines the aggregate Consumer

Price Index (CPI) as the expenditure share weighted average of sectoral prices:

pt =∑
i∈[n]βi pi ,t , with

∑
i∈[n]βi = 1 (12)

where β= (βi )i∈[n] is the vector of the household’s expenditure shares in the efficient steady-state.

The aggregate GDP, yt , is equal to aggregate consumption and is given by the difference between

the nominal GDP, mt , and the CPI, pt : yt ≡ mt −pt . Fully elastic labor supply implies that the wage

is equal to nominal demand:

wt = pt + yt = mt (fully elastic labor supply) (13)

Equilibrium in the Approximated Economy. Given a bounded path for (ωt , zt ,mt )t≥0, an equi-

librium is a path for GDP, wage and prices, ϑ≡ {yt , wt , pt , (p∗
i ,t , p#

i ,t , pi ,t )i∈[n]}t≥0, such that given a

vector of initial sectoral prices, p0− = (pi ,0−)i∈[n], ϑ solves Equations (9) to (13).

Flexible Prices and GDP. Consider a counterfactual economy where all prices are flexible. By

Equation (9), we can derive flexible prices of this economy, denoted by p f
t ∈Rn , as:

p f
t = wtα+Ap f

t +ωt − zt =⇒ p f
t = mt 1+Ψ(ωt − zt ) (14)

where α≡ (αi )i∈[n] contains labor shares, 1 is the vector of ones, andΨ≡ (I−A)−1 is the inverse

Leontief matrix. A key observation is that p f
t is only a function of exogenous shocks and model

parameters. We can also derive the flexible price GDP, y f
t , in this counterfactual economy as:

y f
t = mt −β⊺p f

t = λ⊺zt︸ ︷︷ ︸
aggregate TFP

− λ⊺ωt︸ ︷︷ ︸
labor wedge

, λ≡ ( Pi Yi
PC )i∈[n] =Ψ⊺β (15)
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whereλ is the vector of Domar weights in the steady state.10 Equation (15) shows that two terms

determine flexible GDP around the efficient steady-state up to first order: (1) the aggregate TFP,

which is the Domar-weighted sectoral productivities (Hulten, 1978), (2) the labor wedge due to

distortions, which is the Domar-weighted wedges across sectors (Bigio and La’O, 2020).

3 Sufficient Statistics

Here, we solve sectoral price dynamics in closed form and derive our sufficient statistics results. We

then measure these sufficient statistics for the U.S. economy and provide quantitative results on

aggregate and sectoral shocks. All proofs are included in Appendix A.

3.1. Dynamics of Prices

Let pt ≡ (pi ,t )i∈[n], p#
t ≡ (p#

i ,t )i∈[n] and p∗
t ≡ (p∗

i ,t )i∈[n] be the vectors of sectoral aggregate, reset and

desired prices, respectively. Using Equations (9) and (14):11

p∗
t = (I−A)p f

t +Apt (16)

where p f
t is the vector of flexible equilibrium prices in Equation (14). Equation (16) shows that

firms’ desired prices across sectors is a convex combination of exogenous flexible equilibrium prices

and endogenous sectoral prices in the sticky price economy, with the input-output matrix A fully

capturing the strategic complementarities induced by production linkages across the economy

(Blanchard, 1983, Basu, 1995, La’O and Tahbaz-Salehi, 2022).

Accordingly, reset and sectoral prices in Equations (10) and (11) solve:

π#
t ≡ ṗ#

t = (ρI+Θ)(p#
t −p∗

t ), forward-looking with lim
t→∞e−(ρI+Θ)t p#

t = 0, (17)

πt ≡ ṗt =Θ(p#
t −pt ), backward-looking with p0 = p0− (18)

Here, π#
t and πt are the inflation rates in reset and aggregate prices across sectors, respectively.

Θ = diag(θi ) ∈ Rn×n is a diagonal matrix, with its i ’th diagonal entry representing the frequency

of price adjustments in sector i .12 The memorylessness of the Poisson price adjustments (Calvo

assumption) allows us to represent this system only in terms of sectoral prices, pt :

Proposition 1. Given a vector of initial prices p0 = p0− , the following set of differential equations are

necessary and sufficient for the non-explosive dynamics of sectoral prices:

π̇t = ρπt +Θ(ρI+Θ)(I−A)(pt −p f
t ), with p0 = p0− given and limt→∞ ∥pt −p f

t ∥ <∞. (19)

We discuss the main implications of Proposition 1 in the following four remarks.

10The Domar weight of a sector i , λi , is the ratio of its total sales to the household’s total nominal expenditures.
Baqaee and Farhi (2020) emphasize the distinction between cost-based and sales-based input-output matrices and
Domar weights. In an efficient equilibrium, like the one we linearize around, the two are the same.

11Usingα= (I−A)1, the vector form of Equation (9) is p∗
t = (I−A)(1wt +Ψ(ωt − zt ))+Apt .

12In this draft, we frequently use the exponential function of square matrices, defined by its corresponding power
series: ∀X ∈Rn×n , eX ≡∑∞

k=0 Xk /k !, which is well-defined because these series always converge.
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Remark 1. Equation (19) represents the sectoral Phillips curves of this economy in vector form, linking

changes in inflation to the gap between prices and their counterparts in a flexible economy. The

matrixΘ(ρI+Θ)(I−A)—the Leontief matrix, I−A, adjusted by a quadratic form of price adjustment

frequencies,Θ(ρI+Θ)—encodes the slopes of these Phillips curves.

Equation (19) differs from the usual representations of Phillips curves featuring output gap.

Such an equivalent representation exists for Equation (19), which we discuss in detail in Section 4.

However, we start with the representation above because it is the most straightforward way to

demonstrate the following remarks and derive our analytical results.

Remark 2. Sectoral Phillips curves, with boundary conditions p0 = p0− and non-explosive prices,

uniquely pin down the path of sectoral prices for a given path of flexible prices (p f
t )t≥0.

The key to this observation is that the only endogenous variables in the system of second-order

differential equations in Equation (19) are nominal prices and their inflation rates, pt andπt , with

p f
t acting as an exogenous forcing term. Intuitively, nominal prices in the sticky price economy

should adjust towards their flexible levels, p f
t . This is formalized in Equation (19), where inflation in

sectoral prices depends solely on the time series of nominal price gaps, pt −p f
t .

Remark 3. All shocks (ωt , zt ,mt )t≥0 affect price dynamics only through flexible prices, (p f
t )t≥0.

Remark 3 demonstrates the power of expressing inflation dynamics in terms of nominal price

gaps. It implies that solving for the dynamics of prices for a given path of p f
t is equivalent to

having characterized impulse response functions of all the prices in the economy to all three types

shocks–TFP, markup/wedge, and monetary–in a unified framework.

Remark 4. All parameters affect the dynamics of sectoral prices only through the adjusted Leontief

matrixΘ(ρI+Θ)(I−A), and the household’s discount rate, ρ.

Intuitively, the dynamics of prices in a production network depend on the frequency of price

adjustments (Θ) and how these shocks propagate through input-output linkages (the Leontief

matrix). Proposition 1 formally shows how these two mechanisms interact through the matrixΘ(ρI+
Θ)(I−A) and the parameter ρ, which also shows up independently through ρπt in Equation (19).13

Since p f
t is an exogenous forcing term to the system of differential equations in Equation (19),

we can fully solve this system and derive an analytical expression for the evolution of sectoral prices

as a function of the time-path of p f
t . To do so, we first define our duration-adjusted Leontief matrix,

which plays a key role in our analytical results, as the matrix

Γ≡Θ(ρI+Θ)(I−A)+ ρ2

4
I (20)

13Moreover, note that substitution elasticities across different inputs have no impact on price dynamics at the first
order. This is due to the flatness of the marginal cost function with respect to inputs at the optimum by Shephard’s
Lemma (see, e.g., Baqaee and Farhi, 2020).
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Note that Γ is the slope matrix Θ(ρI+Θ)(I−A) from Remark 1 shifted by ρ2/4 times the identity

matrix, which captures the independent role of ρ in price dynamics through the term ρπt in

Equation (19).14 Moreover, as we will see below, the solution to the differential equations in

Proposition 1 depends on the principal square root of Γ, denoted by
p
Γ, defined such that

Γ= (
p
Γ)2 =

p
Γ ·

p
Γ, λ ∈ eig(

p
Γ) =⇒ Re(λ) > 0 (21)

Here “·” denotes standard matrix multiplication. In general, an n ×n matrix can have between 0

and 2n square roots.15 The principal square root of a matrix, if exists, is the one whose eigenvalues

have positive real parts, which is the verbal description of the second part of Equation (21). Thus, to

confirm that
p
Γ is well-defined, we show its existence and uniqueness in the following Lemma:

Lemma 1. The principal square root of Γ, denoted by
p
Γ, exists and is unique. Moreover, the matricesp

Γ+ ρ
2 I and

p
Γ− ρ

2 I are positive stable; i.e., all their eigenvalues have positive real parts.

In short, the proof of Lemma 1 relies on showing that Γ is an M-matrix and applies Theorem 5

in Alefeld and Schneider (1982) to show the existence and uniqueness of the principal square rootp
Γ under the assumptions that all sectors have strictly positive labor shares and price adjustment

frequencies. We can now state the analytical solution to the dynamics of sectoral prices:

Proposition 2. Suppose p f
t is piece-wise continuous and bounded.16 Then, given p f

t , a vector of

initial prices p0− , and the parameter ρ, the principal square root of the duration-adjusted Leontief

(PRDL) matrix,
p
Γ, is a sufficient statistic for dynamics of sectoral prices:17

pt =

inertial effect of past prices due to stickiness︷ ︸︸ ︷
e−(

p
Γ− ρ

2 I)t p0− + (
p
Γ− ρ2

4

p
Γ
−1

)e−(
p
Γ− ρ

2 I)t
∫ t

0

e(
p
Γ− ρ

2 I)h −e−(
p
Γ+ ρ

2 I)h

2
p f

hdh

+ (
p
Γ− ρ2

4

p
Γ
−1

)
e(

p
Γ+ ρ

2 I)t −e−(
p
Γ− ρ

2 I)t

2

∫ ∞

t
e−(

p
Γ+ ρ

2 I)hp f
hdh︸ ︷︷ ︸

forward looking effect of future prices

(23)

Drawing on Remarks 1 to 4, Proposition 2 presents the analytical solution for dynamics of all

sectoral prices. This solution specifically highlights the interplay between the forward-looking

nature of pricing decisions and the backward-looking nature of aggregation, Equations (17) and (18),

14When ρ ↓ 0, the second term disappears and we obtain Γ=Θ2(I−A).

15For instance, I2 ≡
[

1 0
0 1

]
has 22 = 4 square roots:

[ ±1 0
0 ±1

]
but the shift matrix M2 ≡

[
0 1
0 0

]
has none.

16In linear models with perfect foresight, piece-wise continuity ensures that p f
t is Riemann integrable with unexpected

shocks introducing at most countable jumps in flexible prices. The boundedness assumption is not restrictive with zero
trend inflation. With trend inflation, boundedness is replaced with exponential order.

17In the limit of ρ ↓ 0, the general expression of the proposition simplifies to:

pt = e−
p
Γt p0− +

p
Γe−

p
Γt

∫ t

0
sinh(

p
Γt )p f

h dh +
p
Γsinh(

p
Γt )

∫ ∞

t
e−

p
Γhp f

h dh (22)

where hyperbolic sine of a square matrix X is defined as sinh(X) ≡ (eX −e−X)/2.
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which are governed by
p
Γ (rather than Γ itself) due to the dual forward- and backward-looking

nature of prices: While firms take the future path of p f
t into account when setting prices, aggregate

prices also depend on the past path of p f
t due to the persistence of stickiness over time.

3.2. Impulse Response Functions (IRFs)

Using Proposition 2, we can obtain IRFs by plugging in specific paths for p f
t implied by shocks.

Consider the economy in its steady state at t = 0− (left limit at t = 0), so that exogenous variables

(zt ,ωt ,mt ) = (z0− ,ω0− ,m0−) for t ↑ 0 and all prices are at their flexible level: p0− −p f
0− = 0.

3.2.1. Monetary Shocks. An expansionary monetary shock is a one-time unexpected but perma-

nent increase in nominal GDP: mt = m0−+δm ,∀t ≥ 0 where δm denotes the shock size. The implied

path for p f
t is p f

t = p f
0− +δm1, where 1 is a vector of ones.

Proposition 3. The IRFs of sectoral prices, pt ; CPI inflation, πt = β⊺πt ; GDP, yt ; and GDP gap,

ỹt ≡ yt − y f
t to an expansionary monetary shock are given by:

∂
∂δm

pt = (I−e−(
p
Γ− ρ

2 I)t )1, ∂
∂δm

πt =β⊺(
p
Γ− ρ

2
I)e−(

p
Γ− ρ

2 I)t 1, ∂
∂δm

yt = ∂
∂δm

ỹt =β⊺e−(
p
Γ− ρ

2 I)t 1

Proposition 3 shows: (1) The only relevant objects for the sectoral price, inflation, and GDP

dynamics are
p
Γ and expenditure shares β. Thus, we can compute these IRFs for the input-output

structure of the U.S. economy once we construct
p
Γ and the expenditure shares β from the data.

(2) Although relative sectoral prices converge back to the steady state in the long run, the aggregate

monetary shock distorts these relative prices on the transition path. These distortions are also

captured by
p
Γ, which can be constructed using data. (3)

p
Γ also captures the degree of monetary

non-neutrality in the economy since GDP response to a monetary shock is zero in the flexible

economy. We see this in the cumulative impulse response (CIR) of GDP, obtained by integrating the

area under its impulse response function:

CIRỹ ,m ≡ ∫ ∞
0

∂
∂δm

ỹt dt =β⊺ (p
Γ− ρ

2 I
)−1

1 (24)

3.2.2. TFP and Wedge Shocks. How do sectoral prices, CPI and GDP respond to sectoral TFP/wedge

shocks? To answer this question, we consider the following shock to any sector i :

ωi ,t − zi ,t =ωi ,0− − zi ,0− +e−φi tδi
z , ∀t ≥ 0 (25)

Here, a positive δi
z captures a negative TFP or a positive wedge shock to sector i that decays at the

rate φi > 0. We note that φi ↓ 0 would correspond to a permanent TFP/wedge shock in the limit

while a positive φi denotes a temporary disturbance that disappears at rate φi . The implied path for

p f
t , given such a shock, is p f

t = p f
0−+e−φi tδi

zΨei , whereΨ is the inverse Leonteif matrix and ei is the

i ’th standard basis vector. Economically,Ψei is a measure of sector i ’s upstreamness as it measures

how much sector i , directly and indirectly, supplies to other sectors.
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Proposition 4. Suppose φi ∉ eig(
p
Γ− ρ

2 I) and let Xi ≡ (Γ− (ρ2 +φi )2I)−1(Γ− ρ2

4 I).18 Then, the IRFs

of sectoral prices, pt ; CPI inflation, πt =β⊺πt ; GDP, yt ; and GDP gap, ỹt = yt − y f
t , to a TFP/wedge

shock in sector i are given by:

∂

∂δi
z

pt = Xi (e−φi t I−e−(
p
Γ− ρ

2 I)t )Ψei , ∂

∂δi
z
πt =β⊺Xi ((

p
Γ− ρ

2 I)e−(
p
Γ− ρ

2 I)t −φi e−φi t I)Ψei

∂

∂δi
z

yt =β⊺Xi (e−(
p
Γ− ρ

2 I)t −e−φi t I)Ψei , ∂

∂δi
z

ỹt =β⊺(Xi e−(
p
Γ− ρ

2 I)t + (I−Xi )e−φi t )Ψei

The most important observation from Proposition 4 is that, aside from the exogenous dynamics

introduced by the shock (e−φi t ), all endogenous dynamics are captured by e−(
p
Γ− ρ

2 I)t . This is best

illustrated in the limiting case when the shock is almost permanent (φi ↓ 0):

∂

∂δi
z
πt |φi ↓0 =β⊺(

p
Γ− ρ

2 I)e−(
p
Γ− ρ

2 I)tΨei , ∂

∂δi
z

ỹt |φi ↓0 =β⊺e−(
p
Γ− ρ

2 I)tΨei (26)

This observation uncovers two separate roles of the Leontief matrix in the dynamic economy.

Remark 5. The inverse Leontief matrix,Ψ, determines the static propagation of TFP/wedge shocks

by passing them through the network (ei →Ψei ). The principal square root,
p
Γ, determines the

dynamic propagation of these shocks over time (Ψei → e−(
p
Γ− ρ

2 I)tΨei ).

Moreover, in response to TFP/wedge shocks, the GDP response combines both the response

under flexible prices and the response of the GDP gap under sticky prices. To separate these, we

decompose the CIR of GDP to its two components:

CIRy,zi ≡
∫ ∞

0
∂

∂δi
z

yt dt = −φ−1
i λi︸ ︷︷ ︸

CIR
y f ,zi

≡Flexible GDP Response

(Domar-weighted cumulative TFP)

+ β⊺((φi + ρ
2 )I+p

Γ)−1Ψei︸ ︷︷ ︸
CIRỹ ,zi ≡Cumulative GDP Gap Response

(27)

This decomposition provides intuition for the limiting case when φi → 0. Note that in this case,

the flexible GDP CIR explodes because, with a permanent shock to TFP, the economy diverges

from the initial steady-state (which is why we are only considering the case when φi → 0 and not

φi = 0). However, the GDP gap CIR is not explosive in this limit as the effects of sticky prices are

only temporary deviations from the flexible price response:

CIRỹ ,zi |φi ↓0 =β⊺(ρ2 I+
p
Γ)−1Ψei (28)

Equations (24) and (28) illustrate a more general takeaway in the context of permanent shocks.

They show that the total effect of a monetary or sectoral shock on the cumulative response of

GDP gap is a combination of two forces, where the interaction is captured by the inner product

of two vectors: (1) A vector that captures the pass-through of the shock to flexible prices (1 for

monetary shocks and Ψei for TFP/wedge shocks as seen from Equation (14)), and (2) A second

vector that captures the dynamic propagation of shocks which is independent of whether the shock

18Assuming φi ∉ eig(
p
Γ− ρ

2 I); i.e., φi is not an eigenvalue of the
p
Γ− ρ

2 I is a technical assumption that simplifies
analytical derivations by guaranteeing that Xi is invertible, but it is without much loss of generality: A limit of IRFs can
be taken and is valid when φi → x ∈ eig(

p
Γ− ρ

2 I).
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is a monetary or sectoral shock. Instead, it only depends on the expenditure share vector and

the PRDL matrix (β⊺(ρ2 I+p
Γ)−1). This is the dynamic force that converts the static pass-through

of the shock to its endogenous dynamic propagation through the terms involving e−(
p
Γ− ρ

2 I)t in

Propositions 3 and 4. Accordingly,
p
Γ− ρ

2 I connects the persistence of inflation response to the

shocks’ total effects on the GDP gap. Next, we study the economic interpretation of this matrix.

3.3. Perturbation Around Disconnected Economies

We have shown that
p
Γ encodes all the economic forces that shape the endogenous dynamics

of the log-linearized model, including price and GDP. But what is its economic interpretation?

In principle, we could use the Jordan decomposition of
p
Γ to conduct a spectral analysis, but

this approach does not provide economic intuition. Suppose
p
Γ is diagonalizable so that there

exists a diagonal D = diag(d1, . . . ,dn), and an invertible matrix P such that
p
Γ = PDP−1. Recall

from Proposition 3 that the impulse responses of GDP (gap) and inflation to monetary shocks are

determined by
p
Γ− ρ

2 I = P(D− ρ
2 I)P−1,19 which for instance, would imply that GDP and inflation

responses to a monetary shock are

∂
∂δm

ỹt =β⊺e−(
p
Γ− ρ

2 I)t 1 =
n∑

i=1
wi e−(di− ρ

2 )t , (29)

∂
∂δm

πt =β⊺(
p
Γ− ρ

2
I)e−(

p
Γ− ρ

2 I)t 1 =
n∑

i=1
di wi e−(di− ρ

2 )t , wi ≡β⊺Pei e⊺i P−11 (30)

The problem with this representation is that it is unclear how the structure of the economy is

reflected in the eigenvalues {di } and coefficients {wi }.

The key idea here is to approximate the dynamics of the log-linearized economy with an arbitrary

input-output matrix by perturbing it around “disconnected” economies, whose eigendecomposition

has a clear economic interpretation. We do not use this approximation in the quantitative results

presented in Section 3.4 below but derive it here to provide intuition.

Definition 1. A disconnected economy is characterized by a diagonal input-output matrix.

Figure 1a depicts disconnected economies. These are multi-sector economies with heteroge-

neous price stickiness where sectors only use their own output in roundabout production.

Eigendecomposition of Disconnected Economies. Disconnected economies are useful benchmarks

because for each sector i , the corresponding decay rate in Equation (29), di − ρ
2 , is given by:

di − ρ

2
= ξi ≡

√
θi (ρ+θi )(1−ai i )+ ρ2

4
− ρ

2
> 0 (31)

We interpret ξi ’s as the adjusted frequencies of their corresponding sectors due to the following

properties: (a) Each ξi is independent of frequencies and labor share of other sectors, and depends

19Here D− ρ
2 I = diag(di − ρ

2 ) is a diagonal matrix whose non-zero entries are the eigenvalues of
p
Γ− ρ

2 I. Note that by
Lemma 1, the latter is a positive stable matrix so Re(di − ρ

2 ) > 0 for all i ∈ [n].
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Figure 1: Perturbation around Disconnected Economies

(a) n-Sector Disconnected Economies
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(b) Perturbation towards A = [ai j ]
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Notes: Figure 1a draws the structure of disconnected economies where sectors operate independently but are allowed
to use their own output in roundabout production. Figure 1b shows our parameterized perturbation of an arbitrary
input-output matrix A around its disconnected structure: the perturbation is given by keeping a sector’s own input
shares from their output fixed, and only adding their input from other sectors proportional to an ε> 0.

only on sector i ’s frequency, θi , own input share ai i , and the discount factor ρ. (b) When ai i = 0, ξi

is equal to the frequency of sector i , θi . (c) When ai i > 0, ξi is decreasing in the discount rate ρ as

well as own input share ai i , and increasing in θi .

Recall that since the arrival of price change opportunities in each sector i is a Poisson process,

the expected duration between price changes is the inverse of arrival frequency and is equal to θ−1
i .

Thus, we can also interpret ξ−1
i as the adjusted duration of price change frequency of sector i that

takes the input share of that sector from its output into account.

Moreover, to obtain the eigendecomposition in Equation (29), we observe that the corresponding

weight wi for sector i is the household’s expenditure share for that sector, which yields

∂
∂δm

ỹt =
n∑

i=1
βi e−ξi t , ∂

∂δm
πt =

n∑
i=1

βiξi e−ξi t (32)

Note that these expressions are now interpretable as both di ’s and wi ’s are now explicitly stated

in terms of model parameters; e.g., GDP response is the expenditure-weighted average of expo-

nential functions, each decaying at the rate of the sector’s adjusted frequency. Moreover, note that

integrating the GDP gap response in Equation (32), we obtain:

CIRỹ ,m
∣∣
ε=0 ≡

∫ ∞

0

∂
∂δm

ỹt dt =∑n
i=1

βi
ξi

(33)

Equation (33) connects two separate insights about monetary non-neutrality in one framework.

First, when ai i = 0,∀i ∈ [n] (so that ξi = θi ), it shows that in a pure multisector economy, monetary

non-neutrality is the expenditure weighted average of price spell durations. Since these durations

are convex functions of the frequencies, applying Jensen’s inequality shows that heterogeneity in

frequencies amplifies monetary non-neutrality (Carvalho, 2006, Nakamura and Steinsson, 2010).

Second, when n = 1 but a11 ̸= 0, what determines monetary non-neutrality is no longer the
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duration of price spells but their duration adjusted by the input share of that sector from its total

output. Since a11 > 0, we can see that fixing the frequency, a higher input share from this final

product—i.e. “roundabout” production—amplifies monetary non-neutrality (Basu, 1995). This

is because when firms use the sector’s output as an input for production, the sectoral price of the

good feeds back into firms’ marginal costs. But since the sectoral price is sticky, this feedback affects

the pricing decision of the firms that get the opportunity to change their price: Even when firms

get to reset their price, they now reset it by less than before, taking into account the stickiness of

their marginal costs over time. This dynamic consideration of the price setters also explains the

role of ρ in the adjusted duration. With higher ρ the price-setters are less forward-looking and the

short-term stickiness of the sectoral price has a larger effect on their pricing decision.

Third, in the more general case when n > 1 and ai i ̸= 0, Equation (33) extends these insights and

shows that, even in a disconnected economy, monetary non-neutrality depends on the duration

of price spells adjusted for the input-output structure of an economy. In particular, it delivers the

novel result that even when all sectors have the same frequency, heterogeneity in these adjusted

frequencies amplifies monetary non-neutrality.20 Thus, roundabout production within the sector

increases the effective stickiness of the sectoral price precisely in a manner that is captured by the

adjusted frequency ξi , so much so that a multisector economy with roundabout production in

its sectors is equivalent to a multisector economy with no roundabout production, whose price

adjustment frequencies are equal to the adjusted frequencies ξi ’s.

Eigen-perturbation around Disconnected Economies. Now, consider an arbitrary n-sector econ-

omy with frequency matrixΘ= diag(θ1, . . . ,θn) and input-output matrix A = [ai j ], and define the

corresponding disconnected economy as AD ≡ diag(a11, . . . , ann). Thus, we can write the duration-

adjusted Leontief matrixΓ=Θ(ρI+Θ)(I−A)+ρ2

4 I as the sum of the one in the disconnected economy

ΓD =Θ(ρI+Θ)(I−AD )+ ρ2

4 I and the off-diagonal matrix ΓR :

Γ=ΓD +ΓR , with ΓR ≡Θ(ρI+Θ)(AD −A) (34)

This is a classic exercise in perturbation theory where we replace Γwith Γ(ε) =ΓD +εΓR for some

ε > 0 and express the eigenvalues and eigenvectors as power series in ε (see, e.g., Kato 1995, ch.

2 or Bender and Orszag 1999, p. 350). The economic interpretation is that we move from the

disconnected economy, AD , towards the arbitrary economy, A, in proportion to ε, as shown in

Figure 1b. Notably, ε= 0 corresponds to the disconnected economy and ε= 1 corresponds to the

arbitrary economy A.

Generally, eigenvalues and eigenvectors of Γ(ε) do not need to be differentiable in ε, especially

for non-symmetric matrices as in our case. However, assuming that eigenvalues of ΓD are distinct

20This follows neither from Carvalho (2006) nor Basu (1995). The latter is a one-sector economy and thus has no
predictions for multisector economies, while the former predicts that a multisector economy with the same frequency
across sectors implies the same degree of monetary non-neutrality as a one-sector economy with that frequency.
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(i.e., sectors of the disconnected economy have distinct adjusted frequencies),21 we obtain the

following Lemma that relies on Theorems 1 and 2 in Greenbaum, Li, and Overton (2020).

Lemma 2. Suppose ξi ’s, as defined in Equation (31), are distinct for all i ∈ [n]. Let (di (ε),vi (ε)) be an

eigenvalue/eigenvector pair for the principal square root of the perturbed economy,
p
Γ(ε). Then,

di (ε) = ξi + ρ
2 +O (∥ε∥2) vi (ε) = ei +ε×∑

j ̸=i

[
a j i

1−a j j
× ξ2

j+ρξ j

(ξi+ξ j+ρ)(ξ j−ξi )

]
e j +O (∥ε∥2) (35)

Lemma 2 is useful because it links the mathematical properties of
p
Γ to its economic properties.

It shows that up to first-order in ε, the eigenvalues of
p
Γ are the same as the disconnected economy;

i.e. ∂
∂ε

di (ε)|ε=0 = 0. Importantly, note that in theory, this perturbation does not have to be accurate

for ε= 1. But as we plot in Figure F.1 in the Appendix, it is a remarkably accurate approximation for

the eigenvalues of the measured
p
Γ for the U.S. economy.

3.3.1. Aggregate and Sectoral Effects of Monetary Shocks. We now discuss analytically how

monetary shocks propagate in our approximate economy. We first present the results for sectoral

inflation and then aggregate these responses to obtain the effects on CPI inflation and GDP.

Proposition 5 (Sectoral Inflation Responses). Suppose ξi ’s are distinct. The impulse response of

inflation in sector i ∈ [n] to a monetary shock is:

∂
∂δm

πi ,t = ξi e−ξi t

︸ ︷︷ ︸
disconnected baseline

+ε×ξi ×
∑
j ̸=i

ai j

1−ai i
× ξi +ρ
ξi +ξ j +ρ

× ξ j e−ξ j t −ξi e−ξi t

ξi −ξ j︸ ︷︷ ︸
first order effect of the network

+O (∥ε∥2) (36)

Equation (36) shows that introducing production linkages creates spillover effects on the infla-

tion of sector i through all of its suppliers, captured by the term labeled the “first order effect of

the network.” It is straightforward to verify that these first-order effects are negative initially but

turn positive after some t . Intuitively, since i ’s suppliers have sticky prices, increasing production

linkages (higher ε) leads to an initial dampening of the inflation response in sector i to a monetary

shock. However, since money is neutral in the long run, this dampened response has to be com-

pensated for in terms of inflation in the long run, which implies that inflation in sector i is more

persistent with higher ε. The following corollary shows how these sectoral effects translate into the

response of aggregate inflation to monetary shocks.

Proposition 6 (Impact and Asymptotic Inflation Response). Input-output linkages dampen CPI

inflation response to a monetary shock on impact

∂
∂ε

[ ∂
∂δm

π0]
∣∣
ε=0︸ ︷︷ ︸

∂impact response/∂ε

=−
n∑

i=1
βiξi

∑
j ̸=i

ai j

1−ai i
× ξi +ρ
ξi +ξ j +ρ

< 0 (37)

21This is a fairly weak assumption because ξi ’s are almost surely distinct if the distributions ofΘ and A in the data
are drawn from distributions with densities with respect to the Lebesgue measure. In other words, the event that two
sectors have the same adjusted frequencies in the data has zero probability.
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but amplify its persistence; letting ι≡ argmini {ξi } denote the sector with the lowest adjusted frequency,

we have:

∂
∂ε [ ∂

∂δm
πt |t→∞]

∣∣
ε=0︸ ︷︷ ︸

∂asymptotic response/∂ε

∼ ∑
j ̸=ι

(
β jξ j

a j ι(ξ j +ρ)

1−a j j
+βιξι

aι j (ξι+ρ)

1−aιι

) ξιe−ξιt

(ξ j −ξι)(ξι+ξ j +ρ)
> 0 (38)

Finally, we show in the next proposition that this increase in the persistence of inflationary

responses due to input-output linkages corresponds to an increase in monetary non-neutrality.

Proposition 7 (Monetary Non-Neutrality). Input-output linkages amplify monetary non-neutrality

measured by the CIR of GDP to a monetary shock.

CIRỹ ,δm =
n∑

i=1
βiξ

−1
i︸ ︷︷ ︸

direct effect
of sector i

+ε
n∑

i=1

1︷︸︸︷
ξ−1

i ×
n∑

j ̸=i

2︷︸︸︷
a j i ×

3︷ ︸︸ ︷
β j

1−a j j
×

4︷ ︸︸ ︷
ξ j +ρ

ξi +ξ j +ρ︸ ︷︷ ︸
first-order indirect effect of

sector i through network ≥0

+ O (∥ε∥2)︸ ︷︷ ︸
higher-order

effects

(39)

Equation (39) shows how monetary non-neutrality varies with ε around the disconnected

economy. First, the term labeled the “direct effect of sector i ” corresponds to the expression in

Equation (33) and its ensuing discussion, where the contribution of each sector to monetary non-

neutrality is its expenditure weighted adjusted duration. Beyond this direct effect, each sector i also

contributes to monetary non-neutrality through all of its downstream firms, the first-order terms of

which are labeled 1 − 4 .

For economic interpretation of these terms, note that, intuitively, input-output linkages amplify

monetary non-neutrality through a sector i by propagating its price stickiness to its downstream

firms. Thus, the first important factor on how much monetary non-neutrality will increase through

i (indirectly) should depend on the adjusted duration of sector i ’s own price spells, which is what 1

captures. Given this adjusted duration, to capture the total first-order indirect effects of a sector i

on monetary non-neutrality, we then need to sum over its immediate downstream sectors, captured

by
∑

j ̸=i in Equation (39). For each downstream sector j , then we need to take into account the

exposure of that sector to sector i , captured by its expenditure share a j i in 2 . Moreover, we need to

take into account sector j ’s own centrality in affecting GDP, which is captured by its Domar weight

in the disconnected economy, which we have labeled 3 .22

Finally, the term under 4 captures the dynamic adjustment based on the relative adjusted

duration of the upstream sector i to downstream sector j . When the adjusted duration of price

spells in the upstream sector i is relatively small compared to that of the downstream sector j , then

firms in j are not very responsive to the price changes of supplier i , so the indirect effect of sector i

through sector j is muted. Alternatively, when sector j is more flexible relative to its supplier i , then

22The Domar weight of any sector j in the disconnected economy is its expenditure share divided by 1−a j j .
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i ’s indirect effect through j is amplified because prices in j would have been more responsive to

monetary shocks were it not for the stickiness in their marginal costs through i . Moreover, to see

why ρ appears in this term, note that these effects are anticipatory in the sense that firms adjust

the size of their response by taking into account the duration of their own price spell relative to

their upstream sector. Thus, the more myopic the firms are (ρ ↑), the less we expect 4 to affect the

pass-through. Indeed, we observe that 4 goes to unity as ρ→∞.

Thus, with more input-output linkages, monetary non-neutrality becomes larger through the in-

teraction of these four forces. We use these findings in our quantitative analysis below in identifying

sectors that have disproportionate effects in the propagation of monetary shocks.

3.3.2. Aggregate Effects of Sectoral Shocks. We now characterize the pass-through of sectoral

inflation to aggregate CPI inflation. The experiment is to consider a negative sectoral TFP shock to

sector i that raises the inflation rate in that sector by 1 percent on impact. Our goal is to characterize

how much aggregate CPI inflation rises in response to this sectoral shock, and how this pass-through

is affected by the network. The following proposition presents this pass-through for the impact

response of inflation. The full expression for the dynamic response of inflation is available, but

more complicated and is only included in the proof of the proposition.

Proposition 8 (Pass-through of Sectoral to Aggregate Inflation). Input-output linkages amplify the

pass-through of sectoral inflation rates to aggregate CPI inflation.

∂π0

∂πi ,0

∣∣
δi

z
= βi︸︷︷︸

direct pass-through

+ε∑
j ̸=i

1︷︸︸︷
a j i ×

2︷ ︸︸ ︷
β j

1−a j j
×

3︷ ︸︸ ︷
ξ j

φi +ξ j +ρ
×

4︷ ︸︸ ︷
ξ j +ρ

ξi +ξ j +ρ︸ ︷︷ ︸
first-order indirect pass-through via network

+ O (∥ε∥2)︸ ︷︷ ︸
higher-order

effects

(40)

Equation (40) relates the pass-through of sectoral inflation rate in sector i to aggregate inflation

conditional on a negative TFP shock to sector i . The first term on the right-hand side is the direct

pass-through of sectoral inflation to aggregate inflation: a one percent inflation in sector i directly

feeds to inflation proportional to the expenditure share of the sector, denoted by βi . The second

term, which itself consists of four components, labeled by 1 − 4 , captures the first-order indirect

pass-through of sectoral inflation to aggregate inflation through the network.

The indirect effect can be understood as follows: an inflationary shock in sector i , up to first-

order, propagates through its buyers. Thus, we need to sum over all the other sectors that purchase

from i . When considering a buyer j ̸= i , the impact of i ’s inflationary shock on the economy

through j is proportional to j ’s expenditure share on i , 1 , and j ’s own Domar weight in the

baseline economy, 2 . These two components jointly determine the potency of i ’s shock on j and

resemble what is known from static models.

The next two terms, however, capture dynamic considerations. The term labeled 3 accounts
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for the fact that if the duration of the shock to i , φ−1
i , is small compared to the adjusted duration

of price spells in the downstream sector j , ξ−1
j , then the shock’s pass-through via j is weakened.

This occurs because stickier downstream sectors, measured by their adjusted duration ξ−1
j , are less

responsive to a transient shock because they anticipate it will dissipate relatively faster than prices

in their sector will adjust. The term under 4 captures a similar effect, but relative to the adjusted

duration of price spells in the upstream sector i itself. When the adjusted duration of price spells in

the upstream sector i is relatively small compared to that of the downstream sector j , then firms in

j are not very responsive to the price changes of supplier i since they anticipate those prices will

readjust faster than their own prices. Finally, note that since 3 and 4 are both anticipatory effects,

their strength should depend on the discount rate ρ, similar to the discussion below Proposition 7.

3.4. Measurement and Quantitative Implications

In this section, we measure the sufficient statistics implied by the model for the U.S. and study the

dynamic responses of inflation and GDP using the statistics.

3.4.1. Sufficient Statistics Construction From Data. Propositions 2 to 4 show that the sufficient

statistics for inflation and GDP dynamics are the PRDL matrix,
p
Γ, and the expenditure shares

vector, β. We use the make and use input-output (IO) tables from 2012, made available by the

BEA, to construct the input-output matrix A; the consumption expenditure share vector β; and

the sectoral labor shares vectorα. We construct them at the detailed disaggregation level, which,

excluding the government sectors, leads to 393 sectors. Figure F.2 shows the heatmap of the matrix

A that we construct from the data. Moreover, we construct the diagonal matrixΘ2, whose diagonal

elements are the squared frequency of price adjustments in these sectors, using data on 341 sectors

from Pasten, Schoenle, and Weber (2020). A detailed description is provided in Appendix E.

3.4.2. Dynamic Aggregate Responses to a Monetary Policy Shock. Panel A of Figure 2 shows

impulse responses of aggregate inflation and GDP to an expansionary monetary policy shock in our

calibrated economy. The size of this shock is normalized so that inflation responds by 1 percent

on impact, after which it slowly goes back to its steady state level at zero. The persistence of this

convergence is governed by our measured
p
Γ, with a half-life of around 6 months. Moreover, the

shock has substantial real effects. GDP rises by around 10 percent on impact and decays slowly

back to zero. The cumulative response of GDP is about 132 percent.

To illustrate the roles of various model ingredients that lead to such substantial real effects, we

consider the following counterfactual experiments. In these counterfactuals, the initial impact on

inflation is always at 1 percent.23 In Panel B of Figure 2, we compare our calibrated economy to a

horizontal economy, where we set A = 0 while keepingΘ the same as before. Thus, this economy

23The monetary policy shock size is therefore different across the baseline and the counterfactual cases. Recall that
the cumulated impulse response of aggregate inflation corresponds to the monetary policy shock size in our model.
Keeping the initial impact on aggregate inflation the same across various model specifications brings out the crucial
role played by the persistence of inflation.
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features no input-output linkages but has the same price change frequencies. The cumulative

impulse response of GDP is 4.1 times larger in our baseline economy. Strategic complementarity in

price setting that arises through input-output linkages, as we pointed out in the discussion below

Equation (16), is the driving force for this result. This in turn leads to a more persistent inflation

response, which amplifies GDP response both on impact and over time. These results quantify our

analytical results for inflation persistence and monetary non-neutrality in Propositions 6 and 7.

In addition to input-output linkages, another source that amplifies the real effects of monetary

policy is heterogenous price stickiness across sectors, as discussed below Equation (33) and Propo-

sition 7. To investigate the role of this channel, in Panel C of Figure 2, we compare our calibrated

baseline economy to an economy with homogeneous frequencies, which keeps A the same as before

but sets Θ = θ̄I. We calibrate the frequency of price changes in this economy to be the same as

the expenditure-weighted average of the frequency of price changes across sectors in our baseline

economy—i.e., θ̄ ≡ βiθi . Note that this economy still features the same input-output linkages,

and through that, strategic complementarities in price setting. The cumulative impulse of GDP

is 2.4 times larger in our baseline economy, which shows that heterogeneity in price stickiness

across sectors does play a quantitatively important role in magnifying monetary non-neutrality. The

quantitative importance of this channel, however, is not as high as that of input-output linkages.

Finally, shutting down both channels, in Panel D of Figure 2, we compare our calibrated baseline

economy to a horizontal economy with homogeneous price stickiness across sectors (A = 0,Θ= θ̄I).

The cumulative impulse response of GDP is 6.9 times larger in our baseline economy.24 This total

effect is approximately equal to the sum of the two separate counterfactual effects shown above.25

3.4.3. Heterogeneous Sectoral Inflation Responses to a Monetary Policy Shock. Underlying the

aggregate inflation response to the monetary shock discussed above is a distribution of sectoral

inflation responses. In Figure 3, we show impulse responses of some selected sectors’ inflation to

an expansionary monetary policy shock. Sectoral inflation responses differ significantly both in

terms of the impact response and the persistence. Moreover, since relative prices need to go back

to the same steady state, nominal prices all rise by the same amount in the long run; therefore,

sectors where inflation responds by a larger amount initially have more short-lived responses. In

particular, Figure 3 shows that sectoral inflation in the Oil and Gas Extraction industry is high in

the initial periods but dissipates fast, while sectoral inflation in the Semiconductor Manufacturing

Machinery industry responds by a small amount initially but is persistently positive over time. For

24Note that even in this textbook type multisector New Keynesian model, inflation effects are persistent because our
modeling of monetary policy preserves an endogenous state variable. This is a standard approach in the literature on
sufficient statistics of monetary policy shocks, but is a different approach than assuming a Taylor rule where the interest
rate feedback coefficient is on inflation. We show results from this case later.

25These counterfactual experiments are related to, but different from, the ones in Pasten, Schoenle, and Weber (2020)
as we compare the production network economy with a horizontal economy and in all our experiments, recalibrate the
shock size to lead to a 1 percent impact effect on aggregate inflation.
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completeness, Table F.1 provides a ranking of the top twenty sectors by their initial sectoral inflation

response while Table F.2 provides a ranking of the top twenty sectors by the half-life of their sectoral

inflation response.

For interpretation, we turn to Proposition 5 and its discussion, where we showed that inflation

in sectors with more flexible prices and less input-output linkages respond more strongly initially.

Specifically, Equation (36) showed that the relevant statistic for impact sectoral inflation response

(evaluated at t = 0) is ξi −ε∑
j ̸=i

ξi ai j

1−ai i

ξi+ρ
ξi+ξ j+ρ . Panel A of Figure 4a shows the correlation between

the actual ranks of sectors and the ranks predicted from this statistic. The approximated statistic

accounts extremely well for the exact numerical results. Moreover, as mentioned above, sectors

where inflation responds more initially tend to have short-lived responses. Panel B of Figure 4a

shows the correlation between actual ranks of sectors given by half-life of sectoral inflation response

and the ranks predicted from this statistic for impact response. The correlation is strongly negative.

3.4.4. Sectoral Origins of Aggregate Inflation and GDP Dynamics. Motivated by supply chain

issues, commodity price increases, and persistent aggregate inflation in the U.S. recently, we now

study aggregate implications of sectoral shocks. Specifically, we compute sectoral shocks that

lead to a 1 percent increase in sectoral inflation and then study the pass-through of such sectoral

inflation increases on aggregate inflation. The average duration of the sectoral shocks is 6 months.26

We start by identifying sectors that lead to a high on-impact response of aggregate inflation

in Table 1. We provide a ranking of the top twenty sectors by their initial effect on aggregate

inflation, where we remove the effect coming from the size of the sector. This metric, therefore,

provides an evaluation of the spillover of sectoral inflation to aggregate inflation due to input-

output linkages for in the absence of such linkages, this pass-through metric would be zero for all

sectors.27 As one example, the Oil and Gas Extraction industry ranks very high in Table 1. As we

showed analytically in Proposition 8, sectors that serve as input to other sectors and have more

input-output adjusted sticky prices cause greater spillover to aggregate inflation. Specifically, in

Equation (40) we showed that the relevant statistic for this impact pass-through on aggregate

inflation is
∑

j ̸=i a j i
β j

1−a j j

ξ j

φi+ξ j+ρ
ξ j+ρ

ξi+ξ j+ρ . Panel A of Figure 4b shows the correlation between the

actual ranks of sectors and the ranks predicted from this statistic. The approximated statistic

accounts well for the exact numerical results, thereby providing an economic interpretation to the

rankings.

We next identify sectors that lead to persistent aggregate inflation dynamics when sectoral

inflation increases by 1 percent. Table 2 provides a ranking of the top twenty sectors by the half-life

of the aggregate inflation response. One clear pattern emerges: Sectors with more sticky prices lead

26We interpret these sectoral shocks as negative supply shocks. Note that while the average duration of the sectoral
shock is the same across all sectors, the size of the sectoral shock is different in this exercise as we calibrate the size
such that sectoral inflation increases by 1 percent across all sectors.

27We are thus capturing what are sometimes called second-round effects of sectoral inflation increases.
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to persistent aggregate inflation dynamics when sectoral shocks cause a rise in sectoral inflation.

Semiconductor Manufacturing Machinery industry is one sector that ranks high in Table 2. These

results highlight that identifying which sectors are the main sources of persistent aggregate inflation

dynamics is critical because those persistent effects translate to larger aggregate GDP gap effects.

We discussed this link and the theoretical reasons behind it in the discussion below Equation (28).

To make this clear quantitatively, in Panel B of Figure 4b, we show that the cumulative impulse

response of aggregate GDP gap is very tightly correlated with the half-life of aggregate inflation.

Here, we compute the ratio of the cumulative impulse response of GDP to the cumulative impulse

response of GDP under flexible prices for a unit sectoral shock. The size of the sectoral shocks are

thus the same in this experiment. This implies that it is precisely the shocks to sectors that are

the sources of persistent aggregate inflation dynamics that will have a bigger impact on the real

macroeconomy.

3.4.5. A Spectral Analysis of Aggregate Inflation Persistence. So far, we have highlighted the

critical role played by the persistence of aggregate inflation in driving macroeconomic dynamics.

In particular, for monetary shocks, we showed in Section 3.4.2 that model features which increase

the persistence of aggregate inflation lead to higher monetary non-neutrality. We now investigate

further the origins of aggregate inflation persistence by identifying which sectors play a key role

in propagating monetary policy shocks in the longer run. In terms of long-run dynamics, given

our analytical solution, the smallest eigenvalues of
p
Γ≡

√
Θ(ρI+Θ)(I−A)+ ρ2

4 I play the dominant

role.

Theoretically, eigenvalues as such depend on the whole network and might not be intimately

connected to any particular sector. To make such a connection, we turn to Lemma 2, which showed

that these eigenvalues are given by di =
√
θi (ρ+θi )(1−ai i )+ ρ2

4 +O (∥ε∥2). To measure the accuracy

of this approximation, in Table 3, we sort the eigenvalues of
p
Γ− ρ

2 I ≡
√
Θ(ρI+Θ)(I−A)+ ρ2

4 I− ρ
2 I

together with
√
θi (ρ+θi )(1−ai i )+ ρ2

4 − ρ
2 for several industries. The eigenvalues are extremely

close across these two cases, thus helping us identify sectors that are associated with the smallest

eigenvalues. Figure F.1 shows that this extremely close association holds across the full range of

eigenvalues. This remarkable accuracy stems from the feature that the diagonal entries of the input-

output matrix are large relative to its off-diagonal entries. Accordingly, an application of Gershgorin

circle theorem delivers a visual and complementary interpretation of why this approximation is so

accurate.

To show the aggregate implications of shocks to these sectors with the lowest eigenvalues,

we do a counterfactual exercise by dropping the three sectors with the smallest eigenvalues and

recomputing the impulse responses of inflation and GDP.28 Just dropping these three sectors leads

28In this exercise, we recompute the counterfactual input-output matrix by moving the share of these dropped sectors
(as inputs) to the labor share. Moreover, these sectors correspond closely to sectors that have the highest half-life of
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to a noticeable change in dynamics, with the cumulative IRF of real GDP in the calibrated economy

higher by around 16 percent.29 These results show that a few sectors play a very influential role in

driving monetary non-neutrality in the economy as they determine the persistence of aggregate

inflation. To show this clearly, in Figure F.3 we plot the impulse responses of inflation and GDP to

a monetary shock for both our calibrated and counterfactual economies. They depict that over

the longer horizon, inflation response is lower in the counterfactual economy and this difference

in dynamics gets reflected in a lower response of real GDP throughout. We had highlighted this

critical role of sectors with low ξi =
√
θi (ρ+θi )(1−ai i )+ ρ2

4 − ρ
2 in driving monetary non-neutrality

analytically in Proposition 7 and results here are the quantitative counterpart to those insights.

4 Propagation with Endogenous Monetary Policy Responses

So far, we have examined the economy’s responses to monetary policy and sectoral TFP or wedge

shocks separately; i.e., we have used a framework where monetary policy did not respond to

the impact of TFP or wedge shocks on sectoral prices. In this section, we extend our analysis to

study policies where monetary policy endogenously responds to sectoral shocks (e.g., it stabilizes

aggregate GDP gap or aggregate inflation). We show that all these changes can be captured by

appropriately adjusting the duration-adjusted Leontief matrix,Γ. Thus, the mechanisms highlighted

in the previous section remain the main drivers of the dynamics of the model variables, but with

the use of the newly adjusted PRDL matrix.

To illustrate this point most clearly, in Section 4.1, we first consider the specific case of aggregate

GDP gap targeting and discuss how such a policy alters the propagation of shocks through an

adjustment of the matrix Γ. This case is of particular interest for three reasons: First, it connects

naturally with the usual representation of Phillips curves in New Keynesian models that involve

GDP gaps. Second, it has the feature that it naturally puts more weight on sectors with stickier

prices and thus, as shown by previous research, it approximates optimal policy pretty closely.30

Third, as we show below, it is equivalent to an alternative economy with a different production

network where the monetary policy does not respond to shocks endogenously, which allows us to

characterize rigorously the proper adjustment of the Γmatrix.

Section 4.2 then considers the general case of stabilization policies that target a weighted average

of sectoral inflation rates and derives the appropriate adjustment of the matrix Γwhen monetary

policy stabilizes such an arbitrary price index. In particular, CPI inflation targeting is a specific case

sectoral inflation to a monetary shock.
29Two of these sectors have a zero sectoral share in aggregate GDP while the third one has an extremely small sectoral

share of 0.0015 percent. As such, in a disconnected economy, dropping them would not have affected the response of
aggregate GDP. That is, the “direct effect of sector i ” term in Equation (39) would be zero for these sectors.

30La’O and Tahbaz-Salehi (2022), Rubbo (2023) make this case for production network economies with sticky prices.
See also Woodford (2003) and Gali (2008) for similar results in models without production networks. In particular,
(Woodford, 2003, page 442) and its ensuing discussion provides clear intuition for why such policies are nearly optimal
as they naturally put more weight on more sticky price sectors (see, also, Aoki, 2001).
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of such policies, where these weights correspond to the household expenditure shares.

4.1. Phillips Curve with GDP Gap Representation and GDP Gap Stabilization Policy

In Proposition 1, we derived sectoral Phillips curves in terms of inflation and nominal price gaps

and discussed how this representation delivers analytical results for general paths of money supply

and sectoral shocks. To study endogenous monetary policy responses, however, it is useful to relate

our results to conventional representations of Phillips curves which involve GDP gaps, and which

are combined with real wage gaps in sticky-price and sticky-wage models (e.g., Woodford, 2003,

Gali, 2008) and with relative price gaps in multi-sector models (e.g., Aoki, 2001, Benigno, 2004).

To this end, consider the sectoral Phillips curves in Proposition 1 and recall from its proof that

Equation (19) is always a necessary condition for the equilibrium. However, as we show below,

this equation is no longer a sufficient condition for the equilibrium path of sectoral prices when

monetary policy endogenously responds to sectoral shocks. This is intuitive in the presence of

endogenous monetary policy because the path of sectoral prices should, and will, also depend on

the stance of monetary policy when it is endogenous.

Since our focus here is on a monetary policy which stabilizes the GDP gap of this economy, we

re-write Equation (19) in terms of the GDP gap. Define the relative sectoral prices, qt ≡ pt −pt 1, as

the vector of sectoral prices relative to the CPI price index in log form. Then, let q f
t ≡ p f

t −p f
t 1 =

(Ψ−1λ⊺)(ωt−zt ) (as implied by Equation (14)) denote the same object in the flexible price economy,

and let ỹt ≡ yt − y f
t denote the GDP gap. We then observe that,

Lemma 3. The sectoral Phillips curves in Equation (19) can be re-written as:

π̇t = ρπt +Θ(ρI+Θ)(I−A)(qt −q f
t )−Θ(ρI+Θ)αỹt (41)

Equation (41) shows that the nominal price gaps can be decomposed into relative price gaps

and a term that involves the aggregate GDP gap. We can also now derive the usual representation of

the aggregate Phillips curve in terms of the GDP gap as follows :

π̇t = ρπt +β⊺Θ(ρI+Θ)(I−A)(qt −q f
t )−β⊺Θ(ρI+Θ)αỹt (42)

after we multiply Equation (41) by the expenditure shares of households from different sectors. Thus,

we see that in a network economy, relative price distortions affect inflation dynamics independently

of the GDP gap. This is in contrast to standard one-sector economies in which the output gap

summarizes the deviation of the allocations in the sticky economy from the one in the flexible

economy. A multi-sector economy with n sectors has instead n gaps. GDP gap is one of those

and the other n − 1 are represented by the deviation of relative prices from their flexible price

counterparts in Equation (41).31

31The same point holds for the slope of the Phillips curve as well. In one-sector economies, the slope of the Phillips
curve is a sufficient statistic for the impact of demand-driven shocks on aggregate inflation. However, in a multi-
sector economy, multiple gaps affect the economy simultaneously and the impact of shocks depend on the bilateral
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For a given path of sectoral shocks and initial level of prices, now suppose that monetary policy

does all it takes to stabilize the GDP gap, such that ỹt = 0 for all t .32 Then, Equation (41) implies

that the dynamics of sectoral prices is governed by the following system of differential equations:

π̇t = ρπt +Θ(ρI+Θ)(I−A)(qt −q f
t ) where qt = (I−1β⊺)pt (43)

Notice that since we have now incorporated the stance of monetary police into Equation (43),

along with the boundary conditions p0 = p0− , it is a system of differential equations where the only

endogenous variables are the sectoral prices, and relative price gaps in the flexible economy (q f
t )t≥0

is an exogenous forcing term to the system that is fully determined by the path of sectoral shocks.

Thus, Equation (43) is now also sufficient for characterizing the equilibrium path of sectoral prices,

as formally shown by the following corollary.

Corollary 1. Given initial prices p0 = p0− , Equation (43) is necessary and sufficient for the path of

non-explosive sectoral prices under a monetary policy that fully stabilizes the GDP gap.

While Corollary 1 confirms the sufficiency of Equation (43) for the equilibrium path of sectoral

prices, it is not immediately clear how to solve this system of differential equations. To this end,

we derive an equivalence result between this economy with the endogenous monetary policy that

stabilizes the GDP gap and an alternative economy that satisfies the assumptions of the previous

section, where monetary policy was exogenous.

Proposition 9. For a given p0 = p0− and path of sectoral shocks (ωt , zt )t≥0, the dynamics of sectoral

prices under a monetary policy that fully stabilizes the GDP gap is identical to the dynamics of sectoral

prices in a counterfactual economy where monetary policy is exogenously fixed at mt = 0,∀t ≥ 0, but

where the input-output matrix is Aβ ≡ A+αβ⊺.

Proposition 9 is critical because it allows us to apply Propositions 3 and 4—which were derived

for exogenous monetary policies—to study the dynamics of sectoral prices under an endogenous

monetary policy that stabilizes the GDP gap; it shows that to do so, we only need to modify the Γ

matrix as if the production network was Aβ = A+αβ⊺. Thus, let us define this adjusted matrix as:

Γ̄β ≡Θ(ρI+Θ)(I−Aβ)+ ρ2

4
I (44)

We can then simply apply Propositions 3 and 4 to obtain the implied IRFs of the model variables

under a monetary policy that stabilizes the GDP gap given this adjusted Γ̄β matrix.

The ensuing question then is how propagation of sectoral shocks under Γ̄β differs from prop-

agation under Γ. We will provide numerical results for the calibrated economy below for this

comparison, but to build intuition on how this policy affects propagation, consider the case of

disconnected economies and note that a disconnected economy is no longer characterized by a

interactions of all these gaps, which is why the sufficient statistic in our setting is the n ×n adjusted Leontief matrix.
32We wait until the next subsection to show the feasibility of such a policy and for now take feasibility as given.
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diagonal network. Instead, Ā = AD +αβ⊺, where AD is the diagonal input-output matrix of the

disconnected economy as in the previous section. Note that even though there are no true input-

output linkages in a disconnected economy across sectors, the GDP gap stabilization policy induces

a de facto input-output structure, where it is as if sector i ’s input share of sector j ̸= i ’s output is

αiβ j . The intuition is that monetary policy that stabilizes the GDP gap in response to a specific

sector’s shock also affects the marginal costs of all other sectors, thereby creating a pass-through of

one sector’s shocks to other sectors.33 However, this is not the only effect: By increasing the “as if”

input-output linkages, GDP gap stabilization also increases the degree of strategic complementari-

ties in price setting. Thus, it also leads to higher price stickiness.34 More precisely, by relying on

this equivalence result, we can conclude from Propositions 5, 6 and 8 that the more input-output

linkages induced by this policy amplify price stickiness and inflation pass-through across sectors.

Building on these insights, we next consider the more general case of stabilization policies that

target an arbitrary weighted average of sectoral inflation rates.

4.2. Theoretical Results for Generalized Stabilization Policies

Consider a general environment where the central bank is concerned with the stabilization of a

particular price index, pη,t ≡η⊺pt , where η is an arbitrary vector of weights. For instance, this could

be the CPI index (η=β), or as we will derive later, some other price index whose stabilization will

result in stabilization of the GDP gap. Since we are not restricting ourselves in this section to a

specific η, we refer to such a policy as a generalized stabilization policy associated with η.

Monetary Rules for Stabilization Policies. To characterize the dynamics of the model variables

under such a policy, we start with our result in Proposition 1. Reviewing the proof of that result,

we see that its validity does not rely on the monetary instrument, mt , being exogenous and the

dynamics of sectoral prices still satisfy

π̇t = ρπt +Θ(ρI+Θ)(I−A)(pt −mt 1−Ψ(ωt − zt )), with p0 = p0− given. (45)

where now we have substituted p f
t = mt 1+Ψ(ωt −zt ) directly in the sectoral Phillips curves because

p f
t is now a nominal quantity that depends on the monetary policy in the sticky price economy

and no longer has the interpretation of the flexible price level. Moreover, we can then multiply

Equation (45) with η⊺ from the left to obtain the Phillips curve for the price index pη,t as:

π̇η,t = ρπη,t +η⊺Θ(ρI+Θ)(I−A)(pt −mt 1−Ψ(ωt − zt )) (46)

We want to characterize a monetary rule for mt that stabilizes pη,t . But note that if pη,t is indeed

stabilized, it has to be that πη,t = π̇η,t = 0 for all t . Plugging these into Equation (46) we obtain that

33This is a general feature of stabilization policies that target a weighted average of sectoral inflation rates, as we will
show in Section 4.2.

34In fact, one can think of any stabilization policy as one that makes a certain price index perfectly sticky, so that it
does not respond to any shocks.
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a necessary condition for stabilization of πη,t is that:

mt = η̃⊺(pt − p̃ f
t ), η̃≡ (I−A⊺)(ρI+Θ)Θη

η⊺Θ(ρI+Θ)(I−A)1
, p̃ f

t ≡Ψ(ωt − zt ) (47)

Equation (47) is a price targeting rule that sets the monetary instrument, mt , equal to a particular

weighted average—according to η̃—of sectoral prices, pt , relative to their counterparts in the flexible

economy, where p̃ f
t is now defined as the vector of sectoral prices in the flexible economy relative

to nominal demand. It is important to observe that since p̃ f
t is now a real object and as classical

dichotomy holds in the flexible economy, it is independent of monetary policy.

Moreover, Equation (47) is a necessary condition in the sense that if the price index pη,t is

stabilized then mt should satisfy this rule. The following lemma shows that this rule is also sufficient

for the stabilization of pη,t , under the boundary conditions specified in the previous section.

Proposition 10. Under boundary conditions p0 = p0− and non-explosive prices, the monetary rule

specified in Equation (47) is necessary and sufficient for the stabilization of the price index pη,t .

Proposition 10 thus shows that the monetary rule in Equation (47) is both necessary and

sufficient for the stabilization of pη,t . We next show that these rules lead to a particular adjustment

of the Γmatrix as we saw for the case of GDP gap stabilization.

Adjustment of PRDL Matrices under Stabilization Policies. Having established that Equation (47)

is both necessary and sufficient for the stabilization of the target price index pη,t , we now turn to

characterize the evolution of sectoral prices and GDP (gap) under such a policy. To do so, we simply

need to substitute the monetary rule in Equation (47) into Equation (45), which yields the following

dynamics for sectoral prices:

π̇t = ρπt +Θ(ρI+Θ)(I−Aη̃)(pt − p̃ f
t ), Aη̃ ≡ A+αη̃⊺ (48)

Notice how this equation now resembles Equation (19), but with an adjusted matrix that incorpo-

rates I−1η̃⊺, and satisfies the property that p̃ f
t is an exogenous forcing term that only depends on the

path of shocks. Thus, Equation (48) satisfies all ensuing remarks of Proposition 1 in Remarks 1 to 4

but with the adjusted matrix Aη̃ instead of the input-output matrix A. Because this equation is now

necessary and sufficient for the dynamics of sectoral prices (given proper boundary conditions), we

can see that these dynamics are fully governed by the adjusted matrix Γ̄η̃:

Γ̄η̃ ≡Θ(ρI+Θ)(I−Aη̃)+ ρ2

4
I (49)

In fact, Proposition 9 is just a special case of this result, where η̃=β, with the only difference

being that in the general case where η can be any vector of weights, the adjusted matrix Aη̃ is

no longer necessarily equivalent to another input-output matrix under our original assumptions.

The reason is that the vector η̃ can have negative entries depending on the weights in the original

η, which can lead to negative entries in Aη̃. Therefore, the more general case of arbitrary η can
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resemble an equivalence relation similar to Proposition 9 as long as Aη̃ has positive entries, which

will guarantee that it is the input-output network of some economy.35

However, note that such an equivalence is not necessary for characterizing the solution of the

system above, and as long as Γ̄η̃ has a principal square root; i.e., a positive stable matrix
√
Γ̄η̃ exists

such that (
√
Γ̄η̃)2 = Γ̄η̃, then the proof of Proposition 2 goes through, and Propositions 3 and 4 hold.

In particular, to connect this to our example of GDP gap stabilization, note that if η=Θ−1(ρI+
Θ)−1Ψ⊺β then η̃=β and Equation (48) becomes identical to Equation (43). Thus, the monetary

rule in Equation (47) with η=Θ−1(ρI+Θ)−1λ (whereλ≡Ψ⊺β is the steady state vector of Domar

weights) stabilizes the GDP gap. Thus, stabilizing this special price index is equivalent to GDP gap

stabilization, as pointed out by Rubbo (2023); who shows that while the aggregate Phillips curve in

multi-sector economies with production networks involves terms other than the GDP gap, there

always exists a composite price index whose corresponding Phillips curve only includes inflation in

that price index and the GDP gap, and thus refers to this price as the “divine coincidence index.”36

Another special case that is of interest is when monetary policy stabilizes the CPI index, where

η = β; i.e., when monetary policy weighs sectors by their household expenditure share. This is

in contrast to GDP gap stabilization, where η =Θ−1(ρI+Θ)−1λ; and we see that GDP gap stabi-

lization policy puts more relative weight on sectors with higher price stickiness and higher Domar

weights. This explains why GDP gap stabilization closely approximates the optimal price index, as

characterized by La’O and Tahbaz-Salehi (2022) and Rubbo (2023) (but does not coincide with it).

4.3. Quantitative Results with Endogenous Monetary Policy Responses

We now present quantitative results that are counterparts to our theoretical discussions above by

showing how different monetary policy responses can alter the transmission of sectoral shocks. For

this exercise, we choose the Oil and Gas Extraction and Semiconductor Manufacturing Machinery

industries as representatives of upstream industries with high and low adjusted price change

frequencies, respectively, and use sectoral shocks to them as our numerical examples.

We start by examining CPI inflation stabilization policies in response to sectoral shocks. In

Figure 5a, we plot impulse responses for the two sectoral shocks under (a) our baseline monetary

policy, which stabilizes nominal rates,37 and (b) under a policy that fully stabilizes aggregate

35Note that this also requires the row sums of Aη̃ to be less than one so that the production function can be constant
returns to scale. This is, however, always satisfied, as we can confirm that the row sums are always equal to 1 for any η.

36Special cases of this result in two sector economies with heterogeneous price stickiness as well as models with
sticky prices and sticky wages are derived previously in (Woodford, 2003, page 442) and (Gali, 2008, Equation (33) and
the discussion on page 137), respectively. To see Rubbo (2023)’s point in our framework, define the divine coincidence
price index as pDC

t ≡β⊺ΨΘ−1(ρI+Θ)−1pt /(β⊺ΨΘ−1(ρI+Θ)−11). Using Equation (41), inflation in this price index is

π̇DC
t = ρπDC

t − 1
β⊺ΨΘ−1(ρI+Θ)−11

ỹt , β⊺ΨΘ−1(ρI+Θ)−11 =∑
i∈[n]

λi
θi (ρ+θi ) (50)

37Note that with Golosov and Lucas (2007) preferences, as our baseline monetary policy fixes nominal GDP at some
m, it also fixes nominal interest rates at ρ.
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inflation. The sectoral shocks are calibrated to lead to a 1 percent increase in sectoral inflation

under the baseline monetary policy specification.

As discussed in Section 3.4.4, under baseline policy, sectoral inflation in the Oil and Gas Ex-

traction industry passes through substantially on impact to aggregate inflation, but the effects are

transient. The key result we want to highlight here is that if monetary policy responds by stabilizing

aggregate inflation driven by a shock to the Oil and Gas Extraction industry, it creates a large nega-

tive GDP gap. In fact, this policy is so contractionary that it leads the GDP in the economy to fall

below the GDP under flexible prices!38 In sharp contrast, stabilizing aggregate inflation due to a

shock to the Semiconductor Manufacturing Machinery industry is not nearly as contractionary in

terms of aggregate GDP. The reason is that the Oil and Gas Extraction industry has a relatively short

adjusted price spell duration, and as such, rises in sectoral inflation in that sector do not cause a

large dispersion in relative prices when policy does not respond to it. However, when monetary

policy does respond by stabilizing aggregate inflation it creates large relative price gaps that lead to

a negative aggregate GDP gap.39

We conclude this section by considering the consequences of a GDP gap stabilization policy in

response to sectoral shocks. In Figure 5b, we plot impulse responses for the two sectoral shocks

under (a) our baseline monetary policy, which stabilizes nominal rates, and (b) under a policy that

fully stabilizes the aggregate GDP gap. Given our discussion above of Figure 5a we then naturally

see that here, compared to baseline policy, aggregate inflation is slightly lower initially (but still

positive), for a shock to the Oil and Gas Extraction industry while it is much lower initially (and

negative), for a shock to the Semiconductor Manufacturing Machinery industry. Thus, a monetary

policy rule that stabilizes the aggregate GDP gap allows substantial pass-through of the sectoral

shock to aggregate inflation if it originates in a sector such as the Oil and Gas Extraction industry.

This is consistent with the theoretical observation in Section 4.2 that GDP gap stabilization policy

puts more weight on stickier sectors and allows a higher aggregate inflation pass-through for shocks

to more flexible price sectors.

5 Extensions

We now present some key extensions of our theoretical and quantitative results.

5.1. General Labor Supply Elasticity

So far, we used preferences that imply an infinite Frisch elasticity of labor supply. Our solution

techniques, analytical results, and quantitative insights do not, however, depend on this simplifica-

38This is a direct consequence of network spillover effects as such responses are not possible in one sector NK models.
39To illustrate this clearly, Figure F.4 repeats this exercise in a model with a homogeneous frequency of price adjust-

ment across sectors while Figure F.5 does so in a model where the Oil and Gas Extraction industry has the same price
duration as the Semiconductor Manufacturing Machinery industry and we see that responding to inflation originating
in this industry does not lead to a negative GDP gap in either case.
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tion. In Appendix D.1, we present the details of the model with a general labor supply elasticity and

present here the counterpart of Proposition 1 with ρ ↓ 0:

π̇t =Γ(I+ψ1β⊺)(pt −p f
t ), p f

t ≡ mt 1−Ψzt + (Ψ− ψ

1+ψ1λ⊺)ωt (51)

where ψ is the inverse Frisch elasticity of labor supply. We can then extend Propositions 3 and 4

to this case by replacing Γwith Γψ ≡Γ(I+ψ1β⊺) and adjusting for p f
t as above. In particular, the

impulse responses for monetary and sectoral productivity shocks only change through Γψ. The

impulse responses for sectoral wedge shocks, however, also need to be adjusted through p f
t .

In Figure F.6 we show impulse responses of aggregate inflation and GDP to an expansionary

monetary policy shock when the Frisch elasticity is calibrated at 2. Since a finite Frisch elasticity

introduces aggregate strategic substitutability, it reduces the persistence of inflation and thereby,

the extent of monetary non-neutrality. This calibration also does not alter our quantitative results

on the various forces that drive monetary non-neutrality, as shown in Figure F.7 - Figure F.9.40

5.2. Taylor Rule as Monetary Policy Rule

We now model monetary policy as following a Taylor rule. Our derivations generalize to using such

a rule, the details of which are in Appendix D.2.41 First, the counterpart of Proposition 1 with ρ→ 0

and a Taylor rule, it =φπβ⊺πt + vt —where vt captures deviations from the rule—is:42

π̈t =Γ(I−φπ1β⊺)(πt −π f
t ), (I−φπ1β⊺)π f

t ≡ 1vt −Ψ(żt − ω̇t ) (52)

In this representation,π f
t is the sectoral inflation rate that would have prevailed in a flexible price

economy with the same Taylor rule and is exogenous to the system of differential equations. We

can see that this equation differs from our Proposition 1 in two aspects. First, it is a second-order

differential equation inπt rather than in prices. This is because, with an inflation-targeting Taylor

rule, the economy is no longer price stationary, similar to one-sector New Keynesian models.

Second, the dynamics of the second-order differential equations are governed by Γ, now adjusted

for the endogenous response of monetary policy through the Taylor rule: Γφ,π ≡Γ(I−φπ1β⊺).

A Taylor rule in terms of inflation makes sticky price models forward-looking and thus the

source of persistence is exogenous. In our baseline calibration, fixing the Taylor rule coefficient at

the standard value of φπ = 1.5, we introduce persistent shocks to the Taylor rule. We then calibrate

the size and persistence of the shocks to generate a response of aggregate inflation that matches the

aggregate inflation response in our nominal GDP rule economy of Section 3.4.2. Figure F.11 shows

the impulse responses of aggregate inflation and GDP to an expansionary monetary policy shock.

The monetary non-neutrality, by design, is essentially the same as in Section 3.4.2.

40Figure F.10 shows that the distribution of sectoral inflation response after a monetary policy shock also depicts the
same patterns as in Section 3.4.2.

41We need to impose boundary conditions that ensure that inflation and relative sectoral prices are stationary and for
solving the resulting set of equilibrium system of equations, we use a Schur decomposition.

42In Appendix D.2 we derive a more general version for ρ ̸= 0 and a Taylor rule that targets other price indices.
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Given this calibrated Taylor rule economy, we investigate the various forces that drive monetary

non-neutrality, which are presented in Figure F.12 - Figure F.14. Overall, these results are consistent

with our main conclusion that both production networks and heterogenous price stickiness play a

quantitatively important role in amplifying monetary non-neutrality. We note that the amplification

coming from them jointly, compared to the horizontal economy with homogeneous price stickiness

across sectors, is a bit smaller than in Section 3.4.2.43 The reason is that in this economy, persistent

dynamics in inflation come about through persistence in the monetary policy shock itself, which

increases monetary non-neutrality even in the basic multi-sector economy.44

6 Conclusion

In this paper, we derive closed-form solutions for inflation and GDP dynamics in multi-sector New

Keynesian economies with arbitrary production networks. In a series of new analytical results, we

isolate the precise interactions of production linkages and price stickiness across sectors and show

how stickiness trickles to downstream sectors through the input-output network. We show that

these amplification results are quantitatively significant. For instance, the three sectors with the

most contribution to the persistence of aggregate inflation have a combined consumption share of

around zero and yet, they explain around 16% of the GDP response to monetary shocks. Finally, we

explore how endogenous monetary policy leads to significantly different implications for aggregate

variables depending on the sectoral source of inflation.

Our framework presents new avenues for future research. As one example, a model with state-

dependent pricing, due to fixed costs of changing nominal prices, could lead to new insights. It

will also be interesting to study welfare and optimal policy implications in our model with various

shocks that help match historical sectoral inflation dynamics well.
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Figure 2: Impulse response functions to a monetary policy shock
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Notes: This figure plots the impulse response functions for inflation and GDP to a monetary shock that generates a
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Figure 3: Sectoral inflation response to a monetary policy shock
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Notes: This figure plots the impulse response functions for aggregate inflation and sectoral inflation to a monetary
shock that generates a one percentage increase in aggregate inflation on impact. The aggregate inflation response is
shown in dashed lines. The calibration of the model is at a monthly frequency.
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Figure 4: Rank correlations across sectors

(a) Correlation of actual ranks of sectors and ranks using an approximated
statistic for sectoral inflation response to a monetary policy shock
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tic for sectoral inflation response to a monetary policy shock that generates a
one percentage increase in aggregate inflation on impact. Panel A plots sectoral
inflation impact response while Panel B plots the sectoral inflation half-life.
Each dot in the figure represents a sector. The calibration of the model is at a
monthly frequency.

(b) Aggregate inflation and GDP dynamics following sectoral shocks
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The calibration of the model is at a monthly frequency.
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Figure 5: Dynamics following sectoral shocks under different policies
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and sectoral inflation to a sectoral shock that increases sectoral inflation by one
percent on impact in the baseline policy economy. It compares the baseline
policy economy with an economy where monetary policy stabilizes aggregate
inflation. Panel A: Oil and gas extraction. Panel B: Semiconductor machine
manufacturing. The calibration of the model is at a monthly frequency.

(b) Baseline policy vs. GDP gap stabilization
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manufacturing. The calibration of the model is at a monthly frequency.
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Table 1: Ranking of industries by pass-through to aggregate inflation after a sectoral shock

Industry Agg. Inflation Impact Resp.

Oil and gas extraction 9.542×10−3

Insurance agencies, brokerages, and related act... 8.392×10−3

Employment services 6.014×10−3

Legal services 5.688×10−3

Management consulting services 5.633×10−3

Advertising, public relations, and related serv... 5.011×10−3

Accounting, tax preparation, bookkeeping, and p... 4.981×10−3

Architectural, engineering, and related services 4.968×10−3

Warehousing and storage 4.964×10−3

Electric power generation, transmission, and di... 3.833×10−3

Services to buildings and dwellings 3.696×10−3

Monetary authorities and depository credit inte... 3.628×10−3

Scenic and sightseeing transportation and suppo... 3.413×10−3

Securities and commodity contracts intermediati... 3.354×10−3

Other support activities for mining 3.236×10−3

Truck transportation 3.187×10−3

Commercial and industrial machinery and equipme... 3.139×10−3

Wired telecommunications carriers 3.116×10−3

Other financial investment activities 3.025×10−3

Other nondurable goods merchant wholesalers 2.610×10−3

Notes: Ranking of industries by aggregate inflation impact response when a sectoral shock leads to an increase in 1% in
the shocked sector’s inflation on impact. Average duration of the sectoral shock is 6 months.

Table 2: Ranking of industries by half-life of aggregate inflation repsonse after a sectoral shock

Industry Agg. Inflation Half Life

Packaging machinery manufacturing 1.140×101

Miscellaneous nonmetallic mineral products 1.090×101

Coating, engraving, heat treating and allied ac... 1.080×101

Industrial process furnace and oven manufacturing 1.070×101

All other forging, stamping, and sintering 1.070×101

Semiconductor machinery manufacturing 1.040×101

Printing ink manufacturing 1.040×101

Speed changer, industrial high-speed drive, and... 1.030×101

Machine shops 1.010×101

Insurance agencies, brokerages, and related act... 9.700
Turned product and screw, nut, and bolt manufac... 9.700
Fluid power process machinery 8.900
Other communications equipment manufacturing 8.900
Electricity and signal testing instruments manu... 8.900
Industrial and commercial fan and blower and ai... 8.800
Relay and industrial control manufacturing 8.800
Support activities for printing 8.700
Optical instrument and lens manufacturing 8.700
Other electronic component manufacturing 8.500
In-vitro diagnostic substance manufacturing 8.500

Notes: Ranking of industries by half-life of aggregate inflation response when a sectoral shock that leads to an increase
in 1% in the shocked sector’s inflation on impact. Average duration of the sectoral shock is 6 months.
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Table 3: Comparison of eigenvalues of the calibrated economy with eigenvalues of the disconnected
economy associated with specific industries

Industry θi
√
θi (ρ+θi )(1−ai i )+ρ2/4−ρ/2 Eigenvalue

p
Γ− ρ

2 I

Insurance agencies, brokerages, and related act... 3.559×10−2 2.240×10−2 2.214×10−2

Coating, engraving, heat treating and allied ac... 2.780×10−2 2.743×10−2 2.731×10−2

Warehousing and storage 3.241×10−2 3.062×10−2 3.052×10−2

Semiconductor machinery manufacturing 3.400×10−2 3.283×10−2 3.283×10−2

Flavoring syrup and concentrate manufacturing 3.890×10−2 3.845×10−2 3.840×10−2

Packaging machinery manufacturing 4.067×10−2 3.932×10−2 3.931×10−2

Showcase, partition, shelving, and locker manuf... 3.977×10−2 3.933×10−2 3.932×10−2

Machine shops 4.432×10−2 4.349×10−2 4.276×10−2

Watch, clock, and other measuring and controlli... 4.393×10−2 4.368×10−2 4.359×10−2

Other communications equipment manufacturing 4.415×10−2 4.394×10−2 4.391×10−2

Turned product and screw, nut, and bolt manufac... 4.499×10−2 4.421×10−2 4.431×10−2

Electricity and signal testing instruments manu... 4.808×10−2 4.457×10−2 4.457×10−2

Broadcast and wireless communications equipment 5.367×10−2 4.512×10−2 4.510×10−2

Fluid power process machinery 4.716×10−2 4.584×10−2 4.580×10−2

Optical instrument and lens manufacturing 4.820×10−2 4.612×10−2 4.601×10−2

Other aircraft parts and auxiliary equipment ma... 5.171×10−2 4.630×10−2 4.610×10−2

All other miscellaneous manufacturing 4.751×10−2 4.632×10−2 4.627×10−2

Miscellaneous nonmetallic mineral products 4.912×10−2 4.633×10−2 4.632×10−2

Cutlery and handtool manufacturing 4.778×10−2 4.775×10−2 4.770×10−2

Analytical laboratory instrument manufacturing 4.835×10−2 4.809×10−2 4.811×10−2

Notes: The actual eigenvalues of the calibrated economy are compared with eigenvalues of the counterfactual discon-
nected economy. In the disconnected economy, the eigenvalues are associated with specific industries, which are given
in the first column.
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A Proofs

A.1. Proof of Proposition 1

Necessity: Differentiating Equation (18) with respect to time and substituting Equation (17) we

arrive at

π̇t = p̈t =Θ(π#
t −πt ) =Θ(ρI+Θ)(p#

t −p∗
t )−Θπt

=Θ(ρI+Θ)(pt −p∗
t )+Θ(ρI+Θ)(p#

t −pt )−Θπt︸ ︷︷ ︸
=ρπt by Equation (18)

(A.1)

Now using the definition of p∗
t from Equation (9) observe that:

pt −p∗
t = pt −ωt + zt −mtα+Apt =−(I−A)(mt 1+Ψ(ωt − zt )︸ ︷︷ ︸

=p f
t by Equation (14)

−pt ) (A.2)

Combining Equations (A.1) and (A.2) gives us the desired result:

π̇t =+ρπt +Θ(ρI+Θ)(I−A)(pt −p f
t ) (A.3)

Sufficiency: Since the paths for (mt ,ωt , zt )t≥0 are exogenously given in the baseline model, it

follows that p f
t is also exogenously given. Therefore, Equation (A.3) is an n-dimensional second-

order linear differential equation in the vector of sectoral prices pt , with an exogenous force term

p f
t , and boundary conditions p0 = p0− as well as non-explosive prices (saddle-path stability) as

t →∞. Thus, the solution to this differential equation is unique (conditional on existence given

the exogenous time paths of (mt ,ωt , zt )t≥0) and thus characterizes the dynamics of non-explosive

sectoral prices.

A.2. Proof of Lemma 1

In this proof, we utilize several properties of non-singular M-matrices, which are a subset of

Z -matrices. First, a Z -matrix is a matrix with real entries all of whose off-diagonal entries are

either zero or negative(Berman and Plemmons, 1994, p. 132). Second, Theorem 2.3 in Berman and

Plemmons (1994) provides a number of equivalent statements for when a Z -matrix is a non-singular

M-matrix. In particular, it establishes that “a Z -matrix C is a non-singular M-matrix” if “C is positive

stable; that is, the real part of each eigenvalue of C is positive” (Condition G20), or “it is inverse

positive; i.e., C−1 exists and C ≥ 0” (Condition N38). Third, Theorem 5 in Alefeld and Schneider

(1982) states that every non-singular M-matrix has exactly one square root that is also an M-matrix.

We now show that the matrix Γ− ρ2

2 I =Θ(ρI+Θ)(I−A) is a non-singular M-matrices. To see this,

first, note thatΘ(ρI+Θ)(I−A) is a Z -matrix as its i j ’th entry for i ̸= j is −θi (θi +ρ)ai j ≤ 0. Second,

note that Θ(ρI+Θ)(I−A) is inverse positive. In particular, since Θ(ρI+Θ) is invertible because

θi > 0, we have:

(Θ(ρI+Θ)(I−A))−1 = (I−A)−1(ρI+Θ)−1Θ−1 =
∞∑

k=0
Ak (ρI+Θ)−1Θ−1 (A.4)
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where the last equality follows from the Neumann series representation of (I − A)−1, which is

convergent because the spectral radius of A is strictly less than one (Carvalho and Tahbaz-Salehi,

2019, p. 638).45 Since A ≥ 0 andΘ(ρI+Θ) ≥ 0, it follows that (Θ(ρI+Θ)(I−A))−1 is the sum of positive

matrices and is itself positive. Thus,Θ(ρI+Θ)(I−A) is both a Z -matrix and inverse positive, which

by condition N38 of Theorem 2.3 in Berman and Plemmons (1994) implies that it is a non-singular

M-matrix. Condition G20 then implies that all the eigenvalues ofΘ(ρI+Θ)(I−A) have positive real

parts.

Now, consider the matrix Γ = Θ(ρI+Θ)(I−A)+ ρ2

4 I. First, since Γ and Θ(ρI+Θ)(I−A) share

the same off-diagonal entries, it follows that Γ is also a Z -matrix. Second, suppose λ ∈ C is an

eigenvalue ofΘ(ρI+Θ)(I−A) with eigenvector v. It follows that λ+ ρ2

4 is an eigenvector of Γwith

eigenvector v:

Θ(ρ+ I+Θ)(I−A)v =λv ⇐⇒ Γv = (Θ(ρI+Θ)(I−A)+ ρ2

4 I)v = (λ+ ρ2

4 )v (A.5)

So Γ is a Z -matrix the real part of whose eigenvalues are at least as large as ρ2/4 > 0, and thus

are positive. Then, by condition G20 of Theorem 2.3 in Berman and Plemmons (1994), Γ is a non-

singular M-matrix. Since Γ is a non-singular M-matrix, it satisfies the assumptions of Theorem 5

in Alefeld and Schneider (1982) which states that Γ has exactly one square root matrix that is also

an M-matrix. Let us denote this square root by
p
Γ. Since the real parts of all the eigenvalues of a

M-matrix are non-negative,
p
Γ is also the principal square root of Γ.

Finally, to see that last part of the Lemma, suppose ζr +iζi ∈C is an eigenvalue for
p
Γ associated

with an eigenvector v. Since
p
Γ is a non-singular M-matrix, we know that ζr ≥ 0. Also,

p
Γv = ζv =⇒ (

p
Γ± ρ

2 I)v = (ζ± ρ
2 I)v and Γv = ζ2v (A.6)

So, we make the observation that ζ+ ρ
2 and ζ− ρ

2 are eigenvalues of
p
Γ+ ρ

2 I and
p
Γ− ρ

2 I, respectively,

and that ζ2 = ζ2
r −ζ2

i +2iζr ζi is an eigenvalue for Γ. But as we showed above, real parts of eigenvalues

of Γ are at least as large as ρ2/4, so

ζ2
r −ζ2

i ≥
ρ2

4
=⇒ ζ2

r ≥
ρ2

4
=⇒ ζr ≥ ρ

2
(A.7)

where the last implication follows from the fact that ζr is the positive square root of ζ2
r . Moreover,

we can show that ζr > ρ
2 (i.e., the inequality is strict). To see this, note that if ζi = 0 then ζ2 = ζ2

r ∈R is

an eigenvalue of Γwhich is a non-singular matrix and cannot have a zero eigenvalue, so it has to be

that ζ2
r > 0,ζr ≥ 0 =⇒ ζr > 0; alternatively if ζi ̸= 0 then we have ζr ≥ 0,ζ2

r −ζ2
i ≥

ρ2

4 =⇒ ζ2
r > ρ2

4 =⇒
ζr > ρ

2 . Therefore, we observe that

Re(ζ− ρ

2
) = ζr − ρ

2
> 0, and Re(ζ+ ρ

2
) = ζr + ρ

2
> ρ > 0 (A.8)

meaning that all eigenvalues of
p
Γ+ ρ

2 I and
p
Γ− ρ

2 I have positive real parts. Combined with the

45This follows from the fact that all sectors have strictly positive labor share so that the row sums of the matrix A are
strictly less than 1.
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fact that these matrices are both Z -matrices (because
p
Γ is an M-matrix and shares the same

off-diagonal entries with both these matrices), we conclude from condition G20 of Theorem 2.3 in

Berman and Plemmons (1994) that
p
Γ+ ρ

2 I and
p
Γ− ρ

2 I are non-singular M-matrices or equivalently

are positive stable.

A.3. Proof of Proposition 2

Given the definition of the matrix Γ=Θ(ρI+Θ)(I−A)+ ρ2

4 I and the fact thatπt = ṗt , the differential

equation in Equation (19) is

p̈t = ρṗt + (Γ− ρ2

4
I)(pt −p f

t ) (A.9)

Since p f
t is piece-wise continuous and bounded, it has a Laplace transform for any s ≥ 0. Let

P f (s) = Ls(p f
t ) ≡ ∫ ∞

0 e−st p f
t dt denote the Laplace transform of p f

t . Similarly, let P(s) = Ls(pt )

denote the Laplace transform of pt . Then, applying the Laplace transform to the differential

equation above, we have:

P(s) = ((s − ρ
2 )2I−Γ)−1(π0 + (s −ρ)p0)− ((s − ρ

2 )2I−Γ)−1(Γ− ρ2

4 I)P f (s) (A.10)

where p0 and π0 are initial values for the sectoral price and inflation rates at t = 0 that are deter-

mined by the two boundary conditions of the system, which we use and discuss later in the proof.

Now, let
p
Γ denote the principal square root of Γ as in Lemma 1. Then, we can factor

((s − ρ
2 )2I−Γ)−1 = (sI− (

p
Γ+ ρ

2 I))−1(sI+ (
p
Γ− ρ

2 )I)−1 (A.11)

and write the above Laplace transform as:

P(s) = (sI+ (
p
Γ− ρ

2 I))−1c0 + (sI− (
p
Γ+ ρ

2 )I)−1c1

+ 1

2

p
Γ
−1

(Γ− ρ2

4 I)
[

(sI+ (
p
Γ− ρ

2 I))−1 − (sI− (
p
Γ+ ρ

2 )I)−1
]

P f (s) (A.12)

where c0 and c1 are vectors in Rn and are appropriate linear transformations of p0 andπ0. Applying

the inverse Laplace transform to the above equation, and noting that the for any matrix X, L −1
t [(sI+

X)−1] = e−Xt , we have:

pt = e−(
p
Γ− ρ

2 I)t c0 +e(
p
Γ+ ρ

2 I)t c1

+ 1

2
(
p
Γ− ρ2

4

p
Γ
−1

)L −1
t

[(
(sI+ (

p
Γ− ρ

2 I))−1 − (sI− (
p
Γ+ ρ

2 )I)−1
)

P f (s)
]

(A.13)

Since the inverse Laplace transform of a product is the convolution of inverse Laplace of individual

functions, we can write the inverse Laplace transform in the last term as:

L −1
t

[(
(sI+ (

p
Γ− ρ

2 I))−1 − (sI− (
p
Γ+ ρ

2 )I)−1
)

P f (s)
]

=
∫ t

0
L −1

t−h

[
(sI+ (

p
Γ− ρ

2 I))−1 − (sI− (
p
Γ+ ρ

2 )I)−1
]

p f
hdh
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∫ t

0

(
e−(

p
Γ− ρ

2 I)(t−h) −e(
p
Γ+ ρ

2 I)(t−h)
)

p f
hdh (A.14)

Combining Equations (A.13) and (A.14), we arrive at

pt = e−(
p
Γ− ρ

2 I)t
[

c0 + 1

2
(
p
Γ− ρ2

4

p
Γ
−1

)
∫ t

0
e(

p
Γ− ρ

2 I)hp f
hdh

]
+e(

p
Γ+ ρ

2 I)t
[

c1 − 1

2
(
p
Γ− ρ2

4

p
Γ
−1

)
∫ t

0
e−(

p
Γ+ ρ

2 I)hp f
hdh

]
(A.15)

Now, in terms of boundary conditions pt satisfies the following two: (1) it is continuous at t = 0,

since the probability of price change opportunities arriving at a short interval around any point

is arbitrarily small—i.e., p0 = p0−—because no firm changes their price exactly at t = 0 as it is a

measure zero event, (2) we are looking for the solution in which prices are non-explosive; in fact

bounded because p f
t is bounded.

From the first boundary condition, we get:

c0 +c1 = p0− (A.16)

Now, recall from Lemma 1 that
p
Γ+ ρ

2 I and
p
Γ− ρ

2 I are both positive stable. Thus, e(
p
Γ+ ρ

2 I)t

explodes as time goes to infinity, while e−(
p
Γ− ρ

2 I)t goes to zero with t →∞ (because −(
p
Γ− ρ

2 I) is

negative stable). Therefore, for the solution to be stable, the term multiplying e(
p
Γ+ ρ

2 I)t has to be

zero as t →∞ and we have:

lim
t→∞

[
1

2
(
p
Γ− ρ2

4

p
Γ
−1

)
∫ t

0
e−(

p
Γ+ ρ

2 I)hp f
hdh

]
= c1 (A.17)

which implies that

c1 = 1

2
(
p
Γ− ρ2

4

p
Γ
−1

)
∫ ∞

0
e−(

p
Γ+ ρ

2 I)hp f
hdh

=⇒ c0 = p0− −c1 = p0− − 1

2
(
p
Γ− ρ2

4

p
Γ
−1

)
∫ ∞

0
e−(

p
Γ+ ρ

2 I)hp f
hdh

Plugging these boundary conditions into the solution we have:

pt = e−(
p
Γ− ρ

2 I)t
[

p0− + 1

2
(
p
Γ− ρ2

4

p
Γ
−1

)

(∫ t

0
e(

p
Γ− ρ

2 I)hp f
hdh −

∫ ∞

0
e−(

p
Γ+ ρ

2 I)hp f
hdh

)]
+e(

p
Γ+ ρ

2 I)t
[

1

2
(
p
Γ− ρ2

4

p
Γ
−1

)
∫ ∞

t
e−(

p
Γ+ ρ

2 I)hp f
hdh

]
(A.18)

Regrouping terms, we obtain the expression of interest:

pt = e−(
p
Γ− ρ

2 I)t p0− + (
p
Γ− ρ2

4

p
Γ
−1

)e−(
p
Γ− ρ

2 I)t
∫ t

0

e(
p
Γ− ρ

2 I)h −e−(
p
Γ+ ρ

2 I)h

2
p f

hdh

+ (
p
Γ− ρ2

4

p
Γ
−1

)
e(

p
Γ+ ρ

2 I)t −e−(
p
Γ− ρ

2 I)t

2

∫ ∞

t
e−(

p
Γ+ ρ

2 I)hp f
hdh (A.19)
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A.4. Proof of Propositions 3 and 4

First, note that we can combine all the shocks in both propositions into a single path for p f
t as:

p f
t = p0− +δm1+Ψ

n∑
i=1

δi
ze−φi t ei (A.20)

where p0− are the steady-state prices before shocks, δm is the monetary shock, ei is the i ’th standard

basis vector, and δi
z is the TFP/wedge shock to sector i that decays at rate φi > 0. We can then

plug this path into Proposition 2 to derive the response of the economy to all of these shocks. In

particular, since we have log-linearized the model, the response of the economy to this aggregated

path is simply the sum of the impulse responses to individual shocks. So, using Equation (A.18), we

observe that the IRF of pt with respect to the monetary shock δm is

∂

∂δm
pt = e−(

p
Γ− ρ

2 I)t
[

1

2
(
p
Γ− ρ2

4

p
Γ
−1

)

(∫ t

0
e(

p
Γ− ρ

2 I)h ∂

∂δm
p f

hdh −
∫ ∞

0
e−(

p
Γ+ ρ

2 I)h ∂

∂δm
p f

hdh

)]
+e(

p
Γ+ ρ

2 I)t
[

1

2
(
p
Γ− ρ2

4

p
Γ
−1

)
∫ ∞

t
e−(

p
Γ+ ρ

2 I)h ∂

∂δm
p f

hdh

]
(A.21)

Noting that ∂
∂δm

p f
h = 1,∀h ≥ 0, this becomes:

∂

∂δm
pt

=1

2
(
p
Γ− ρ2

4

p
Γ
−1

)

[
e−(

p
Γ− ρ

2 I)t
(∫ t

0
e(

p
Γ− ρ

2 I)hdh −
∫ ∞

0
e−(

p
Γ+ ρ

2 I)hdh

)
+e(

p
Γ+ ρ

2 I)t
∫ ∞

t
e−(

p
Γ+ ρ

2 I)hdh

]
1

=1

2
(
p
Γ− ρ2

4

p
Γ
−1

)
[(

(
p
Γ− ρ

2 I)−1(I−e−(
p
Γ− ρ

2 I)t )− (
p
Γ+ ρ

2 I)−1e−(
p
Γ− ρ

2 I)t
)
+ (

p
Γ+ ρ

2 I)−1
]

1

=1

2
(
p
Γ− ρ2

4

p
Γ
−1

)(Γ− ρ2

4 I)−1
[

2
p
Γ−2

p
Γe−(

p
Γ− ρ

2 I)t
]

1

=(I−e−(
p
Γ− ρ

2 I)t )1 (A.22)

which is the response of sectoral prices to a monetary shock in Proposition 3. Moreover, note that

in our calculations above, we have used the fact that the matrices Γ,
p
Γ, and

p
Γ± ρ

2 I all commute

with one another because they share the same basis (we will continue using this property in the rest

of the proof as well). Now, to get the rest of the IRFs in that proposition, note that

∂
∂δm

πt = ∂
∂δm

∂
∂tβ

⊺pt =β⊺(
p
Γ− ρ

2 I)e−(
p
Γ− ρ

2 I)t 1 (A.23)

∂
∂δm

yt = ∂
∂δm

(mt −β⊺pt ) =β⊺e−(
p
Γ− ρ

2 I)t 1 (A.24)

∂
∂δm

ỹt = ∂
∂δm

(yt − y f
t ) = ∂

∂δm
β⊺(p f

t −pt ) =β⊺e−(
p
Γ− ρ

2 I)t 1 (A.25)

Similarly, using Equation (A.18), we observe that the IRF of pt with respect to a TFP/wedge shock to

sector i , δi
z , is

∂

∂δi
z

pt = e−(
p
Γ− ρ

2 I)t
[

1

2
(
p
Γ− ρ2

4

p
Γ
−1

)

(∫ t

0
e(

p
Γ− ρ

2 I)h ∂

∂δi
z

p f
hdh −

∫ ∞

0
e−(

p
Γ+ ρ

2 I)h ∂

∂δi
z

p f
hdh

)]
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+e(
p
Γ+ ρ

2 I)t
[

1

2
(
p
Γ− ρ2

4

p
Γ
−1

)
∫ ∞

t
e−(

p
Γ+ ρ

2 I)h ∂

∂δi
z

p f
hdh

]
(A.26)

Noting that ∂

∂δi
z

p f
h = e−φi hΨei ,∀h ≥ 0, this becomes:

∂

∂δi
z

pt

=1

2
(
p
Γ− ρ2

4

p
Γ
−1

)

[
e−(

p
Γ− ρ

2 I)t
∫ t

0
e(

p
Γ−(φi+ ρ

2 )I)hdh + (e−φi t I−e−(
p
Γ− ρ

2 I)t )
∫ ∞

0
e−(

p
Γ+(φi+ ρ

2 )I)hdh

]
Ψei

=1

2
(
p
Γ− ρ2

4

p
Γ
−1

)
[

(
p
Γ− (φi + ρ

2 )I)−1 + (
p
Γ+ (φi + ρ

2 )I)−1
]

(e−φi t I−e−(
p
Γ− ρ

2 I)t )Ψei

=(Γ− ρ2

4 I)(Γ− (φi + ρ
2 I)−1)(e−φi t I−e−(

p
Γ− ρ

2 I)t )Ψei

=(I− (φ2
i +ρφi )(Γ− ρ2

4 I)−1)−1(e−φi t I−e−(
p
Γ− ρ

2 I)t )Ψei = Xi (e−φi t I−e−(
p
Γ− ρ

2 I)t )Ψei (A.27)

which is the response of sectoral prices to a TFP/wedge shock in Proposition 4 with

Xi =
(
Γ− (ρ2 +φi )2I

)−1
(Γ− ρ2

4 I) (A.28)

Note that in deriving this expression we have assumed that the matrices
p
Γ− (φi + ρ

2 )I and
p
Γ+

(φi + ρ
2 )I are invertible. To see why this is true, recall from the proof of Lemma 1 that matricesp

Γ± ρ
2 I are positive stable, so their eigenvalues have positive real parts. Now, note that for any

λ ∈ eig(
p
Γ+ (φi + ρ

2 )), we have:

Re(λ) = Re(eig(
p
Γ))+φi + ρ

2
> ρ+φi > 0 (A.29)

which guarantees that
p
Γ+ (φi + ρ

2 )I is invertible. Similarly, for any λ ∈ eig(
p
Γ− (φi + ρ

2 )), we have:

Re(λ) = Re(eig(
p
Γ− ρ

2
I))−φi ̸= 0 (A.30)

where ̸= follows from the assumption of the proposition that φi ∉ eig(
p
Γ− ρ

2 I). So
p
Γ− (φi + ρ

2 )I is

also invertible as all of its eigenvalues have non-zero real parts.

Now, to get the rest of the IRFs in that proposition, note that

∂

∂δi
z
πt = ∂

∂δi
z

∂
∂tβ

⊺pt =β⊺Xi ((
p
Γ− ρ

2 I)e−(
p
Γ− ρ

2 I)t −φi e−φi t I)Ψei (A.31)

∂

∂δi
z

yt = ∂

∂δi
z

(mt −β⊺pt ) =β⊺Xi (e−(
p
Γ− ρ

2 I)t −e−φi t I)Ψei (A.32)

∂

∂δi
z

ỹt = ∂

∂δi
z

(yt − y f
t ) =β⊺(Xi e−(

p
Γ− ρ

2 I)t + (I−Xi )e−φi t )Ψei (A.33)

A.5. Proof of Lemma 2

Consider the matrix Γ(ε) =ΓD +εΓR as defined in the main text, where ΓD ≡Θ(ρI+Θ)(I−AD )+ ρ2

4 I

is the diagonal matrix corresponding to the duration-adjusted Leontief matrix of the disconnected

economy and ΓR ≡Θ(ρI+Θ)(AD −A) where AD ≡ diag(A) is the diagonal matrix whose diagonal

entries agree with the diagonal entries of A.

We divide this proof into several consecutive but short steps:
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Step 1. (Γ(ε) is Diagonalizable for Small ε) In this step, we show that there exists ε̄> 0 such that for

all εwith |ε| < ε̄, Γ(ε) is diagonalizable and all the eigenvalues of Γ(ε), denoted by the set {∆i (ε)}i∈[n],

are strictly positive, real, and distinct.

To show these, we first show that Γ(ε) is diagonalizable for |ε| < ε̄ for some ε̄> 0. To see this, we

apply the Gershgorin circle theorem, which states that every eigenvalue of a square complex matrix

lies within at least one of the Gershgorin discs, each centered at a diagonal entry with the radius

that is equal to the sum of absolute values of non-diagonal entries of its corresponding row (Lax,

2007, p. 323). To see this, define

Ri ≡
∑
j ̸=i

|ΓR,i j |

as the i ’th row sum of the entries in ΓR and let R̄ = maxi {Ri }. Note that if R̄ = 0 then ΓR = 0 =⇒
Γ(ε) =ΓD which is trivially diagonal(izable) for any ε ∈R. Suppose now that R̄ > 0 instead and define

ε̄≡ 1

2

min{|xi −x j | : i , j ∈ [n]}

R̄
where {xi , x j } ⊂ {0,ΓD,i i }i∈[n] (i.e., the numerator is the minimal distance between any two eigen-

values of ΓD from one another or zero). Note that ε̄ > 0 because we have assumed all ξi =√
θi (ρ+θi )(1−ai i )+ ρ2

4 − ρ
2 are distinct and positive, which means that ΓD,i i = θi (ρ+θi )(1−ai i )+

ρ2

4 ’s are distinct from one another and distinct from zero. Now, let |ε| < ε̄ and observe that all Ger-

shgorin discs, {z ∈C : |z −ΓD,i i | ≤∑
j ̸=i |Γi (ε)| = |ε|Ri }, are disjoint by construction of ε̄. Gershgorin

circle theorem then implies that each of these discs contain exactly one eigenvalue of Γ(ε) (see, e.g.,

Lax, 2007, p. 324). Thus, for |ε| < ε̄, all eigenvalues of Γ(ε) are non-zero and distinct. The latter

is a sufficient condition for Γ(ε) to be diagonalizable (see, e.g., Peterson, 2014, Theorem 2.5.10, p.

167). It also follows that all of these eigenvalues are real: Since Γ(ε) is a real matrix, all of its complex

eigenvalues should come in conjugate pairs (see, e.g., Peterson, 2014, p. 124). Thus, if Γ(ε) has

any complex eigenvalues, then there are at least two of them that share the same real part; so they

both must fall within the same Gershgorin disc, which is a contradiction. Thus, letting ∆i (ε) denote

that the eigenvalue in the i ’th Gershgorin disc, we know that when |ε| < ε̄, ∆i (ε),∀i is a real, strictly

positive number.

Step 2. (Existence of Principal Square Root) We have shown earlier in Lemma 1 that when Γ is

an M-matrix, its principal square root exists and is unique. However, in this Lemma, Γ(ε) is not

an M-matrix when ε < 0 and even though we are only interested in the case of ε > 0, we show

the existence and uniqueness of the principal square root of Γ(ε) for |ε| < ε̄ here to be able to

differentiate it later at ε= 0.

Since Γ(ε) is diagonalizable for |ε| < ε̄, there exists an invertible matrix V(ε) and a diagonal

matrix∆(ε) = diag(∆1(ε), . . . ,∆n(ε)) such that

Γ(ε) = V(ε)∆(ε)V(ε)−1 (A.34)
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Since, by the previous step, each ∆i (ε) is a real, strictly positive number, we can define ∆(ε)1/2 =
diag(

p
∆1(ε), . . . ,

p
∆n(ε)) and note that the matrix

p
Γ(ε) ≡ V(ε)∆(ε)1/2V(ε)−1 is a principal square

root for Γ(ε) because all of its eigenvalues have positive real parts and:

(
√
Γ(ε))2 = V(ε)∆(ε)1/2V(ε)−1V(ε)∆(ε)1/2V(ε)−1 = V(ε)∆(ε)V(ε)−1 =Γ(ε) (A.35)

Thus, a principal square root for Γ(ε) exists when |ε| < ε̄. We next show that this matrix is unique.

Step 3. (Uniqueness of Principal Square Root) Let
p
Γ(ε) denote a principal square root of Γ(ε) so

that (
p
Γ(ε))2 = Γ(ε). We show that (∆i (ε),vi (ε)) is an eigenvalue/eigenvector pair for Γ(ε) if and

only if (
p
∆i (ε),vi (ε)) is an eigenvalue/eigenvector pair for

p
Γ(ε). Thus, with V(ε) ≡ [v1(ε), . . . ,vn(ε)],p

Γ(ε) has the unique representation of
p
Γ(ε) = V(ε)∆(ε)1/2V(ε)−1.

( =⇒ ) Suppose
p
Γ(ε)vi (ε) =p

∆i (ε)vi (ε). Multiply by
p
Γ(ε) from left to get

Γ(ε)vi (ε) =
√
∆i (ε)

√
Γ(ε)vi (ε) =∆i (ε)vi (ε)

so (∆i (ε),vi (ε)) is an eigenvalue/eigenvector pair for Γ(ε).

( ⇐= ) Suppose Γ(ε)vi (ε) =∆i (ε)vi (ε). Multiply this by
p
Γ(ε) from left to get

Γ(ε)×
(√
Γ(ε)vi (ε)

)
=∆i (ε)×

(√
Γ(ε)vi (ε)

)
which implies that the vector zi (ε) ≡p

Γ(ε)vi (ε) is also an eigenvector for Γ(ε) associated with the

eigenvalue ∆i (ε). But since all ∆i (ε)’s are distinct, all of the eigenspaces of Γ(ε) are one-dimensional

so it has to be that
p
Γ(ε)vi (ε) ∈ span{vi (ε)}; i.e., there exists a scalar di (ε) such that√

Γ(ε)vi (ε) = di (ε)vi (ε)

Note that this immediately implies that vi (ε) is also an eigenvector for
p
Γ(ε) now associated with

di (ε) as its corresponding eigenvalue. Multiplying the equation above by
p
Γ(ε) from left, we get

Γ(ε)vi (ε) = di (ε)
√
Γ(ε)vi (ε) = di (ε)2vi (ε)

So di (ε)2 is the eigenvalue of Γ(ε) associated with vi (ε); i.e,

di (ε)2 =∆i (ε) =⇒ di (ε) =
√
∆i (ε) ∈R++

where we di (ε) is the positive root
p
∆i (ε) because

p
Γ(ε) is the principal square root of Γ(ε).

Step 4. (Perturbed Eigenvalues/Eigenvectors of Γ(ε)) In this step we rely on Theorems 1 and 2 in

Greenbaum, Li, and Overton (2020), which characterize perturbation results that can be applied to

eigenvectors and eigenvalues of the matrix Γ(ε). Moreover, since Step 3 implies that both
p
Γ(ε)

and Γ(ε) have the same eigenvectors, it immediately follows that the perturbed eigenvectors of Γ(ε)

are also perturbed eigenvectors of
p
Γ(ε). As for the eigenvalues of

p
Γ(ε), suppose ∆i (ε) ∈ eig(Γ(ε))

has the following Taylor expansion by Theorem 1 of Greenbaum, Li, and Overton (2020):

∆i (ε) =∆i (0)+∆′
i (0)ε+O (∥ε∥2)
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Then di (ε) =p
∆i (ε), which is an eigenvalue of

p
Γ(ε) by the previous steps, has the following Taylor

expansion:

di (ε) =
√
∆i (0)+ ∆′

i (0)

2
p
∆i (0)

ε+O (∥ε∥2)

The latter follows from the fact that d ′
i (0) = ∆′

i (0)

2
p
∆i (0)

and it is a well-defined approximation because

∆i (0) = θi (ρ+θi )(1−ai i )+ ρ2

4 > 0,∀i so that the denominator is non-zero.

Thus, in order to characterize the perturbed eigenvalues and eigenvectors of
p
Γ(ε) we simply

need the perturbed eigenvalues and eigenvectors of Γ(ε). These are characterized by the formulas

in Theorems 1 and 2 of Greenbaum, Li, and Overton (2020), but for completeness, we re-derive

these perturbations below: Consider the pair (∆i (ε),vi (ε)) such that

Γ(ε)vi (ε) =∆i (ε)vi (ε)

and differentiate with respect to ε and evaluate at ε= 0 to get

Γ(0)v′i (0)+Γ′(0)vi (0) =∆′
i (0)vi (0)+∆i (0)v′i (0)

Note that Γ(0) = ΓD is diagonal so ∆i (0) = ΓD,i i and vi (0) = ei where ei is the i ’th standard basis

vector. Also, note that Γ′(0) = ∂ε[ΓD +εΓR ]ε=0 =ΓR . Substituting these into the equation above, we

get

ΓD v′i (0)+ΓR ei =∆′
i (0)ei +ΓD,i i v′i (0)

Multiplying this equation by e′j from the left for j ∈ {1, . . . ,n} we have:

j = i =⇒ ∆′
i (0) = [ΓR ]i i = 0

j ̸= i =⇒ [v′i (0)] j =
[ΓR ] j i

ΓD,i i −ΓD, j j
= −θ j (ρ+θ j )a j i

θi (ρ+θi )(1−ai i )−θ j (ρ+θ j )(1−a j j )

Now recall that for all i

ξi ≡
√
θi (ρ+θi )(1−ai i )+ ρ2

4
− ρ

2

=⇒ ξ2
i +ρξi = θi (ρ+θi )(1−ai i )

so

[v′i (0)] j =
a j i

1−a j j
×

ξ2
j +ρξ j

(ξi +ξ j +ρ)(ξ j −ξi )
∀ j ̸= i

Finally, [v′
i (0)]i = e⊺i v′

i (0) = 0,∀i ∈ [n] because v′
i (0) is orthogonal to ei (the eigenvector associated

with ∆i (ε) at ε= 0) for all i (see Theorem 2 in Greenbaum, Li, and Overton, 2020).

Step 5. (Perturbed Eigenvalues/Eigenvectors of
p
Γ(ε)) Having derived the Taylor expansions for a

pair of eigenvalues and eigenvectors of Γ(ε) following Greenbaum, Li, and Overton (2020) in Step 4,
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denoted by (∆i (ε),vi (ε)), we can now use the result in Step 3 to retrieve the implied perturbations

for corresponding eigenvalues and eigenvectors of
p
Γ(ε), denoted by (di (ε) =p

∆i (ε),vi (ε)):

di (ε) =
√
∆i (0)︸ ︷︷ ︸

=pΓD,i i

+ ∆′
i (0)

2
p
∆i (0)︸ ︷︷ ︸
=0

ε+O (∥ε∥2)

=
√
θi (θi +ρ)(1−ai i )+ ρ2

4
+O (∥ε∥2)

= ξi + ρ

2
+O (∥ε∥2)

and

vi (ε) = vi (0)+v′i (0)ε+O (∥ε∥2)

= ei +ε×
∑
j ̸=i

a j i

1−a j j
×

ξ2
j +ρξ j

(ξi +ξ j +ρ)(ξ j −ξi )
e j +O (∥ε∥2)

A.6. Proof of Proposition 5

For a given Γ(ε), recall form Proposition 3 that the IRF of sectoral inflation rates to a monetary shock

is

∂
∂δm

πt =
(p
Γ(ε)− ρ

2 I
)

e−(
p
Γ(ε)− ρ

2 I)t 1 (A.36)

Using the eigendecomposition and approximation from Lemma 2,
p
Γ(ε) = V(ε)∆(ε)1/2V(ε)−1, and

letting D(ε) ≡∆(ε)1/2 − ρ
2 I, we have the Taylor expansion around ε= 0:

∂
∂δm

πt =
[

∂
∂δm

πt

]
ε=0

+ε× ∂
∂ε

[
∂

∂δm
πt

]
ε=0

+O (∥ε∥2) (A.37)

where [
∂

∂δm
πt

]
ε=0

= D(0)e−D(0)t 1 (A.38)

and

∂
∂ε

[
∂

∂δm
πt

]
ε=0

= ∂
∂ε

[
V(ε)D(ε)e−D(ε)t V(ε)−11

]
ε=0 (A.39)

= V′(0)D(0)e−D(0)t 1−D(0)e−D(0)t V′(0)1 (A.40)

Now, note D(0) = diag(ξ1, . . . ,ξn) and that the IRF of inflation in sector i is the i ’th element of this

vector, so that:

∂
∂δm

πi ,t = e⊺i

(
∂

∂δm
πt

)
= ξi e−ξi t +ε∑

j ̸=i [V′(0)]i j (ξ j e−ξ j t −ξi e−ξi t )+O (∥ε∥2) (A.41)

= ξi e−ξi t +εξi
∑

j ̸=i
ξi+ρ

ξi+ξ j+ρ
ai j

1−ai i

ξ j e
−ξ j t−ξi e−ξi t

ξi−ξ j
+O (∥ε∥2) (A.42)

where we have used the expression for [V′(0)]i j = ∂
∂ε

[
v j (ε)

]
i

∣∣
ε=0 form the proof of Lemma 2.
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A.7. Proof of Proposition 6

Noting that the IRF for CPI inflation is the expenditure share weighted average of sectoral inflation

rates, ∂
∂δm

πt =β⊺ ∂
∂δm

πt , we can use the result from Proposition 5 to write:

∂

∂δm
πt =

n∑
i=1

βi

[
ξi e−ξi t +ε∑

j ̸=i

ξ2
i +ρξi

(ξi −ξ j )(ξi +ξ j +ρ)

ai j

1−ai i
(ξ j e−ξ j t −ξi e−ξi t )

]
+O (∥ε∥2) (A.43)

Evaluating this at t = 0, differentaiting with respect to ε, and letting ε= 0 gives the impact response

in the Proposition:

∂ ∂
∂δm

π0

∂ε

∣∣
ε=0 =−∑n

i=1βiξi

[∑
j ̸=i

ξi+ρ
ξi+ξ j+ρ

ai j

1−ai i

]
< 0 (A.44)

which is strictly negative as long as some ai j is not zero. Now, to get the asymptotic responses, let

ι≡ argmini {ξi }, divide ∂
∂δm

πt in Equation (A.43) by e−ξιt and take the limit as t →∞:

lim
t→∞

∂
∂δm

πt

e−ξιt =βιξι+εβι
∑
j ̸=ι

ξ2
ι +ρξι

(ξ j −ξι)(ξ j +ξι+ρ)

aι j
1−aιι

ξι+ε
∑
j ̸=ι
β j

ξ2
j +ρξ j

(ξ j −ξι)(ξ j +ξι+ρ)

a j ι

1−a j j
ξι+O (∥ε∥2)

(A.45)

=βιξι+ε
∑
j ̸=i

[
βιξι

aι j (ξι+ρ)

1−aιι
+β jξ j

a j ι(ξ j +ρ)

1−a j j

]
ξι

(ξ j −ξι)(ξ j +ξι+ρ)
(A.46)

Differentiating this with respect to ε and setting ε= 0 we have:

∂ ∂
∂δm

πt

∂ε

∣∣
ε=0 ∼

∑
j ̸=i

[
βιξι

aι j (ξι+ρ)
1−aιι

+β jξ j
a j ι(ξ j+ρ)

1−a j j

]
ξιe−ξιt

(ξ j−ξι)(ξ j+ξι+ρ) > 0 (A.47)

which is strictly positive as long as aι j or a j ι are not all zero.

A.8. Proof of Proposition 7

For a given Γ(ε), recall from Equation (24) that the CIR of GDP (gap) to a monetary shock is given by

β⊺(
p
Γ(ε)− ρ

2 I)−11. Using the approximation from Lemma 2, we have

β⊺
√
Γ(ε)

−1
1 =β⊺(

√
ΓD − ρ

2
I)−11+εβ⊺[V′(0)(

√
ΓD − ρ

2
I)−1 − (

√
ΓD − ρ

2
I)−1V′(0)]1+O (∥ε∥2)

(A.48)

Now note that for i ̸= j :

[V′(0)(
√
ΓD − ρ

2
I)−1 − (

√
ΓD − ρ

2
I)−1V′(0)] j i = [V′(0)] j i (

1

ξi
− 1

ξ j
) (A.49)

= a j i

1−a j j

ξ2
j +ρξ j

(ξ j +ξi +ρ)(ξ j −ξi )

ξ j −ξi

ξ jξi
(A.50)

= a j i

1−a j j

ξ j +ρ
ξi +ξ j +ρ

1

ξi
(A.51)
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Thus,

β⊺
√
Γ(ε)

−1
1 =

n∑
i=1

βiξ
−1
i +ε

n∑
i=1

ξ−1
i

∑
j ̸=i

β j
a j i

1−a j j

ξ j +ρ
ξi +ξ j +ρ

+O (∥ε∥2) (A.52)

which concludes the proof.

A.9. Proof of Proposition 8

Recall from Proposition 4 that

∂

∂δi
z

πt = Xi

(
(
p
Γ− ρ

2
I)e−(

p
Γ− ρ

2 I)t −φi e−φi t I
)
Ψei

where Xi =
(
Γ− (ρ2 +φi )2I

)−1
(Γ− ρ2

4 I). Evaluating the impulse response above at t = 0 and plugging

in the expression for Xi , we have

∂

∂δi
z

π0 = X−1
i

(p
Γ− (

ρ

2
+φi )I

)
Ψei

=
(
Γ− (

ρ2

4
+φ2

i +ρφi )I
)−1 (p

Γ− (
ρ

2
+φi )I

)
(Γ− ρ2

4
I)Ψei

=
(
Γ− (φi + ρ

2
)2I

)−1 (p
Γ− (

ρ

2
+φi )I

)
(Γ− ρ2

4
I)Ψei

=
(p
Γ+ (

ρ

2
+φi )I

)
Θ(ρI+Θ)ei

Thus, the pass-through expression is

∂π0

∂πi ,0

∣∣
δi

z
≡

∂

∂δi
z
π0

∂

∂δi
z
πi ,0

= β⊺ (p
Γ+ (ρ2 +φi )I

)−1
Θ(ρI+Θ)ei

e⊺i
(p
Γ+ (ρ2 +φi )I

)−1
Θ(ρI+Θ)ei

= β⊺ (p
Γ+ (ρ2 +φi )I

)−1
ei

e⊺i
(p
Γ+ (ρ2 +φi )I

)−1
ei

Now letting Γ=Γ(ε) we have the following the Taylor expansion:

∂

∂δi
z
π0

∂

∂δi
z
πi ,0

=
 ∂

∂δi
z
π0

∂

∂δi
z
πi ,0


ε=0

+ ∂

∂ε

 ∂

∂δi
z
π0

∂

∂δi
z
πi ,0


ε=0

×ε+O (∥ε∥2)

where  ∂

∂δi
z
π0

∂

∂δi
z
πi ,0


ε=0

= β⊺ (p
ΓD + (ρ2 +φi )I

)−1
ei

e⊺i
(p
ΓD + (ρ2 +φi )I

)−1
ei

=βi

and

∂

∂ε

 ∂

∂δi
z
π0

∂

∂δi
z
πi ,0


ε=0

=−
(β⊺−βi e⊺i )

(p
ΓD + (ρ2 +φi )I

)−1
[
∂
∂ε

p
Γ(ε)

]
ε=0

(p
ΓD + (ρ2 +φi )I

)−1
ei

(ξi +ρ+φi )−1
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=−β
⊺ (p

ΓD + (ρ2 +φi )I
)−1

(V′(0)
p
ΓD −p

ΓD V′(0))
(p
ΓD + (ρ2 +φi )I

)−1
ei

(ξi +ρ+φi )−1

=−
∑

j ̸=i
β j

(ξi+ρ+φi )(ξ j+ρ+φi )
a j i

1−a j j

ξ2
j+ρξ j

(ξ j+ξi+ρ)(ξ j−ξi ) (ξi −ξ j )

(ξi +ρ+φi )−1

= ∑
j ̸=i

a j i
β j

1−a j j

ξ j

φi +ξ j +ρ
ξ j +ρ

ξi +ξ j +ρ
Thus,

∂

∂δi
z
π0

∂

∂δi
z
πi ,0

=βi +ε×
∑
j ̸=i

a j i
β j

1−a j j

ξ j

φi +ξ j +ρ
ξ j +ρ

ξi +ξ j +ρ
+O (∥ε∥2)

A.10. Proof of Lemma 3

Recall from Equation (19) that

π̇t = ρπt +Θ(ρI+Θ)(I−A)︸ ︷︷ ︸
Γ− ρ2

4 I

(pt −p f
t )

where p f
t ≡ wt 1+Ψ(ωt − zt ) from Equation (14) (Note, however, that with endogenous monetary

policy, p f
t is a nominal quantity that also depends on the stance of monetary policy and is no longer

exogenous to the system).

Recall also from the household’s intra-temporal Euler equation that with infinite Frisch elasticity

wt = pt + yt =β⊺pt + yt . Finally, recall from Equation (15) that output in the flexible economy is

given by y f
t =β⊺Ψ(zt −ωt ). From the last two equations, we observe that

pt −p f
t = (I−1β⊺)pt + (β⊺pt −wt )1−Ψ(ωt − zt )

= (I−1β⊺)pt − yt 1+ y f
t 1− y f

t 1−Ψ(ωt − zt )

= (I−1β⊺)pt − ỹt 1− (I−1β⊺)Ψ(ωt − zt )

= (I−1β⊺)pt︸ ︷︷ ︸
qt=pt−1β⊺pt

− (I−1β⊺)Ψ(ωt − zt )︸ ︷︷ ︸
q f

t =p f
t −1β⊺p f

t

−ỹt 1

= (qt −q f
t )− ỹt 1

Plugging this into the sectoral Phillips curves we have:

π̇t = ρπt + (Γ− ρ2

4
I)(qt −q f

t )− (Γ1− ρ2

4
1)ỹt
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A.11. Proof of Corollary 1

Necessity: Recall from Lemma 3 that the sectoral Phillips curve is given by

π̇t = ρπt + (Γ− ρ2

4
I)(qt −q f

t )− (Γ1− ρ2

4
1)ỹt (A.53)

Thus, if monetary policy aims to stabilize the GDP gap—i.e., ỹt = 0 for all t ≥ 0—then it is necessary

for sectoral prices to satisfy the above equation when ỹt = 0,∀t ≥ 0:

π̇t = ρπt +Θ(ρI+Θ)(I−A)(qt −q f
t ) (A.54)

Sufficiency: To show sufficiency, note that qt −q f
t = (I−1β⊺)pt −q f

t where

q f
t = (I−1β⊺)Ψ(ωt − zt ) (A.55)

which is an exogenous function of productivities and wedges across sectors. Thus, noting that

πt = ṗt , we can write the necessary condition above as

p̈t = ρṗt + (Γ− ρ2

4
I)(I−1β⊺)pt − (Γ− ρ2

4
I)q f

t (A.56)

which is a system of second-order differential equations with an exogenous force term q f
t . Thus,

given the boundary conditions p0 = p0− and non-explosive prices, this system of differential equa-

tions solely characterizes the dynamics of sectoral prices and is thus sufficient for their dynamics.

A.12. Proof of Proposition 9

Recall from Corollary 1 that the following sectoral Phillips curves are necessary and sufficient for

dynamics of sectoral prices when monetary policy fully stabilizes the GDP gap:

p̈t = ρṗt + (Γ− ρ2

4
I)(I−1β⊺)pt − (Γ− ρ2

4
I)q f

t (A.57)

where q f
t = (I−1β⊺)Ψ(ωt − zt ). Now, let p̃ f

t ≡Ψ(ωt − zt ) and note that, per Equation (14), this

corresponds to the flexible prices in an economy where monetary policy exogenously sets mt = 0.

Thus, the above system of differential equations can be written as

p̈t = ρṗt + (Γ− ρ2

4
I)(I−1β⊺)(pt − p̃ f

t ) (A.58)

Furthermore, note that

(Γ− ρ2

4
I)(I−1β⊺) =Θ(ρI+Θ)(I−A)(I −1β⊺) =Θ(ρI+Θ)(I−A−αβ⊺) (A.59)

where the last step follows from the fact that (I−A)1 =α. Thus, Equation (A.58) can be re-written as

p̈t = ρṗt +Θ(ρI+Θ)(I−Aβ)(pt − p̃ f
t ) (A.60)

where Aβ = A+αβ⊺. Now, comparing Equation (A.60) with the system of differential equations

in Proposition 1, we see that the sectoral prices of the economy with GDP gap stabilization are

equivalent to the sectoral prices of an economy with the adjusted network Aβ where monetary
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policy exogenously fixes mt = 0,∀t ≥ 0.

A.13. Proof of Proposition 10

Necessity follows immediately from the observation that if pη,t is stabilized at pη,0− , then πη,t =
π̇η,t = 0 for all t ≥ 0. To show sufficiency, we need to show that if mt is chosen according to

Equation (47) then πη,t = π̇η,t = 0 for all t . To this end, note that if mt is chosen according to

Equation (47) then Equation (46) reads:

π̇η,t = ρπη,t (A.61)

which is a second order differential equation in pη,t iwth the general solution:

pη,t = K0eρt +K1 (A.62)

for constants K0 and K1 that are to be determined under the boundary conditions taht pη,0 = pη,0−

and non-explosive prices. Since ρ > 0, non-explosive prices imply K0 = 0, and since K1 is then

determined as K1 = pη,0− . Thus, pη,t = pη,0− for all t ≥ 0.

B Equilibrium Definition

Here, we precisely define the equilibrium concept used in this paper.

Definition 2. A sticky price equilibrium for this economy is

(a) an allocation for the household, Ah = {(Ci ,t )i∈[n],Ct ,Lt ,Bt }t≥0 ∪ {B0−},

(b) an allocation for all firms A f = {(Yi ,t ,Y d
i j ,t ,Y s

i j ,t ,Li j ,t , Xi j ,k,t )i∈[n], j∈[0,1]}t≥0,

(c) a set of monetary and fiscal policies Ag = {(Mt ,Tt ,τ1,t , . . . ,τn,t )t≥0},

(d) and a set of prices P = {(Pi ,t ,Pi j ,t )i∈[n], j∈[0,1],Wt ,Pt , it }t≥0 ∪ {(Pi j ,0−)i∈[n], j∈[0,1]}

such that

1. given P and Ag , Ah solves the household’s problem in Equation (1),

2. given P and Ag , A f solves the final goods producers problems in Equation (3), intermediate

goods producers’ cost minimization in Equation (6) and their pricing problem in Equation (7),

3. labor, money, bonds and final sectoral goods markets clear and government budget constraint

is satisfied:

Mt = M s
t , Bt = 0, Lt =

∑
i∈[n]

∫ 1

0
Li j ,t d j ,

∑
i∈[n]

∫ 1

0
(1−τi ,t )Pi j ,t Yi j ,t d j = Tt ∀t ≥ 0 (B.1)

Yk,t =Ck,t +
∑

i∈[n]

∫ 1

0
Xi j ,k,t d j ∀k ∈ [n], ∀t ≥ 0 (B.2)

Furthermore, to understand how the stickiness of prices will affect and distort the equilibrium

allocations, we will make comparisons between the equilibrium defined above and its flexible-price

analog, formally defined below.
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Definition 3. A flexible price equilibrium is an equilibrium defined similarly to Definition 2 with the

only difference that intermediate goods producers’ prices solve the flexible price problems specified in

Equation (8) instead of the sticky price problem in Equation (7).

Finally, since we have defined our economy without any aggregate or sectoral shocks, we will

pay specific attention to stationary equilibria, which we define below.

Definition 4. A stationary equilibrium for this economy is an equilibrium as in Definition 2 or Defi-

nition 3 with the additional requirement that all the allocative variables in the household’s allocation

in Ah and the sectoral production of final good producers (Yi ,t )i∈[n] as well as the distributions of the

allocative variables for intermediate good producers in Ai are constant over time.46

C Derivations of Optimality Conditions in the Model

Here, we characterize the flexible- and sticky-price stationary equilibria of this economy.

C.1. Households’ Optimality Conditions

We can decompose the household’s consumption problem into two stages, where for a given level

of Ct the household minimizes her expenditure on sectoral goods (compensated demand) and

then decides on the optimal level of Ct as a function of lifetime income (uncompensated demand).

The compensated demand of the household for sectoral goods given the vector of sectoral prices

Pt = (P1,t , . . . ,Pn,t ) gives us the expenditure function:

E (Ct ,Pt ) ≡ min
C1,t ,...,Cn,t

∑
i∈[n]

Pi ,tCi ,t subject to Φ(C1,t , . . . ,Cn,t ) ≥Ct

= PtCt , Pt ≡ E (1,Pt ) (C.1)

where the second line follows from the first-degree homogeneity of the functionΦ(.) and Pt is the

cost of a unit of Ct and, or in short, the price of Ct . Note that due to the first-degree homogeneity

ofΦ(.), Pt does not depend on household’s choices and is just a function of the sectoral prices, Pt .

Applying Shephard’s lemma, we obtain that the household’s expenditure share of sectoral good i is

proportional to the elasticity of the expenditure function with respect to the price of i :

Pi ,tC∗
i ,t =βi (Pt )×PtCt where βi (Pt ) ≡ ∂ ln(E (Ct ,Pt ))

∂ ln(Pi ,t )
(C.2)

It is important to note that due to the first-degree homogeneity of the expenditure function, these

elasticities are independent of aggregate consumption Ct and only depend on sectoral prices, Pt .

Moreover, it is easy to verify that they are also a homogeneous of degree zero in these prices so that

the vector of household’s expenditure shares, denoted by βt ∈Rn , can be written as a function of

46Note that the production and input demands of individual intermediate goods producers do not need to be
time-invariant in the stationary equilibrium, but their distributions do.
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sectoral prices relative to wage:

βt =β(Pt/Wt ) (C.3)

Notably, a vector of constant expenditure shares corresponds toΦ(.) being a Cobb-Douglas aggre-

gator where sectoral goods are neither complements nor substitutes.

Given the household’s expenditure function and the aggregate price index Pt in Equation (C.1),

it is straightforward to derive the labor supply and Euler equations for bonds:

γ(Ct )
Ċt

Ct︸ ︷︷ ︸
marginal loss from saving

= it −ρ− Ṗt

Pt︸ ︷︷ ︸
marginal gain from saving

where γ(Ct ) ≡−U ′′(Ct )Ct

U ′(Ct )︸ ︷︷ ︸
inverse elasticity of intertemporal substitution

(C.4)

V ′(Lt )

U ′(Ct )︸ ︷︷ ︸
MRSLC

= Wt

Pt︸︷︷︸
real wage

=⇒ ψ(Lt )
L̇t

Lt
+γ(Ct )

Ċt

Ct
= Ẇt

Wt
− Ṗt

Pt
where ψ(Lt ) ≡ V ′′(Lt )Lt

V ′(Lt )︸ ︷︷ ︸
inverse Frisch elasticity of labor supply

(C.5)

Moreover, given a path of {Mt }t≥0 set by monetary policy where Mt = PtCt is the nominal GDP, we

have:

Ṗt

Pt
+ Ċt

Ct
= Ṁt

Mt
(C.6)

Note that by combining Equations (C.4) to (C.6) we can write the growth rate of wages as well as the

nominal interest rates as a function of consumption and labor supply growths:

Ẇt

Wt
=µ+ψ(Lt )

L̇t

Lt
+ (γ(Ct )−1)

Ċt

Ct
, it = ρ+ Ṁt

Mt
+ (γ(Ct )−1)

Ċt

Ct
(C.7)

Given Golosov and Lucas (2007) preferences U (Ct ) = log(Ct ) and V (Lt ) = Lt which imply γ(Ct ) = 1

and ψ(Lt ) = 0. Plugging these elasticities into the Euler equations above we can see how these

preference simplify aggregate dynamics by relating interest rates to nominal GDP growth and

nominal wages equal to nominal GDP:

it = ρ+ Ṁt /Mt , Wt = Mt

C.2. Firms’ Cost Minimization and Input-Output Matrices

We start by characterizing firms’ expenditure shares on inputs by first solving their expenditure

minimization problems. Since expenditure minimization is a static decision within every period,

our characterization of these expenditure shares closely follow Bigio and La’O (2020), Baqaee and

Farhi (2020), and we refer the reader to these papers for more detailed treatments.

Let us start with the observation that the firms’ cost function in Equation (6), given the wage
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and sectoral prices Pt = (Wt ,Pi ,t )i∈[n],47 is homogeneous of degree one in production:

Ci (Y s
i j ,t ;Pt , Zi ,t ) = min

L j k,t ,(Xi j ,k,t )k∈[n]

Wt Li j ,t +
∑

k∈[n]
Pk,t Xi j ,k,t subject to Zi ,t Fi (Li j ,t , (Xi j ,k,t )k∈[n]) ≥ Y s

i j ,t

=MCi (Pt , Zi ,t )×Y s
i j ,t , MCi (Pt , Zi ,t ) ≡Ci (1;Pt ,1)/Zi ,t (C.8)

where the second line follows from the first-degree homogeneity of the production function Zi Fi (.)

and MCi (Pt , Zi ,t ) is the cost of producing a unit of output, or in short, the firm’s marginal cost of

production. Note that due to the first-degree homogeneity of the production function, marginal

costs are independent of the level of production and depend only on the sector’s production

function and input prices. Applying Shephard’s lemma and re-arranging firms’ optimal demand

for inputs gives us the result that firms’ expenditure share of any input is the elasticity of the cost

function with respect to that input:

Wt L∗
i j ,t =αi (Pt )×MCi (Pt , Zi ,t )Y s

i j ,t , Pk,t X ∗
i j ,k,t = ai k (Pt )×MCi (Pt , Zi ,t )Y s

i j ,t , ∀k ∈ [n] (C.9)

where αi (Pt ) and ai k (Pt ) are the elasticities of the sector i ’s cost function with respect to labor and

sector k’s final good respectively:

αi (Pt ) ≡ ∂ ln(Ci (Y ;Pt ,1)/Zi ,t )

∂ ln(Wt )
, ai k (Pt ) ≡ ∂ ln(Ci (Y ;Pt ,1)/Zi ,t )

∂ ln(Pk,t )
∀k ∈ [n] (C.10)

with the property that αi (Pt )+∑
k∈[n] ai k (Pt ) = 1. It is important to note that the first-degree homo-

geneity of the cost function in Equation (6) also implies that these elasticities are only functions

of the aggregate wage and sectoral prices. It is also well-known that these elasticities are directly

related to the cost-based input-output matrix, denoted by At ∈ Rn×n , and the labor share vector,

denoted byαt ∈Rn :

[At ]i ,k ≡ total expenditure of sector i on sector k

total expenditure on inputs in sector i
= ai k (Pt ), ∀(i ,k) ∈ [n]2 (C.11)

[αt ]i ≡ total expenditure of sector i on labor

total expenditure on inputs in sector i
=αi (Pt ), ∀i ∈ [n] (C.12)

where the second equality holds only under firms’ optimal expenditure shares and follows from

integrating Equation (C.9). Since these elasticities are also homogeneous of degree zero in the price

vector Pt , Equations (C.11) and (C.12) imply that in any equilibrium, the cost-based input-output

matrix and the vector of sectoral labor shares are only a function of the sectoral prices relative to

the nominal wage; i.e.,

At = A(Pt/Wt ) = [ai k (Pt/Wt )], αt =α(Pt/Wt ) = [αi (Pt/Wt )] (C.13)

A notable example is Cobb-Douglas production functions, which imply constant elasticities for the

cost function—because inputs are neither substitutes nor complements—and lead to a constant

47Note that previously in characterizing the expenditure shares of the households, we defined Pt as the vector of
sectoral prices. Here, without loss of generality and with a slight abuse of notation, we are augmenting this vector with
the wage Wt .
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input-output matrix and constant vector of labor shares over time.

C.3. Firms’ Optimal Prices

Having characterized firms’ cost functions, we now derive the optimal desired prices, P∗
i j ,t , in

Equation (8) and reset prices, P #
i j ,t in Equation (C.15). It follows that the optimal desired price is a

markup over the marginal cost of production and proportional to the wedge introduced through

taxes/subsidies:

P∗
i j ,t = P∗

i ,t ≡
1

1−τi︸ ︷︷ ︸
tax/subsidy wedge

× σi

σi −1︸ ︷︷ ︸
markup

×MCi (Pt ,1)

Zi ,t︸ ︷︷ ︸
marginal cost

(C.14)

It is then straightforward to show that the firms’ optimal reset prices are a weighted average of all

future desired prices in industry i :

P #
i j ,t = P #

i ,t ≡
∫ ∞

0

weight (density) on P∗
i ,t+h︷ ︸︸ ︷

e−(θi h+∫ h
0 it+s ds)Yi ,t+hPσi

i ,t+h∫ ∞
0 e−(θi h+∫ h

0 it+s ds)Yi ,t+hPσi
i ,t+hdh

×P∗
i ,t+hdh

︸ ︷︷ ︸
weighted average of all future desired prices

(C.15)

Given this reset price, we can then calculate the aggregate price of sector i from Equation (4) as:

P 1−σi
i ,t =

∫ 1

0
P 1−σi

i j ,t d j = θi

∫ t

0
e−θi h(P #

i ,t−h)1−σi dh +e−θi t
∫ 1

0
P 1−σi

i j ,0−d j︸ ︷︷ ︸
=P

1−σi
i ,0−

(C.16)

where the second equality follows from the observation that at time t the density of firms that reset

their prices h periods ago to P #
i ,t is governed by the exponential distribution of time between price

changes and is equal to θi e−θi h .

C.4. Market Clearing and Total Value Added

Define the sales-based Domar weight of sector i ∈ [n] at time t as the ratio of the final producer’s

sales relative to the household total expenditure on consumption:

λi ,t ≡ Pi ,t Yi ,t /(PtCt ) (C.17)

Now, substituting optimal consumption of the household from sector k ∈ [n] in Equation (C.2)

and optimal demand of firms for the final good of sector k ∈ [n] in Equation (C.9) into the market

clearing condition for final good of sector k and dividing by household’s total expenditure, we get

λk,t =βi (Pt/Wt )+∑
i∈[n] ai k (1, Pt/Wt )λi ,t∆i ,t /µi ,t (C.18)
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where µi ,t ≡ Pi ,t /MCi (Pt ,Wt ) is the markup of sector i and ∆i ,t is the well-known measure of price

dispersion in the New Keynesian literature defined as

∆i ,t =
∫ 1

0
(Pi j ,t /Pi ,t )−σi d j ≥ 1 (C.19)

Where the inequality follows from applying Jensen’s inequality to the definion of the aggregate price

index Pi ,t .48 Thus, lettingλt ≡ (λi ,t )i∈[n] denote the vector of sales-based domar weights at time t

across sectors and M t ≡ diag(µi ,t /∆i ,t ) as the diagonal matrix whose i ’th diagonal entry is the price

dispersion adjusted markup wedge of sector i , we can write Equation (C.18) in the following matrix

form:

λt = (I−A⊺
t M−1

t )−1βt (C.20)

Finally, substituting firms labor demand into the labor market clearing condition, we arrive at the

following expression for the labor share:

Wt Lt

PtCt
=α⊺

t M−1
t λt (C.21)

C.5. Efficient Steady State

We log-linearize the model around an efficient steady state where the rate of growth in money

supply is zero (µ= 0), and fiscal policy sets distortionary subsidies such that in each sector prices

are equal to marginal costs. It is straightforward to verify that the allocation that prevails under these

assumptions coincide with the first-best allocations chosen by a social planner—hence justifying

the term efficient steady state. This is a standard result in New Keynesian models and we refer the

reader to La’O and Tahbaz-Salehi (2022) for its characterization in network economies with multiple

sectors.

Here, we characterize this steady state. To implement the efficient steady-state, fiscal policy sets

taxes to undo distortions arising from monopolistic competition so that τi =− 1
σi−1 ,∀i ∈ [n]

P∗
i j =MCi (P, Zi ),∀ j ∈ [0,1], i ∈ [n] (C.22)

where MCi ≡Ci (1;P, Zi ) is the marginal cost of sector i ∈ [n] at the efficient stationary equilibrium,

which is given by Equation (C.8) evaluated at (P, Zi ). From the firm’s cost minimization problem at

the stationary equilibrium, we also get the demand for labor and intermediate inputs

W Li j =αi (P)×MCi (P, Zi )Y s
i j (C.23)

Pk Xi j ,k = ai k (P)×MCi (P, Zi )Y s
i j , ∀k ∈ [n] (C.24)

where αi (P) and ai k (P) are the elasticities of the sector i ’s cost function with respect to labor and

48Note that 1 = [
∫ 1

0 (Pi j ,t /Pi ,t )1−σi d j ]
σi
σi −1 d j = [

∫ 1
0

(
(Pi j ,t /Pi , t )−σi

) σi −1
σi d j ]

σi
σi −1 d j ≤ ∫ 1

0 (Pi ,t /Pt )−σi d j .
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sector k’s final good at the stationary equilibrium, respectively:

αi (P) ≡ ∂ ln(Ci (Y ;P, Zi ))

∂ ln(W )
, ai k (P) ≡ ∂ ln(Ci (Y ;P, Zi ))

∂ ln(Pk )
, ∀k ∈ [n] (C.25)

Note that these elasticities are only functions of prices because the cost function is homogeneous

of degree one in production Y and homogeneous of degree -1 in productivity Zi , so the partial

derivatives of the log cost function do not vary with Y or Zi . Moreover, since the cost function is

homogeneous of degree 1 in the vector P, these elasticities are homogeneous of degree zero in P so

that they will not change if we normalize all prices in P by a constant wage W . Then, the cost-based

input-output matrix and the sectoral labor shares at the efficient stationary equilibrium can be

written in terms of these relative prices and are given by

A = A(P/W ) = [ai k (1, P/W )], α=α(P/W ) = [αi (1, P/W )] (C.26)

where we used the observation that the cost-based input-output matrix and the vector of sectoral

labor shares are only a function of the sectoral prices relative to the nominal wage. From the

representative retailer’s optimality conditions and the monopolistically competitive firm’s optimal

price, the aggregate sectoral price is

Pi/W =
(∫ 1

0

(
P∗

i j/W
)1−σi d j

) 1
1−σi =

(∫ 1

0
(MCi (P,Zi )/W )1−σi d j

) 1
1−σi =MCi (P/W , Zi ), ∀i ∈ [n] ∀ j ∈ [0,1]

(C.27)

where the last equality uses the first-degree homogeneity of the marginal cost function with respect

to P. Now, let p̃ ≡ (ln(Pi/W ))i∈[n] denote the vector of log of the sectoral prices relative to the

wage in the steady-state. With slight abuse of notation, also let e p̃ ≡ (Pi /W )i∈[n]. Then, writing

Equation (C.27) in terms of p̃ gives:

p̃ = f (p̃) ≡ (
ln(MCi (e p̃, Zi ))

)
i∈[n] (C.28)

Note that function f (.) : Rn → Rn depends only on log relative prices and the steady-state values

of productivity across sectors that are exogenous to the model. Thus, we see that relative prices

in the steady state are fully pinned down by the structure of the marginal cost functions and the

steady-state values of productivities. Moreover, these relative prices are a fixed point of the function

f (.). Furthermore, note that the Jacobian of the f (x) function is the input-output matrix evaluated

at the implied relative prices by x, which we will refer to as A(x). Note that the spectral radius of

this Jacobian, denoted by ρ(A(x)), is strictly less than one under the assumption of CRS production

functions and the fact that production functions satisfy Inada conditions. With a slightly stronger

assumption that supx ρ(A(x)) < 1−ϵ, for some however infinitesimal ϵ> 0, it is straightforward to

show that the function f (.) is a contraction mapping in Rn and has a unique fixed point according
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to Banach fixed point theorem.49 So, there exists a unique set of p̃∗ ∈ Rn such that

p̃∗ = f (p̃∗) (C.29)

Moreover, recall that in the equilibrium with Golosov and Lucas (2007) preferences, W = M , where

M is the nominal demand of the economy that is fixed by the central bank. So, given this nominal

anchor, nominal sectoral prices are given by

P∗/W = e p̃∗ =⇒ P∗ = Me p̃∗
(C.30)

Thus, having solved for P∗
i for every sector i , we have

P∗
i j = P∗

i =⇒ Y d
i j = Yi , ∀i ∈ [n], ∀ j ∈ [0,1] (C.31)

So we only need to solve for quantities Y ∗
i and C∗

i . To get these, first, recall that

Pi Ci =βi (P)×PC =βi (P∗/W)×M (C.32)

where

βi (P) ≡ ∂ ln(E (C ;P))

∂ ln(Pi )
(C.33)

with E (C ;P) is the expenditure function in the stationary equilibrium, which is fully pinned down

by the shape of the aggregator functionΦ. Thus,

C∗
i = βi (P∗)M

P∗
i

, ∀i ∈ [n] (C.34)

Finally, note that

Y ∗
i = Mλ∗

i

P∗
i

(C.35)

where λ∗
i is the Domar weight of sector i in the steady state. Note that, by Equation (C.20), these

Domar weights are given by the vector of prices as

(λ∗
i )i∈[n] =λ= (I−A(P∗)⊺)−1β(P∗) (C.36)

and

C∗ =W ∗/P∗ = M∗/P∗, P∗ = E (1;P∗) (C.37)

Finally, other variables of the model are implied by these prices and quantities:

i∗ = ρ, L∗ = P∗C∗/M = 1 (C.38)

where the second equation follows from Equation (C.26) evaluated in the steady state.

49For instance, in a Cobb-Douglas, it is straightforward to verify that such an ϵ> 0 exists as long as all sectors have a
positive labor share, which follows from the Inada conditions.
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C.6. Log-linearization

Let small letters denote the log deviations of their corresponding variables from their stationary

equilibrium values. That is, xt ≡ ln(X t/X ∗).

Desired Prices. Taking the FOC for desired prices in Equation (8), we obtain:

P∗
i ,t =

σi

σi −1

1

1−τi ,t
MCi ,t (C.39)

Letting ωi ,t ≡ ln( σi
σi−1

1
1−τi ,t

), first note that the value of ωi ,t in the efficient steady state is 0, and

second, we have

p∗
i ,t =ωi ,t +mci ,t (C.40)

Marginal Cost. Recall from Equation (C.8) that the marginal cost of a firm in sector i is equal to their

average cost due to constant returns to scale and is defined by their cost minimization problem

MCi (Pt , Zi ,t ) = min
L j k,t ,(Xi j ,k,t )k∈[n]

Wt Li j ,t +
∑

k∈[n]
Pk,t Xi j ,k,t (C.41)

subject to Zi ,t Fi (Li j ,t , (Xi j ,k,t )k∈[n]) ≥ 1 (C.42)

which also holds in the efficient steady state. Now, log-linearizing this equation around the efficient

steady state, we have:

mci ,t ≈
∂ ln(MC∗

i )

∂ ln(W ∗)
wt +

∑
k∈[n]

∂ ln(MC∗
i )

∂ ln(P∗
k )

pk,t − zi ,t (C.43)

=αi wt +
∑

k∈[n]
ai k pk,t − zi ,t , ∀i ∈ [n] (C.44)

where (αi , ai k )k∈[n] in the second line are the elasticities of marginal cost with respect to wage and

prices in the steady state, respectively. Applying the envelope theorem to the cost minimization

problem (Shephard’s Lemma), we can see that αi is the labor share of firms in sector i and ai k is

their expenditure share on intermediate input k, under steady state prices. Finally, note that under

Golosov and Lucas (2007) preferences wt = pt + ct = mt so that

mci ,t =αi mt +
∑

k∈[n]
ai k pk,t − zi ,t , ∀i ∈ [n] (C.45)

Reset Prices. Consider the derivation of optimal reset prices in Equation (C.15) and let

Ξi ,t ,h ≡
e−(θi h+∫ h

0 it+s ds)Yi ,t+hPσi
i ,t+h∫ ∞

0 e−(θi h+∫ h
0 it+s ds)Yi ,t+hPσi

i ,t+hdh
(C.46)

Note that at any given t and i , by definition,
∫ ∞

0 Ξi ,t ,hdi = 1. Moreover, given this notation, we can

re-write Equation (C.15) as

P #
i j ,t = P #

i ,t =
∫ ∞

0
Ξi ,t ,hP∗

i ,t+hdh (C.47)
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Log-linearizing this, we obtain that (up to first order deviations):

p#
i ,t ≈

∫ ∞

0
Ξ∗

i ,h p∗
i ,t+hdh +

∫ ∞

0
(Ξi ,t ,h −Ξ∗

i ,h)dh (C.48)

but note that the second integral is zero because both Ξi ,t ,h and Ξ∗
i ,h integrate to 1. Moreover, note

that the value of Ξi ,t ,h in the steady state is given by

Ξ∗
i ,h = e−(θi+i∗)hY ∗

i P∗
i
σi∫ ∞

0 e−(θi+i∗)hY ∗
i P∗

i
σi dh

= (θi +ρ)e−(θi+ρ)h (C.49)

where we have used the fact that i∗ = ρ in the efficient steady state. Hence, we have that

p#
i ,t ≈ (θi +ρ)

∫ ∞

0
e−(ρ+θi )h p∗

i ,t+hdh (C.50)

Aggregate Sectoral Prices. Recall from Equation (C.16) that the aggregate sectoral price of sector i

is the generalized mean of past reset prices and the initial sectoral price at time 0−, weighted by the

density of time between price changes:

Pi ,t =
[∫ t

0
θi e−θi h(P #

i ,t−h)1−σi dh +e−θi t P 1−σi
i ,0−

] 1
1−σi

, ∀i ∈ [n] (C.51)

Log-linearizing this gives:

pi ,t ≈ θi

∫ t

0
e−θi h p#

i ,t−hdh +e−θi t pi ,0− (C.52)

Consumer Price Index. Recall from Equation (C.1) that the consumer price index, denoted by Pt , is

given by:

Pt = E (1,Pt ) (C.53)

where E is the expenditure function and Pt is the vector of sectoral prices at time t . Log-linearizing

this gives:

pt ≈
∑

i∈[n]

∂ ln(E (1,P∗))

∂ ln(P∗
i )

pi ,t =
∑

i∈[n]
βi pi ,t (C.54)

where βi after the second equality is the elasticity of the price index with respect to the price of

sector i . Applying Shephard’s Lemma, we obtain that βi is the consumption expenditure share of

the household on the final good of sector i .

Aggregate GDP and GDP gap. Under our benchmark where monetary policy directly sets the

aggregate nominal GDP, in log deviations, aggregate real GDP is simply the difference between log

nominal GDP and log aggregate price:

yt = mt −pt (C.55)

Moreover, if the nominal aggregate GDP set by monetary policy is the same across the flexible

and sticky price economies (e.g. when monetary policy does not respond to endogenous prices or

66



quantities), then the output gap is given by the nominal CPI gap:

mt = pt + yt = p f
t + y f

t =⇒ ỹt = yt − y f
t = p f

t −pt , p f
t = mt +λ⊺(ωt − zt ) (C.56)

where the expression for p f
t is coming from Equation (14). Given these, the interest rates are then

determined passively as a function of these allocations from the Euler equation. In particular, with

Golosov and Lucas (2007) preferences and a fixed nominal GDP over time, interest rates are simply

equal to ρ on the equilibrium path.

Beyond our benchmark economy, however, e.g. when preferences deviate from Golosov and

Lucas (2007) or monetary policy is endogenous like in the case of a Taylor rule, the GDP and

sectoral prices are jointly determined by the endogenous monetary policy and the log-linearized

Euler equation of the household. We derive the expressions for these cases in our extensions in

Appendix D.1 and Appendix D.2.

The Labor Share Equation and the Aggregate Production Function. Recall from Equation (C.26)

that the aggregate labor share of this economy is given by:

Wt Lt

PtCt
=α⊺

t M−1
t λt (C.57)

=1⊺(I−A⊺
t )M−1

t (I−A⊺
t M−1

t )−1βt (C.58)

=1⊺(I+ (M t − I)Ψ⊺
t )−1βt (C.59)

whereΨt ≡ (I−At )−1 is the inverse Leontief matrix, M t ≡ diag(µi ,t/∆i ,t ) is the diagonal matrix whose

i ’th diagonal entry is the price dispersion adjusted markup wedge of sector i . First note that the

value of the labor share in the efficient steady state is 1 because in this steady state M = I (net

markups are zero and there is no price dispersion), so:

W ∗L∗

P∗C∗ = 1⊺β= 1 (C.60)

where the second equality follows from the fact that expenditure shares in β sum to 1. Moreover,

note that:

Mt − I = diag(pi ,t −mci ,t )−diag(∆i ,t )+O
(∥Mt − I∥2) (C.61)

But note that mci ,t , up to first-order, is itself a function of prices as we showed above. Moreover, it

is straightforward to verify that price dispersion ∆i ,t is of second order in prices in sector i (see, e.g.,

Gali, 2008, p. 63). Thus, letting p̂ ≡ (pi j ,t )i∈[n], j∈[0,1], we obtain:

Mt − I = diag(pi ,t −mci ,t )+O
(∥∥p̂

∥∥2
)

(C.62)

Therefore, noting thatΨt is also changing over time only as a function of prices (Since the input-

output matrix is determined by prices as in Equation (C.11)):

(I+ (Mt − I)Ψ⊺
t )−1 = I−diag(pi ,t −mci ,t )Ψ⊺+ (M − I )︸ ︷︷ ︸

=0

(Ψ⊺
t −Ψ⊺)+O

(∥∥p̂
∥∥2

)
(C.63)
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Hence, noting also that βt only depends on time through prices, we obtain:

1⊺(I+ (Mt − I)Ψ⊺
t )−1βt = 1−β⊺Ψ(pt −mct )+O

(∥∥p̂
∥∥2

)
(C.64)

= 1−β⊺Ψ(I−A)(pt −wt 1)−β⊺Ψzt +O
(∥∥p̂

∥∥2
)

(C.65)

= 1−pt +wt −λ⊺zt +O
(∥∥p̂

∥∥2
)

(C.66)

where λ is the vector of Domar weights in the efficient steady state. Finally. note that in log

deviations the labor share equation can be written as

wt + lt −pt − ct = ln(1−pt +wt −λ⊺zt +O
(∥∥p̂

∥∥2
)
) (C.67)

=−pt +wt −λ⊺zt +O
(∥∥p̂

∥∥2
)

(C.68)

Therefore, we obtain the following log-linear aggregate production function:

ct =λ⊺zt + lt +O
(∥∥p̂

∥∥2
)

(C.69)

D Derivations for Extensions

D.1. Derivations for Finite Frisch Elasticity

For general labor supply elasticity, let U (C ) = lnC and V (L) = L1+ψ
1+ψ . Under these preferences, the

agent’s intra-temporal first-order condition becomes

Wt

Pt
=Ct Lψt (D.1)

With its log-linearized version being

wt −pt = ct +ψlt (D.2)

Using mt = pt + ct aggregate GDP, we get

wt = mt +ψlt (D.3)

Since, in this benchmark, mt is exogenous and the same across both flexible and sticky economies,

doing the same at the flexible price equilibrium, and taking differences we have

(wt −w f
t )− (pt −p f

t ) = (ct − c f
t )+ψ(lt − l f

t ) (D.4)

wt −w f
t =ψ(lt − l f

t ) (D.5)

Thus,

mt = pt + ct = p f
t + c f

t =⇒ ct − c f
t =−(pt −p f

t ) (D.6)

Moreover, from the aggregate production function in Equation (C.69) we have that up to first order

ct =λ⊺zt + lt , which implies that

ct − c f
t = lt − l f

t (D.7)
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Combining the last three equations, we have:

wt −w f
t =ψ(lt − l f

t ) =ψ(ct − c f
t ) =−ψ(pt −p f

t ) (D.8)

Now, consider the equation for the desired prices, while adding and subtracting (I−A)1w f
t . We

obtain:

p∗
t =(I−A)1wt − (I−A)1w f

t + (I−A)1w f
t +Apt − zt +ωt (D.9)

First, recall that the flexible price equilibrium is given by this equation when p∗
t = pt = p f

t :

p f
t = (I−A)1w f

t +Ap f
t − zt +ωt (D.10)

= w f
t 1−Ψ(zt −ωt ) (D.11)

now multiplying by β⊺ we have:

p f
t = w f

t −λ⊺(zt −ωt ) = mt +ψl f
t −λ⊺(zt −ωt ) (D.12)

=⇒ c f
t = mt −p f

t =−ψl f
t +λ⊺(zt −ωt ) (D.13)

=⇒λ⊺zt + l f
t =−ψl f

t +λ⊺(zt −ωt ) (D.14)

=⇒ l f
t =− 1

1+ψλ
⊺ωt (D.15)

=⇒ w f
t = mt +ψl f

t = mt − ψ

1+ψλ
⊺ωt (D.16)

so that

p f
t = w f

t 1−Ψ(zt −ωt ) = mt 1−Ψzt + (Ψ− ψ

1+ψ1λ⊺)ωt (D.17)

Moreover, using Equation (D.9) and Equation (D.8), we can re-write Equation (D.10) as:

p∗
t −pt = (I−A)

(
(wt −w f

t )1+w f
t 1−Ψ(zt −ωt )−pt

)
(D.18)

= (I−A)(I+ψ1β⊺)(p f
t −pt ) (D.19)

Now, recall from Equations (17) and (18) that πt = ṗt =Θ(p#
t −pt ) and π#

t = (ρI+Θ)(p#
t −p∗

t ),

which still hold in this economy because they are implied by firm side optimality of aggregation

conditions. Differentiating Equation (18) with respect to time and using and Equation (D.18) we

obtain:

π̇t = p̈t =Θ(π#
t −πt ) =Θ(ρI+Θ)(p#

t −p∗
t )−Θπt

=Θ(ρI+Θ)(pt −p∗
t )+Θ(ρI+Θ)(p#

t −pt )−Θπt︸ ︷︷ ︸
=ρπt by Equation (18)

(D.20)

= ρπt −Θ(ρI+Θ)(I−A)(I+ψ1β⊺)(p f
t −pt ) (D.21)
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D.2. Equilibrium with Taylor Rule

Here, we consider a version of our benchmark economy where the monetary authority, instead of

directly fixing the nominal GDP, sets the nominal interest rate according to a Taylor rule of the type:

it =η⊺πt + vt (D.22)

where, if η = φπβ as in the main text, the Taylor rule targets the CPI inflation, but note that the

central bank can target any weighted sum of sectoral inflation rates (e.g. ignoring energy and food

prices, which leads to targeting core inflation). Moreover, vt constitutes deviations from the rule,

with its path over time given under perfect foresight. Usually, in the monetary literature, vt is

assumed to be an AR(1) process under perfect foresight.

It is important to note that the main difference between this economy and our benchmark is that,

here, the implied nominal GDP is endogenous (as opposed to being exogenous and the same across

the flexible and sticky economies), and the Taylor rule creates feedback between prices and nominal

GDP. In other words, in our benchmark economy, monetary policy exogenously determined the size

of nominal GDP and the supply side frictions determined its divide between nominal prices and

quantities. But now, the size of the nominal GDP itself depends on these frictions. Note, however,

that under Golosov and Lucas (2007) preferences, the intratemporal condition wt = mt still holds,

but now mt ̸= m f
t . Moreover, with these preferences, the intertemporal Euler equation is ẏt = it −πt

or, moving things around, it = ṁt = πt + ẏt . Combining the Euler equation and the Taylor rule

above, we arrive at:

it = ṁt =η⊺πt + vt (D.23)

Notice how the level of nominal GDP is no longer pinned down when monetary policy targets

inflation through a Taylor rule. Instead, only the growth rate of nominal GDP is determined by the

path of interest rates. This raises the usual issues with determinacy that we discuss below.

To solve for inflation rates in this economy, we start from Equations (17) and (18), which still hold

in the Taylor rule economy because they purely depend on firm side optimization and aggregation:

πt =Θ(p#
t −pt ), π#

t = (ρI+Θ)(p#
t −p∗

t )

where

p∗
t = (I−A)1mt +Apt − zt +ωt (D.24)

Differentiating this last equation with respect to time and using Equation (D.23), we obtain:

ṗ∗
t −πt = (I−A)1ṁt − (I−A)πt − żt + ω̇t = (I−A)(1η⊺− I)πt − żt + ω̇t + (I−A)1vt (D.25)

Note that again, we can define the flexible economy inflation rate as the rate that arises when
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π∗
t =πt =π f

t , which gives:

(I−1η⊺)π f
t = 1vt −Ψ(żt − ω̇t ) (D.26)

Note that all the terms in this expression are exogenous, which implies that π f
t is exogenous.

Combined with Equation (D.25), this gives:

ṗ∗
t −πt = (I−A)(I−1η⊺)(π f

t −πt ) (D.27)

Now, differentiate Equation (18) with respect to time twice, Equation (17) once, and use Equa-

tion (D.27) to get

π̈t =Θ(π̇#
t − π̇t ) =Θ(ρI+Θ)(π#

t − ṗ∗
t )−Θπ̇t (D.28)

=−Θ(ρI+Θ)(ṗ∗
t −πt )+Θ(ρI+Θ)(π#

t −πt )−Θπ̇t︸ ︷︷ ︸
=ρπ̇t

(D.29)

=⇒ π̈t = ρπ̇t +Θ(ρI+Θ)(I−A)(I−1η⊺)(πt −π f
t ) (D.30)

Note that Equation (D.30) is a system of second-order differential equations in the vector of sectoral

inflation rate,πt , withπ f
t acting as an exogenous force term to the system. Thus, the equilibrium

is a solution to this system of differential equations. But note that by introducing the Taylor rule,

we have to discuss a new set of boundary conditions for the system. In particular, we need to

characterize what determinacy requires in this system (recall that even in the one-sector NK model,

the solution to the model can be indeterminate—i.e. the system can have multiple non-explosive

equilibria—if the Taylor principle is not satisfied).

To obtain a particular solution to the system of differential equations above, we need 2n bound-

ary conditions. Of those, n of them are given by the non-explosiveness of the solution as before.

Moreover, of all the non-explosive solutions, the equilibrium requires that the solution be such that

relative prices go back to their steady-state values; i.e.,

lim
t→∞pi ,t −pi ,0− = p j ,t −p j ,0− , ∀i ∈ [n],∀ j ̸= i , j ∈ [n] (D.31)

which defines another n − 1 set of boundary conditions. Therefore, non-explosive prices plus

the requirement that relative prices go back to their steady state values gives us 2n −1 boundary

conditions. The last boundary condition is given by the extension of the Taylor principle to this

network economy. This essentially requires that the matrix Γη ≡ Θ(ρI +Θ)(I − A)(I − 1η⊺) has

a negative eigenvalue so that one cannot construct more than one non-explosive solution that

converges back to the same steady state. Notice that in one sector economies, where η is scalar,

Γη < 0 ⇐⇒ η> 1 (D.32)

which is exactly the Taylor principle. Take, for instance, the case where π f
t = 0 in such an economy.

Then, with η> 1, the only non-explosive solution that converges to the steady state is πt = 0 (unless

we accept oscillatory solutions, but they do not converge back to the steady state). But with 0 < η< 1,
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we have a continuum of non-explosive convergent solutions πt =C0e−ηt for any C0 ∈R, which is

the same as indeterminacy.

As for the general system above, given these boundary conditions, we can solve for the equilib-

rium given any path of shocks. Specifically, in our numerical exercises, when we solve this model,

we numerically verify that Γη has exactly one negative eigenvalue and proceed to solve for the

equilibrium using Schur decomposition and imposing the relevant boundary conditions.

E Data Appendix

Propositions 2 to 4 show that the sufficient statistics for inflation and output dynamics in response to

shocks in our model are the duration-adjusted Leontief matrix, Γ=Θ2(I−A), and the consumption

expenditure shares across sectors, given by β. We now describe in detail how we construct Γ and β

using detailed sectoral US data.

First, we use the input-output (IO) tables from the BEA to construct the input-output linkages

across sectors,50 given by the matrix A; the consumption expenditure shares across sectors, given

by the vector β; and the sectoral labor shares, given by the vector α. In particular, to construct

A, we use both the “make” and “use” IO tables.51 The “use” IO table also provides data on the

compensation of employees, which is used to construct the sectoral labor sharesα. Moreover, the

“use” IO table also provides data on personal consumption expenditure, which is used to construct

the consumption expenditure shares across sectors, β. Figure F.2 presents the matrix A we construct

from the data, in a heat-map version.

Next, we construct the diagonal matrixΘ2, whose diagonal elements are the squared frequency

of price adjustment in each sector, using data on 341 sectors from Pasten, Schoenle, and Weber

(2020). First, we match data from Pasten, Schoenle, and Weber (2020) on the frequency of price

changes with the 2002 concordance table between IO industry codes and the 2002 NAICS codes.

Then, we match these codes with the 2012 concordance table between IO industry codes and 2012

NAICS codes. The last step is performed in order to get the frequency of price adjustment data for

sectors in the 2012 IO table.

E.1. Constructing the Input-Output Matrix

In this subsection, we describe how we use the “Make” and “Use” matrices to get the cost-based

industry-by-industry input-output table. Specifically, we use the 2012 “Make” table after redefini-

tions and the 2012 “Use” table after redefinitions in producers’ value.

Recall that the “Make” table is a matrix of Industry-by-Commodity. Given a row, each column

50We construct industry-by-industry IO tables. We use industry and sector interchangeably.
51The “make” table is a matrix of industries on the rows and commodities on the columns that gives the value of each

commodity on the column produced by the industry on the rows. The “use” table is a matrix of commodities on the
rows and industries on the columns that gives the value of each commodity on the row that was used by each industry
in the column. We combine both matrices to give an industry-by-industry IO matrix.
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shows the values of each commodity produced by the industry in the row. The “Use” table is a

matrix of Commodity-by-Industry. Given a column, each row shows the value of each commodity

used by the industry (or final use) in the column. In order to create an industry-by-industry IO

table, we combine both. We follow the Handbook of Input-Output Table Compilation and Analysis

from the UN (United Nations Department of Economic and Social Affairs, 1999) and Concepts and

Methods of the United States Input-Output Accounts from the BEA (Horowitz and Planting, 2009).

We exclude the government sector, Scraps, Used and secondhand goods, Noncomparable imports,

and Rest of the world adjustment.52

It is important to note that an industry can produce many commodities. Although each industry

may have its own primary product,53 an industry can produce more products in addition to its

primary ones. These are shown in the “Make” table. Besides that, each industry has its own use of

commodities to produce its output. This is shown in the “Use” table. As a result, there is a distinction

between industries and commodities, as a given commodity can be produced by different industries

while industries can produce different commodities.

In our model, we consider a log-linearization of the economy around an efficient steady state.

This implies that in the steady state, the wedges are equal to zero for all sectors and the revenue-

based and the cost-based input-output matrices are the same. In the data, these are not the same

and we need to take into account the wedge between revenue and cost when calculating the object

of interest in our model - the cost-based input-output matrix.

Input-Output Matrix (A) and Labor Shares (α). From the “Use” table from the BEA, a given column

j gives:

Total Industry Output j =Total Intermediate j

+Compensation of Employees j

+Taxes on production and imports, less subsidies j

+Gross operating surplus j

where Total Intermediate j is the sum of the dollar amount of each commodity used by industry j .

The total cost is given by

Total Industry Cost j = Total Intermediate j +Compensation of Employees j

52Baqaee and Farhi (2020) also exclude these sectors. Besides them, we exclude Customs duties, which is an industry
with zero commodity use and zero compensation of employees. After excluding these industries and commodities, we
end up having 392 commodities and 393 industries. The industry that does not have a corresponding commodity with
the same code is ‘Secondary smelting and alloying of aluminum’, with code 331314

53According to the BEA, ‘each commodity is assigned the code of the industry in which the commodity is the primary
product’.
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Therefore,

P j Y j︸ ︷︷ ︸
Total Industry Output

= (1+ω j )︸ ︷︷ ︸
Wedge

(∑
i

Pi X j i +W L j

)
︸ ︷︷ ︸

Total Industry Cost

where we implicitly assume that the wedge is attributed to taxes and gross operating surplus. That

is

(1+ω j ) ≡
Total Intermediate j +Compensation of Employees j +Taxes j +Gross Operating Surplus j

Total Intermediate j +Compensation of Employees j

(E.1)

Let diag(1+ω) be the diagonal matrix in which each j -th diagonal is the wedge in industry j . We

calculate the cost-based IO matrix by first calculating the revenue-based IO matrix and then, using

these wedges, recovering the cost-based IO matrix. First, we calculate the revenue-based IO matrix.

Let U(NC+1)×NI be the “Use” matrix (commodity-by-industry) that gives for each cell ui j the dollar

value of commodity i used in the production of industry j and in the last row the compensation of

employees. Let MNI×NC be the “Make” matrix (industry-by-commodity) that gives for each cell mi j

the dollar value of commodity j produced by i . Let gNI×1 be the vector of industry total output and

qNC×1 be the vector of commodity output, where NC is the number of commodities and NI is the

number of industries. Then, define the following matrices

B = U×diag(g)−1 (E.2)

D = M×diag(q)−1 (E.3)

where diag(g) is the diagonal matrix of vector g and diag(q) is the diagonal matrix of vector q. The

matrix D is a market share matrix. Its entry di j gives the market share of industry i in the production

of commodity j . The matrix B is a direct input matrix. Its entry bi j gives the dollar amount share of

commodity i in the output of industry j . Let

B =
[

BNC×NI
I

α̃
⊺
1×NI

]
(E.4)

where BI is the part of B that includes all intermediate inputs and industries and α̃′ includes the

labor share in each industry’s output. Then, the revenue-based industry-by-industry IO matrix is

given by

Ã = (DBI )⊺ (E.5)

To go from the revenue-based IO matrix to the cost-based IO matrix, first recall that

[Ã]i j =
P j Xi j

Pi Yi
(E.6)
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where P j Xi j is the expenditure of industry i on industry j , Pi Yi is the revenue of the industry i . The

cost-based IO matrix is given by

A = [
ai j

]
i∈[n], j∈[n] , ai j =

P j Xi j

Ci
(E.7)

where Ci ≡∑
k Pk Xi k +W Li is the total cost of industry i . Since Pi Yi = (1+ωi )Ci , we have that

ai j =
P j Xi j

Ci
= Pi Yi

Ci

Ci

Pi Yi

P j Xi j

Ci
= (1+ωi )[Ã]i j (E.8)

Hence, as in Baqaee and Farhi (2020)

A = diag(1+ωi )Ã (E.9)

To go from the revenue-based labor share to the cost-based labor share, first recall that

α̃i = W Li

Pi Yi
(E.10)

where W Li is the compensation of employees of the industry i . The cost-based labor share is given

by

α= (αi )i∈[n], αi = W Li

Ci
(E.11)

Using similar arguments as above, we have that

αi = W Li

Ci
= Pi Yi

Ci

Ci

Pi Yi

W Li

Ci
= (1+ωi )α̃i (E.12)

and the cost-based labor shares are given by

α= diag(1+ωi )α̃ (E.13)

Alternatively, instead of using the vector of industry outputs g, we can calculate the cost-based

IO matrix using the vector of industry costs (total intermediate + compensation of employees) g̃.

In this case, define B̃ ≡ Udiag(g̃)−1, where, similar to above, B̃ is composed of B̃I that includes all

intermediate inputs and industries andα⊺ which is the vector with compensation of employees for

each industry. Given this decomposition, we can construct the corresponding cost-based IO matrix

as A = (DB̃I )⊺. Note that this gives the same cost-based IO matrix as above.

Consumption Share (β). The “Use” table gives the Personal Consumption Expenditures on each

commodity. Since we are working with an industry-by-industry IO matrix, we need to calculate an

industry consumption share vector. In order to do that, let Ci be the consumption dollar amount

of commodity i , and c be the vector of the consumption dollar amount of all commodities in

the economy. Then, the vector that contains the dollar equivalent consumption amount of each
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industry is given by Dc:

Dc =


∑

j d1 j c j∑
j d2 j c j

...∑
j dn j c j

 (E.14)

Recall that di j gives the market share of industry i in the production of commodity j . Therefore,

di j c j is the amount in dollars spent by households on commodity j produced by i . Then, the sum

over j gives the total expenditure in dollars of households on commodities produced by industry i .

That is, the total expenditure in dollars of households on industry i . Then,

β= Dc

1′Dc
(E.15)

E.2. Constructing the Frequency of Price Adjustment Matrix

To get the 2012 detail-level industry frequency of price adjustments from the 2002 detail-level

industry frequency of price adjustments, we had to manually match them. There were five cases in

which industries could fall:

1. Industries with exact matching: the 2002 detail-level industry exactly correspond to the 2012

detail-level industry. In these cases, we use the 2002 detail-level industry frequency of price

adjustment as the 2012 detail-level industry frequency of price adjustment. E.g.: Poultry and

egg production (2002 IO Code: 112300, 2002 NAICS Code: 1123; 2012 IO Code: 112300; 2012

NAICS Code: 1123).

2. Industries with close matching: the 2002 detail-level industry closely correspond to the 2012

detail-level industry. In these cases, we use the 2002 detail-level industry frequency of price

adjustment as the 2012 detail-level industry frequency of price adjustment. E.g.: In 2012 there

is Metal crown, closure, and other metal stamping (except automotive) (2012 IO Code: 332119,

2012 NAICS Code: 332119). In 2002, there is Crown and closure manufacturing and metal

stamping (2002 IO Code: 33211B, 2002 NAICS Code: 332115-6).

3. Industry present in 2002, but not in 2012: these are detail-level industries that were present in

2002, but not in 2012. These are 2002 industries that seem to be put into a coarser industry in

2012. We match the 2002 industries with the coarser 2012 industry. If there are more than one

2002 industry that are associated with the coarser industry in 2012 with frequency of price

adjustment data, we use their average frequency of price adjustment as the 2012 industry

frequency of price adjustment. E.g.: Other crop farming (2012 IO Code: 111900, 2012 NAICS

Code: 1119). In 2002, there were three industries for which we have data on frequency of

price adjustment, that seem to belong to that industry: All other crop farming (2002 IO Code:

1119B0; 2002 NAICS Code: 11194, 111992, 111998), Tobacco farming (2002 IO Code: 111910,

2002 NAICS Code: 11191), Cotton farming (2002 IO Code: 111920, 2002 NAICS Code: 11192).
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We take the average of these industries’ frequency of price adjustment and use as the Other

crop farming frequency of price adjustment.

4. Industry present in 2012, but not in 2002: these are detail-level industries that were present in

2012, but not in 2002. These are industries in 2012 that seem to be put into a coarser industry

in 2002. In these cases, we use the 2002 coarser industry frequency of price adjustment to

impute the 2012 finer industry frequency of price adjustment. E.g.: In 2002, retail trade was

a single industry (2002 IO Code: 4A0000; 2002 NAICS Code: 44, 45). In 2012, within retail

trade, there were Motor vehicle and parts dealers (2012 IO Code: 441000, 2012 NAICS Code:

441), Food and beverage stores (2012 IO Code: 445000, 2012 NAICS Code: 445), General

merchandise stores (2012 IO Code: 452000, 2012 NAICS Code: 452), Building material and

garden equipment and supplies dealers (2012 IO Code: 444000, 2012 NAICS Code: 444),

Health and personal care stores (2012 IO Code: 446000, 2012 NAICS Code: 446), Gasoline

stations (2012 IO Code: 447000, 2012 NAICS Code: 447), Clothing and clothing accessories

stores (2012 IO Code: 448000, 2012 NAICS Code: 448), Nonstore retailers (2012 IO Code:

454000, 2012 NAICS Code: 454), All other retail (2012 IO Code: 4B0000, 2012 NAICS Code: 442,

443, 451, 453). For all these 2012 industries, we impute their frequency of price adjustment

with the 2002 Retail Trade value.

5. Industry present in 2012, but not in 2002 without correspondence: these are 2012 detail-level

industries for which there was no correspondent 2002 detail-level industry. In these cases, we

impute their frequency of price adjustment with the average frequency of price adjustment

among industries with data. E.g.: Motion picture and video industries (2012 IO Code: 512100;

2012 NAICS Code: 5121).

For the industries in cases three, four and five, a concordance table is available upon request. The

average frequency of price adjustment among sectors with data is given by 0.171. Its continuous

counterpart is 0.1875. This is the value that is used to impute the sectors that are present in 2012, but

not in 2002 without any correspondence in the simulations.54 Finally, the consumption weighted

average frequency of price adjustment is given by θ̄ =∑
i βiθi , where βi is sector’s i consumption

share, θi its frequency of price adjustment. This is the value that is used for the counterfactual

economy in which we set a homogeneous frequency of price adjustment.

54Its value is given by − ln(1−0.171)
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F Additional Figures and Tables

Figure F.1: Relationship between exact and approximate eigenvalues
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Notes: This figure plots the relationship between the eigenvalues in the diagonal economy and the eigenvalues in the
baseline calibrated economy
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Figure F.2: U.S. sectoral input-output matrix (heat map) in 2012
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Notes: This figure presents the sectoral input-output matrix in a heat map version, using data from the make and use
input-otput tables produced by the BEA in 2012. The industry classification is at the detail-level disaggregation, for a
total of 393 sectors.
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Figure F.3: Impulse response functions to a monetary policy shock in two economies
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Notes: This figure plots the inflation and GDP responses after a monetary policy shock that generates a one percent
increase in inflation on impact in the baseline economy and in a counterfactual economy where the top-3 sectors by
lowest eigenvalues (in the disconnected economy) are excluded. CIR denotes the cumulative impulse response. The
calibration of the model is at a monthly frequency.
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Figure F.4: Dynamics following sectoral shocks in a homogeneous frequency of price adjustment
economy
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Notes: This figure plots the impulse response functions for inflation, gdp gap, and sectoral inflation to a sectoral
shock that increases sectoral inflation by one percent on impact in the baseline policy economy. It compares the
baseline policy economy with an economy where monetary policy stabilizes aggregate inflation. Panel A: Oil and gas
extraction. Panel B: Semiconductor machine manufacturing. This calibration imposes a homogeneous frequency of
price adjustment across sectors.
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Figure F.5: Dynamics following sectoral shocks in a counterfactual economy
(a) Oil and gas extraction
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Notes: This figure plots the impulse response functions for inflation, gdp gap, and sectoral inflation to a sectoral shock
that increases sectoral inflation by one percent on impact in the baseline policy economy. It compares the baseline
policy economy with an economy where monetary policy stabilizes aggregate inflation. Panel A: Oil and gas extraction.
Panel B: Semiconductor machine manufacturing. This calibration is the same as the baseline, except that we assume
that the ‘oil and gas extraction’ frequency of price adjustment is the same as the ‘semiconductor machinery mfg’
frequency of price adjustment. That is, θoil and gas extraction = θsemiconductor machinery mfg = 0.0340.
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Figure F.6: Impulse response functions to a monetary policy shock in two economies
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Notes: This figure plots the impulse response functions for inflation and GDP to a monetary shock that generates a one
percentage increase in inflation on impact. The calibration of the model is at a monthly frequency. CIR denotes the
cumulative impulse response. The calibration uses a (finite) Frisch elasticity of 2.
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Figure F.7: Impulse response functions to a monetary policy shock in two economies
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Notes: This figure plots the impulse response functions for inflation and GDP to a monetary shock that generates a one
percentage increase in inflation on impact. It compares our baseline economy that has production networks with an
economy that has a horizontal production structure where only labor is used as an input for production. The calibration
of the model is at a monthly frequency. CIR denotes the cumulative impulse response. The calibration uses a (finite)
Frisch elasticity of 2.
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Figure F.8: Impulse response functions to a monetary policy shock in two economies
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Notes: This figure plots the impulse response functions for inflation and GDP to a monetary shock that generates
a one percentage increase in inflation on impact. It compares our baseline economy with production networks
and heterogeneous price stickiness across sectors with an economy that has homogeneous price stickiness across
sectors. The homogeneous price adjustment frequency is calibrated to be the weighted average of the price adjustment
frequencies across sectors. The calibration of the model is at a monthly frequency. CIR denotes the cumulative impulse
response. The calibration uses a (finite) Frisch elasticity of 2.
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Figure F.9: Impulse response functions to a monetary policy shock in two economies
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Notes: This figure plots the impulse response functions for inflation and GDP to a monetary shock that generates a
one percentage increase in inflation on impact. It compares our baseline economy with production networks and
heterogeneous price stickiness across sectors with an economy that has both a horizontal production structure where
only labor is used as an input for production as well as homogeneous price stickiness across sectors. The homogeneous
price adjustment frequency is calibrated to be the weighted average of the price adjustment frequencies across sectors.
The calibration of the model is at a monthly frequency. CIR denotes the cumulative impulse response. The calibration
uses a (finite) Frisch elasticity of 2.
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Table F.1: Ranking of industries by inflation impact after a monetary policy shock

Industry Inflation
Impact Resp.

Alumina refining and primary aluminum production 3.681
Other crop farming 2.593
Monetary authorities and depository credit inte... 2.533
Dairy cattle and milk production 2.025
Animal production, except cattle and poultry an... 1.959
Wholesale electronic markets and agents and bro... 1.736
Oil and gas extraction 1.530
Automobile manufacturing 1.464
Natural gas distribution 1.287
Copper, nickel, lead, and zinc mining 1.241
Fishing, hunting and trapping 1.210
Rail transportation 1.054
Nonferrous Metal (except Aluminum) Smelting and... 9.940×10−1

Professional and commercial equipment and supplies 9.670×10−1

Machinery, equipment, and supplies 8.513×10−1

Poultry processing 8.361×10−1

Electric lamp bulb and part manufacturing 8.241×10−1

Poultry and egg production 8.057×10−1

Fluid milk and butter manufacturing 8.023×10−1

Petrochemical manufacturing 7.985×10−1

Table F.2: Ranking of industries by inflation half-life after a monetary policy shock

Industry Inflation
Half-Life

Insurance agencies, brokerages, and related act... 3.420×101

Coating, engraving, heat treating and allied ac... 3.360×101

Semiconductor machinery manufacturing 3.020×101

Warehousing and storage 2.930×101

Packaging machinery manufacturing 2.550×101

Flavoring syrup and concentrate manufacturing 2.540×101

Showcase, partition, shelving, and locker manuf... 2.450×101

Turned product and screw, nut, and bolt manufac... 2.400×101

Toilet preparation manufacturing 2.400×101

Breakfast cereal manufacturing 2.330×101

Other engine equipment manufacturing 2.280×101

Other industrial machinery manufacturing 2.270×101

Miscellaneous nonmetallic mineral products 2.250×101

Fluid power process machinery 2.220×101

All other miscellaneous manufacturing 2.180×101

Cut stone and stone product manufacturing 2.180×101

Electricity and signal testing instruments manu... 2.140×101

Other aircraft parts and auxiliary equipment ma... 2.140×101

Metal crown, closure, and other metal stamping ... 2.120×101

Machine shops 2.110×101
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Figure F.10: Inflation response to a monetary policy shock
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Notes: This figure plots the impulse response functions for aggregate inflation and sectoral inflation to a monetary
shock that generates a one percentage increase in aggregate inflation on impact. The calibration of the model is at a
monthly frequency. The aggregate inflation response is shown in dashed lines. The calibration uses a (finite) Frisch
elasticity of 2.
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Figure F.11: Impulse response functions to a monetary policy shock in two economies
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Notes: The figure compares the impulse responses for inflation and GDP to a monetary shock in the nominal GDP
rule economy and the Taylor rule economy. The initial shock size and its persistence in the Taylor rule economy are
calibrated to match: 1) aggregate inflation response as one percentage on impact; 2) half-life of aggregate inflation the
same as in the nominal GDP rule economy. The calibration of the model is at a monthly frequency. CIR denotes the
cumulative impulse response. The calibration fixes the feedback parameter on the Taylor rule to φπ = 1.5.
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Figure F.12: Impulse response functions to a monetary policy shock under a Taylor rule
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Notes: This figure plots the impulse response functions for inflation and GDP to a monetary shock. It compares our
baseline Taylor rule economy that has production networks with an economy that has a horizontal production structure
where only labor is used as an input for production. The calibration of the model is at a monthly frequency. CIR denotes
the cumulative impulse response. The calibration fixes the feedback parameter on the Taylor rule to φπ = 1.5. The
monetary shock size and persistence are the same across the two economies.
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Figure F.13: Impulse response functions to a monetary policy shock under a Taylor rule
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Notes: This figure plots the impulse response functions for inflation and GDP to a monetary shock. It compares
our baseline Taylor rule economy that has heterogeneous price stickiness across sectors with an economy that has
homogeneous price stickiness across sectors. The homogeneous price adjustment frequency is calibrated to be the
weighted average of the price adjustment frequencies across sectors. The calibration of the model is at a monthly
frequency. CIR denotes the cumulative impulse response. The calibration fixes the feedback parameter on the Taylor
rule to φπ = 1.5. The monetary shock size and persistence are the same across the two economies.
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Figure F.14: Impulse response functions to a monetary policy shock under a Taylor rule
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Notes: This figure plots the impulse response functions for inflation and GDP to a monetary shock that generates a
one percentage increase in inflation on impact. It compares our baseline economy with production networks and
heterogeneous price stickiness across sectors with an economy that has both a horizontal production structure where
only labor is used as an input for production as well as homogeneous price stickiness across sectors. The homogeneous
price adjustment frequency is calibrated to be the weighted average of the price adjustment frequencies across sectors.
The calibration of the model is at a monthly frequency. CIR denotes the cumulative impulse response.The calibration
fixes the feedback parameter on the Taylor rule to φπ = 1.5. The monetary shock size and persistence are the same
across the two economies.
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Figure F.15: Inflation response to a monetary policy shock under a Taylor rule
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Notes: This figure plots the impulse response functions for aggregate inflation and sectoral inflation to a monetary
shock that generates a one percentage increase in aggregate inflation on impact. The calibration of the model is at
a monthly frequency. The aggregate inflation response is shown in dashed lines. The calibration fixes the feedback
parameter on the Taylor rule to φπ = 1.5.
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