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Abstract

We show that the cyclicality of output growth is a sufficient predictor for the cyclical-

ity of markups in models that micro-found variable markups through dynamic trade-offs.

We use data on markups from the U.S. as well as survey data on firms’ expectations

from New Zealand to test the predictions of these models and find evidence in favor of

their mechanisms. Finally, we study the implications of these mechanisms for cyclical-

ity of markups in a calibrated general equilibrium model. In particular, we find that
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markup cyclicality.
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1 Introduction

The cyclicality of markups is a key transmission mechanism in the business cycle literature. Counter-

cyclical markups, for instance, are broadly viewed as a propagation mechanism in New Keynesian

models (Christiano, Eichenbaum and Rebelo, 2011), as well as a potential reason for positive

comovement between hours and wages (Rotemberg and Woodford, 1992). Nonetheless, theories

that micro-found variable markups have conflicting predictions regarding their cyclical behavior.1

In this paper, we provide a unified law of motion for markups in a broad class of models

that micro-found variable markups through dynamic trade-offs—namely implicit collusion and

customer-base models—and show that cyclicality of output growth is a sufficient predictor for the

cyclicality of markups in these models.

We formally show that, up to a first-order approximation, both implicit collusion and customer-

base models yield the same reduced form expression for the dynamics of markups. Specifically, at

the firm level, current markups depend on the net present value of all expected sales growths in the

future. Once aggregated, the net present value of future sales collapses to the net present value of

output growth in the economy. Therefore, the two models relate current markups to expected output

growths in the future. They differ, however, in terms of the sign restrictions that they imply for this

reduced-form representation of markup dynamics. Hence, one can test and differentiate between

these two sets of models by estimating the common law of motion for markups and comparing the

empirical estimates with the sign restrictions implied by each model.

Our second contribution is to use data from Compustat to test these predictions for the U.S. To

do so, we estimate firm-level markups following the methodology of De Loecker et al. (2020) and

subsequently estimate the law of motion for markups. First, we find markups comove positively with

1In particular, two common micro-foundations—implicit collusion and customer-base models—

yield different cyclicalities: implicit collusion models are interpreted as implying countercyclical

markups, while customer-base models have been used to generate both procyclical and countercycli-

cal markups.
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firms’ future sales (using lagged values of sales and markups as instruments for firms’ expectations

of future sales growth and markups), which provides support for the implicit collusion model.

Second, to further test the implications of these two models, we also study the heterogeneity of

these results in the cross-section of firms. Both models imply that the magnitude of the relationship

between markups and future sales growths should be decreasing in firms’ number of competitors.

A second prediction of the two models is that the relationship between markups and expected

future sales growths should be stronger for firms that value future profits more. Using insights from

previous work on financial frictions (e.g. Gilchrist et al., 2017), we hypothesize that firms with a

higher debt-to-asset ratio should value future profits less relative to current profits due to a higher

preference for liquidity in short-run, higher effective interest rates or higher anticipated exit rates.2

Therefore, according to the models, all else equal, we should see a weaker relationship between

markups and expected future sales growths among more leveraged firms. We find both predictions

consistent with the data: the coefficient on future sales growth for firms on the upper percentiles of

lag log markup and negative of lag of debt-to-asset ratio is positive and significantly larger than the

estimate using all other observations, and more than thrice the size of the coefficient reported in our

benchmark regression.

Finally, to examine the external validity of these findings outside of the Compustat, we estimate

the law of motion for markups using survey data on firms’ expectations from New Zealand,

introduced by Coibion et al. (2018). This approach also allows us to directly rely on data on the

expected sales growth of firms rather than the actual realization of sales. Consistent with the findings

in the Compustat sample, the results favor the implicit collusion model. In particular, we find a

positive and significant relationship between markups and expectations of future sales among firms

with fewer competitors.

Therefore, both sets of empirical evidence are consistent with the predictions of implicit collusion

models but at odds with customer-base models.

Our final contribution is to calibrate a general equilibrium model with implicit collusion and

2We thank an anonymous referee for highlighting the default mechanism.
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study the implications of these findings for the cyclicality of markups. We find that depending on

how hump-shaped the response of output is, markups can either be procyclical or countercyclical in

these models. The reason is that the implicit collusion model relates markup cyclicality to output

growth rather than output itself. Hence, if output growth is expected to be positive in an expansion

(due to a hump-shaped response), then markups increase on impact and covary positively with

output. However, if there is no hump shape in output response, then after an expansionary shock

where output jumps to a high level and is expected to fall back to its steady state after that, output

growth is expected to be negative, and markups decrease in expansions.

Thus, accounting for the hump-shaped response of output to shocks, as observed in the empirical

literature,3 is instrumental for the cyclicality of markups. We illustrate the importance of this

mechanism by examining the cyclicality of markups conditional on TFP shocks in the model

and relating it to the empirical estimates in Nekarda and Ramey (2020), who find that markups

are procyclical conditional on TFP shocks. First, we show that a model without a hump-shaped

response of output delivers the wrong cyclicality: when productivity goes up, and output rises

on impact, output growth is expected to be negative, and markups fall, leading to countercyclical

markups conditional on TFP shocks. However, once we allow for a hump-shaped response for

output (using investment adjustment costs), we find that markups become procyclical conditional

on TFP shocks and match the conditional correlation of markups and output relatively well as

non-targeted moments.

Literature Review. Both implicit collusion and customer-base models are used within macroeco-

nomic models to study the markup setting behavior of firms. In our analysis, we start by building

the firm side of the implicit collusion model, and show that markups are determined by the joint

distribution of expected growth of output and stochastic discount rates. This allows us to reconcile

the seemingly contradictory predictions of these models in a unified framework. For instance,

3See, e.g., Ramey (2011); Ramey and Shapiro (1998); Monacelli and Perotti (2008) for gov-

ernment spending shocks, Sims (2011); Smets and Wouters (2007) for productivity shocks, and

Christiano et al. (2005) for monetary policy shocks.
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Rotemberg and Saloner (1986) assume that demand shocks are i.i.d., implicitly implying that the

expected demand growth is countercyclical, and conclude that markups are countercyclical. On the

other hand, Kandori (1991); Haltiwanger and Harrington Jr (1991); Bagwell and Staiger (1997),

each by assuming alternative processes for demand shocks find that these models can produce

procyclical markups.

Rotemberg and Woodford (1991, 1992) are the first to study the implicit collusion model within

a DSGE model. Contrary to the partial equilibrium models, their general equilibrium setting

endogenously pins down the joint distribution of output growth and stochastic discount rates, which

gives rise to countercyclical markups; however, their result is not robust to the structure of the

shocks and is reversed by introducing a hump-shaped response for output.

Phelps and Winter (1970) is the first paper that formalizes the idea for customer-base models.

Various papers have used this idea to study the cyclical behavior of markups. Different versions

of customer-base models have been shown to create either procyclical or countercyclical markups.

For instance, by micro-founding the game between firms and customers, Paciello et al. (2018) find

that markups are procyclical, but Ravn et al. (2006) argue that they are countercyclical. In this

paper, we do not take a stance on the micro-foundations of this friction.4 Instead, using a simple

customer-base model with an exogenous habit formation process on the side of customers, we show

that markups can be either pro- or countercyclical depending on whether the response of output to

shocks is hump-shaped or not.

Another class of models that generate variable markups use demand systems where the elasticity

of demand varies with firms’ size, either by directly assuming Marshall’s second law of demand

using the aggregator function as in Kimball (1995), or by assuming nested CES aggregators, as in

Atkeson and Burstein (2008). A recent application of Kimball preferences is Edmond et al. (2018)

who use this demand system to assess the cost of markups, whereas a recent application of the latter

4There has been a tremendous amount of progress in recent years in micro-founding this friction

using search and matching frameworks. See, e.g., Gourio and Rudanko (2014); Kaplan and Menzio

(2016); Bornstein (2018).
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is Burstein et al. (2020) who find that the cyclicality of markups depends on the level of aggregation.

Moreover, New Keynesian models also have predictions for the cyclicality of markups due to price

stickiness. We discuss the relationship between our paper and these sets of models in Section 5.

Outline. Section 2 introduces the firm side of implicit collusion and customer-base models and

derives the unified law of motion for markups. Section 3 presents the evidence for this law of motion

using Compustat data in the U.S. and survey data on firms’ expectations from New Zealand. Section

4 discusses the implications of the law of motion for markups in a calibrated general equilibrium

model. Section 5 discusses the strengths and weaknesses of Compustat for our exercise, potential

issues with the estimation of markups as well as the relationship between our framework and other

models of variable markups. Section 6 concludes. Proofs and additional tables and figures are

included in a companion Online Appendix.

2 A Unified Law of Motion for Markups

In this section, we revisit customer-base and implicit collusion model, both of which micro-found

markups through dynamic trade-offs. Our results in this section are twofold. First, we show that

both classes of models imply fundamentally similar laws of motion for markups, where markups

depend on the net present value of future sales growth for firms. Second, we find that despite this

similarity, each model associates a different sign to this relationship: in implicit collusion models

markups move positively with future sales, but in customer-base models this relationship is negative.

In the remainder of this section, we introduce the firm side of implicit collusion and customer-base

models respectively, and derive a unified law of motion for markups in both.

2.1 Implicit Collusion Models

We follow Rotemberg and Woodford (1991, 1992) in setting up the implicit collusion model but

we depart from their representation by deriving the law of motion for markups, and showing that

markups depend on the net present value of future sales growth.

There is a final good of consumption in the economy which is produced using a large number of

intermediate differentiated goods. There is a unit measure of intermediate good sectors indexed by
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i ∈ [0, 1]. In each sector, there are N identical firms producing differentiated goods, indexed by i, j

where j ∈ {1, . . . , N}.

The Final Good Producer. The final good producer takes the price of consumption good, Pt, as

given and produces with

Yt =

[∫ 1

0

Yi,t
σ−1
σ di

] σ
σ−1

, Yi,t = Φ(Y,1, . . . , Yi,N) ≡

[
N− 1

η

N∑
j=1

Y
η−1
η

i,j,t

] η
η−1

(1)

Therefore, σ is the elasticity of substitution across sectors, and η is the elasticity of substitution

within sectors. The profit maximization problem of this firm leads to the following standard demand

functions implied by nested CES preferences:

Yi,j,t
Yt

= D(
Pi,j,t

Pt

;
Pi,−j,t

Pt

) ≡ 1

N

(
Pi,j,t

Pt

)−η
[
1

N

N∑
k=1

(
Pi,k,t

Pt

)1−η
] η−σ

1−η

(2)

where Pt ≡
[∫ 1

0
[N−1

∑N
k=1 P

1−η
i,k,t ]

1−σ
1−η di

] 1
1−σ

is the aggregate price level. This demand system

leads to the following expression for the firm’s elasticity of demand, where this elasticity is an

average of σ and η weighted by the firm’s market share (Atkeson and Burstein, 2008):

−∂ log(Yi,j,t)
∂ log(Pi,j,t)

= (1− si,j,t)η + si,j,tσ, si,j,t ≡
Pi,j,tYi,j,t∑N
k=1 Pi,k,tYi,k,t

(3)

A general assumption in two layer CES models is that η > σ > 1. This assumption corresponds

to the case that goods within sectors are closer substitutes than goods across sectors, and ensures

that Marshall’s second law of demand holds in relative terms (that demand is less elastic at higher

relative quantity, or firms with higher market share have less elastic demand).

Intermediate Goods. We assume all N firms within each sector i are identical in their production

technology and use capital and labor to produce with a Cobb-Douglas production function, Yi,j,t =

Za
tK

α
i,j,tL

1−α
i,j,t , where Za

t is an economy-wide technology shock with an AR1 process:

log(Za
t ) = ρa log(Z

a
t−1) + σaεa,t, εa,t ∼ N (0, 1)

Moreover, we assume factor markets are competitive and firms take the wages, Wt, as well as

the rental rate of capital Rt as given.
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The Repeated Game of Sector i. Let Yi,t ≡ Φ(Yi,1,t, . . . , Yi,N,t) denote the output of sector i at

time t. Firms in any sector i take their demand functions in Equation (2) as given and discount

future profits with a stochastic discount factor process, {βtQ0,t : t ≥ 0},5 and play the following

infinitely repeated game.

As in every super-game, this repeated game has many potential equilibria. Although there is no

rigorous way to rank the multiple equilibria of this game, the literature on the implicit collusion

models focuses on the equilibrium in which firms earn the highest possible profit stream subject

to an incentive compatibility constraint that eliminates every firm’s incentive to deviate from the

equilibrium strategy of collusion.6 Following this literature, we also assume that there exists a

perfect monitoring system that detects any deviations with probability one. Therefore, the best

cheating strategy for a firm is to best respond to collusion outputs of their rivals, knowing that it

will trigger the punishment sub-game.7

Characterization of the Repeated Game Equilibrium. The equilibrium strategy is constructed

as follows: at time 0 firms form the following contingent plan for all possible states in the future.

For every single state at every point of time, every firm chooses a markup that yields the highest

profit for the sector and is incentive compatible with collusion relative to the following punishment

5In general equilibrium, this process is determined by the relative marginal utilities of households

in different states.
6Nonetheless, such an equilibrium is not necessarily the equilibrium with the highest net present

value of profits; it may be the case that occasional deviations yield higher profits compared to

staying in collusion forever. Therefore, there might be an equilibrium with occasional collusion that

dominates the best equilibrium in which firms always collude. We abstract from this case, following

Rotemberg and Woodford (1991, 1992, 1999).
7In the absence of such a system, however, static best responding may not be the best cheating

strategy for a firm. If small deviations were unnoticeable with some probability, characterizing the

best strategy is nontrivial. For instance, in an environment with imperfect monitoring, Green and

Porter (1984) characterize equilibria in which firms switch to punishment when their price falls

below a trigger price, even if it is due to a negative demand shock rather than a cheating competitor.
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strategy: in case a firm deviates from the agreement, the game enters a punishment stage where all

firms will charge the static best response markup forever after. However, at each period there is

a possibility that the industry will renegotiate this with probability 1 − γ and will move back to

the collusion stage. This probability γ pins down the expected punishment duration. The industry

expects to remain in the punishment stage for an average of 1/(1− γ) periods.

Therefore, firms within every sector maximize the discounted value of the industry’s lifetime

profits such that no firm in no state has the incentive to cheat.8 Note that incentive compatibility is

the only restricting concern in this setting. Without it, firms would choose the monopoly markup

for the industry in every state. However, a firm’s incentive to cheat is at its highest level when the

rest of the firms are committed to producing the monopoly output of the industry. This incentive

declines as the markups of the other firms decrease towards the one in the static best-response

equilibrium. Moreover, since firms choose their markups to be incentive compatible with collusion

in every possible state, the game stays in the collusion sub-game forever from which no one has the

incentive to deviate. Therefore, the proposed strategy is a sub-game perfect Nash equilibrium.

Moreover, with a CRS production function, firms’ capital-to-labor ratios are independent of

their output level. This can be interpreted as firms having a constant marginal cost of production in

a given period that is pinned down by factor prices and is independent of firms’ level of production,

or their total demand:

MCt =
1

Za
t

(
Rt

α

)α (
Wt

1− α

)1−α

(4)

Therefore, given firms’ price-taking behavior in factor markets, what pins down a firm’s size

and level of production is their market power: given their demand structure, a choice for prices

determines firms’ demand, which then implies a certain level of production to meet that demand.

Since we only focus on symmetric equilibria, in characterizing the strategy of a firm, we only

consider strategies in which a firm’s competitors all are charging the same markup which is going

8Note that this does not require any explicit collusion among firms as each firm simply chooses

the highest markup from which no one in the industry has the incentive to deviate.
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to be the collusion markup in the equilibrium. Therefore, firm i, j’s profit from the action profile

µt
i ≡ (µi,j,t;µi,t), where µi,t is the collusion markup chosen by the industry and µt ≡ Pt/MCt is

the average markup in the economy, is given by

Πi,j,t(µi,j,t;µi,t) = PtYt(
µi,j,t − 1

µi,t

)

(
µi,t

µt

)1−σ

D(
µi,j,t

µi,t

; 1) (5)

Since the model is real and all sectors are symmetric, henceforth we normalize aggregate price

to one, Pt ≡ 1. The following Proposition formalizes the equilibrium.

Proposition 1. Each firm in sector i, maximizes its net present value of future profits subject to no

other firm having the incentive to undercut them:

max{µi,t}∞t=0

1
N
E0

∑∞
t=0(βγ)

tQ0,tYt(1− 1
µi,t

)µ1−σ
i,t µσ−1

t

s.t. maxρi,t

{
(ρi,t − 1

µi,t
)D(ρi,t; 1)

}
− 1

N
(1− 1

µi,t
) ≤ βγEtQt,t+1

Yt+1

Yt

(
µt+1/µi,t+1

µt/µi,t

)σ−1

Γi,t+1 ,(6)

Γi,t ≡ 1
N

[
(1− 1

µi,t
)− µ−σ

s (µs − 1)µσ−1
t

]
+ βγEtQt,t+1

Yt+1

Yt

(
µt+1/µi,t+1

µt/µi,t

)σ−1

Γi,t+1

where βτQt,t+τ is the time t price of a claim that pays a unit of consumption at t + τ , and

µs ≡ (N−1)η+σ
(N−1)η+σ−N

is the equilibrium markup of static best responding for firms at any state. η > σ

guarantees that η
η−1

≤ µs ≤ σ
σ−1

. The solution to this problem {µi,t}∞t=0 exists, and it is a Sub-game

Perfect Nash Equilibrium for the repeated game in sector i, in which firms always collude.

Equation (6) is the incentive compatibility constraint which requires that all firms in a sector

prefer collusion to cheating in every possible state. Accordingly, such a sequence of assigned

collusion markups are incentive compatible by construction and therefore form an equilibrium.

Now, suppose that the model is calibrated such that the constraint binds in the steady state

(otherwise, the oligopoly acts as a monopoly and the model essentially becomes a monopolistic

competition model across sectors). Then for small perturbations around that steady state, a first-order

approximation yields

µ̂t = ψ1Et [∆ŷt+1 + q̂t,t+1] + ψ2Et [µ̂t+1] (7)

where ∆ŷt+1 ≡ ∆Yt+1

Ȳ
is percentage growth of sales with respect to the steady state output, and
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q̂t,t+1 ≡ Qt,t+1−Q̄

Q̄
is percentage deviation of the stochastic discount rate from its steady state level.

Moreover,

ψ1 ≡ γβ
µ̄Γ̄

D(ρ̄; 1)− 1/N
≥ 0 (8)

ψ2 ≡ γβ
D(ρ̄; 1)− (σ − 1)(µC − 1)( µ̄

µC
)σ/N

D(ρ̄; 1)− 1/N
⋚ 0 (9)

Equation (7) gives the law of motion for average markups in the partial equilibrium of the firm

side in this economy. This is the key equation in this paper that will underlie all the results in later

sections. Therefore, the following subsection is devoted to discussing this result.

Interpretation. Implicit collusion implies that markups are forward-looking variables that depend

on the expected change in demand in the next period, the changes in the price of future profits, and

the expected change of markup in the next period. ψ1, which is the coefficient on the first two, is

a positive number that is increasing in steady state gains from collusion (γβµ̄Γ̄) and decreasing

in the marginal revenue that a firm makes by cheating in the steady state (D(ρ̄; 1) − 1/N ). The

intuition behind this equation is the key to understanding the main results of this paper. Two things

between current period and the period ahead affect the current period’s markup: first, the current

price of next period’s profit, which is the discount factor of the firms. The more patient the firms

are in an industry, the higher their collusion markup will be today as they value future profits more.

Second, the expected growth in demand from current period to next period. If firms expect that

demand tomorrow will be higher than today, then they do not want to lose the chance of cheating

tomorrow by cheating today. Basically, firms want to wait until demand is at its highest to take

advantage of cheating, as in that case they will collect the highest cheating gains. This incentive to

wait diminishes firms’ cheating incentives in the current period, allowing the industry to sustain a

higher collusion markup. Therefore, when firms expect output to grow, they will charge markups

that are closer to the monopoly one.

ψ2, however, can theoretically be positive or negative based on the calibration of the model. The

reason is that there are two opposite forces that affect the firms’ cheating incentives based on their

expectation of future markup. Suppose firms expect that the markup will be higher in the future
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than its steady-state level. On one hand, they do not want to miss the chance of charging such high

markups in their own industry by cheating today and entering the punishment subgame. On the

other hand, since all other industries will also charge high markups, firms expect a large demand

shift towards their industry in the punishment sub-game where their markup is lower, which gives an

incentive firms to push the industry to the punishment subgame by cheating today. The magnitude

of this effect depends on the elasticity of substitution across industries; as seen in the expression of

ψ2, when σ is close to 1, this force is negligible.

The previous results in this literature can be seen as special cases of Equation 7. For example,

Rotemberg and Saloner (1986) setup can be seen as the case where q̂t,t+1 = 0 due to a constant

discount rate, and Et [∆ŷt+1] = −ŷt as shocks are assumed to be i.i.d. over time. Therefore, in their

model, µ̂t = −ψ1ŷt, which is a demonstration of their result that markups should be counter-cyclical.

But as (7) implies, assuming other processes for these variables can give rise to different results.

With two different random processes, ∆ŷt+1 and q̂t,t+1, that are potentially correlated, the spectrum

of possibilities for their underlying distribution is large enough to allow for any type of result in

terms of the cyclicality of markups. Therefore, we need to pin down this joint distribution, which in

the case of this paper will be done by introducing a household side for the model.

2.2 Customer-base Models

Another class of models that micro-found variable markups is based on the notion that there is inertia

in how fast customers shift their demand across firms (Phelps and Winter, 1970).9 Accordingly,

firms’ pricing decisions affect their market share in the future. The dynamics of markups in these

models depend on how customers are reacting to the pricing of the firms over time.

In this section, we build a simple reduced-form customer-base model where the inertia in

demand comes from habit formation on the customer side. We then show that these models imply a

similar law of motion for markups as the implicit collusion models but have different predictions

for the sign of coefficients on output growth and stochastic discount rates.

9See Bornstein (2018) for a micro-foundation with an application to recent trends in business

dynamism and markups.
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Model Specification. Consider the final good producer of Section 2.1. To incorporate the customer-

base model, we assume that this final good producer forms external habits over the goods within

industries, meaning

Yt =

[∫ 1

0

Yi,t
σ−1
σ di

] σ
σ−1

, Yi,t ≡

[
N− 1

η

N∑
j=1

S
1
η

i,j,tY
η−1
η

i,j,t

] η
η−1

Where Si,j,t is the external habit of producer in using the input Yi,j,t, which is taken as given by the

final good producer at time t. We assume that Si,j,t has the following general law of motion

Si,j,t = γh(
µi,j,t

µi,t

)Si,j,t−1 + 1− γ

where h(.) is differentiable, h(1) = 1, h′(.) < 0, and γ ∈ [0, 1). Notice that γh(µi,j,t

µi,t
) is how fast

the habit of the final good producer depreciates over time, h′(.) < 0 implying that this depreciation

is faster if the firm charges a higher markup relative to its competitors (Phelps and Winter (1970)

interpret Si,j,t as the measure of customers matched to the firm at time t, in which case γh(µi,j,t

µi,t
) is

the separation rate of the firm’s customers, which increases with the firm’s markup).10

Solving the final good producer’s problem now implies the following demand structure:

Yi,j,t = YtSi,j,tD(Pi,j,t;Pi,−j,t)

where D(.; .) is defined exactly as in Section 2.1. Firm i, j takes demand as given and maximizes

the net present value of all its future profits by choosing a relative markup µi,j,t

µi,t
, and Si,j,t, where

Si,t is the final good producer’s habit for the others in the sector, in the symmetric equilibrium.

Therefore, firm i, j’s dynamic problem is

max{µi,j,t,Si,j,t}∞t=0
E0

∑∞
t=0 β

tQ0,tYtSi,j,t

(
µi,t

µt

)1−σ

(
µi,j,t−1

µi,t
)D(

µi,j,t

µi,t
; 1)

s.t. Si,j,t = γh(
µi,j,t

µi,t
)Si,j,t−1 + 1− γ

Proposition 2. In a symmetric equilibrium where all firms identically solve the problem above, the

law of motion for markups, up to a first order approximation, takes the same form as the implicit

10For a more recent model of customers as demand shifters see Afrouzi et al. (2020).
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collusion model, i.e.

µ̂t = ψ1Et[q̂t,t+1 +∆ŷt+1] + ψ2Et[µ̂t+1] (10)

where

ψ1 ≡ − βγ

1 + ζ

ζ(1− µ−1
s )

µ−1
s (1− βγ) + ζ

≤ 0 (11)

ψ2 ≡
βγ

1 + ζ
≥ 0 (12)

with ζ ≡ − γh′(1)
(1−N−1)η+N−1σ

> 0 and µs =
η(1−N−1)+σN−1

(η−1)(1−N−1)+(σ−1)N−1 being the markup of a firm with

no inertia in their demand. Moreover, the magnitudes of ψ1 and ψ2 decrease with the number of

firms within sectors.

Equation (10) formalizes the idea that the law of motion implied by this model takes the same

form as that of the implicit collusion model. In these models, firms’ markups are variable because

their incentives to invest in their customer base vary with their expectations of how much demand

there will be in the future. Again, the trade-off boils down to a relative demand argument: if the firm

expects demand to be larger in the future relative to today, they have a higher incentive to invest

in their customer base and vice-versa. Therefore, what determines today’s markup is the firms’

expectation of its sales growth, which implies a similar law of motion for markups as in the implicit

collusion model, but the signs of ψ’s are different as shown in Equations (11) and (12).

In contrast to the implicit collusion model where markups move positively with the expected

growth of sales, the customer-base model assigns a negative relationship between the two. The

reason is that expected higher demand in the future induces firms to invest more in their customer

bases: they reduce their markups to lure in demand, expecting that they will “harvest” a higher

demand when aggregate demand is expected to be higher.11

11See Bornstein (2018) for a detailed and recent discussion of investment and harvesting motives

of firms when there is inertia in demand.

14



3 Testing the Law of Motion for Markups

The goal of this section is to empirically test this law of motion and provide evidence on the signs

and magnitudes of coefficients ψ1 and ψ2. To do so, we use data from Compustat as well as data on

firms’ expectations from New Zealand (introduced by Coibion et al. 2018) to study the relationship

between firms’ markups and their future (expected) sales.

3.1 Model Predictions

Before presenting our empirical evidence, we draw a series of predictions that are implied by the two

models in the previous section to guide our empirical strategy. The following statements summarize

these predictions:

1. Both implicit collusion and customer base models relate markups to the net present value of

firms’ future sales and imply a law of motion for markups of the form

µ̂t = ψ1Et[∆ŷt+1 + q̂t,t+1] + ψ2Et[µ̂t+1]

where the implication of each model for the signs of the coefficients are different. The

following table summarizes these implications:

Implicit Collusion Customer Base
ψ1 > 0 < 0

ψ2 ⋚ 0 > 0

Table 1: Sign of Coefficients in the Law of Motion for Markups in Different Models

2. In both models, the magnitude of the coefficient on future sales (|ψ1|) decreases with a firm’s

number of competitors.

3. In both models, the magnitude of coefficients ψ1 and ψ2 decrease with the firms’ discount

factor.
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3.2 Evidence from the United States

In order to analyze firms’ markups in the U.S., we have exploited the richness of the firm-level

balance sheet information from Compustat dataset. While this dataset has the caveat of covering

only publicly listed firms, it contains detailed financial data covering a long period of time for a

broad section of the economy—it contains yearly data from 1950 to 2016 and it covers 29% of

private U.S. employment (Davis et al., 2006).12 As discussed in more detail in Online Appendix E,

following De Loecker et al. (2020), we estimate markups as:

µit = θvi,t
Pi,tQi,t

P v
i,tVi,t

,

where Vi,t is a variable input of production, Qi,t is output and θvi,t is the output elasticity of the

variable input Vi,t. To estimate Pi,tQi,t

P v
i,tVi,t

, we use the variables Sales and Cost of Goods Sold (COGS)

from Compustat, which are further explained in Online Appendix D. In order to estimate the output

elasticity of the variable input, we used the production function estimation method also used in

De Loecker et al. (2020) with some small changes.13 Table 2 provides summary statistics for firms’

sales and markups in the data. [TABLE 2 HERE]

3.2.1 Benchmark Specification and Results for Prediction 1

Having measures of markups and sales growth in the data (denoting them Mi,t and ∆ log(Salesi,t)

for firm i at time t), we estimate the following specification:

log(Mi,t) = ϕ1∆ log(Salesi,t+1) + ϕ2 log(Mi,t+1) + εi,t (13)

where we instrument for expectations of ∆ log(Salesi,t+1) and log(Mi,t+1) using the following

GMM condition:

Et[(log(Mi,t)− ϕ1∆ log(Salesi,t+1)− ϕ2 log(Mi,t+1))zt−1] = 0 (14)

12In Section 5 and Online Appendix E we discuss the strengths and caveats of this dataset to our

study.
13Specifically, following Traina (2018) we estimated time-invariant but industry-specific output

elasticities. We used SIC 2-digit codes for the definition of industries.
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Here, zt−1 includes four lags of log of sales and log of markups for the firm dated t− 1 and before.

This instrumental variable approach is necessary because the model predicts that markups are

forward-looking and are determined by firms’ expectations of their future sales growth. Since we

do not observe firms’ expectations, assuming rational expectations, we use the realized values of

these variables as proxies for firms’ forecasts of these variables at time t. Nonetheless, this creates

an endogeneity problem because any shocks to markups or sales between time t and t + 1 are

orthogonal to expectations at time t but correlate with realized values of these variables, hence

biasing the estimates. Using lags of sales and markups allows us to eliminate this concern by

only utilizing the variation in ∆ log(Salesi,t+1) and log(µi,t+1) that is predictable at time t, but

orthogonal to any shock to these variables after time t.14

The results of this estimation exercise are reported in Table 3. Column (3), which reports

IV-GMM estimates with both time and SIC 2-digit industry fixed effects, constitutes our benchmark

results for the U.S. and shows that markups are positively correlated with firms’ future expected sales

growths and future markups. For reference, Column (1) shows the OLS estimates, and Column (2)

reports IV-GMM estimates with time but without SIC 2-digit industry fixed effects. It is important

to note that the OLS estimates give the opposite sign, indicating the necessity of our instrumental

variable approach. [TABLE 3 HERE]

The positive signs on the coefficients for future expected sales and markups are consistent with

the implicit collusion model but go against the predictions of the customer-base models (Prediction

1). Having this in mind, we examine the heterogeneity of the effects based on size and discount

factor next (Predictions 2 and 3).

Heterogeneity Based on Markups and Debt-to-Asset Ratio (Predictions 2 and 3). One major

prediction of both models is that the magnitude of the coefficient on relative sales should decrease

with a firm’s number of competitors (Prediction 2). Given the direct relationship between average

markups and the number of competitors in the models, we expect firms with higher average markups

14This is a common approach to deal with such endogeneity issues in estimating forward-looking

equations in macroeconomics. See, for instance, Galí and Gertler (1999).
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to have a stronger relationship between current markups and expected future sales. Thus, we use the

lag of log markups as our main proxy for 1/N in the model. Since 1/N also represent firms’ sales

shares in the model, as an alternative measure, we also use firms’ relative size as an alternative proxy

for 1/N . In Section 5, we provide further discussion about the challenges of proxying concentration

or markups in the Compustat data.

Another related prediction of the two models is that markups should be more sensitive to future

sales of firms if they are more patient, meaning that they assign higher values to future profits

relative to contemporaneous profit (Prediction 3). While we do not observe discount rates directly, it

is reasonable to assume that financially constrained firms might be more subject to default risk and

assign lower relative value to future profits due to a higher cost of borrowing (see, e.g., Gilchrist et

al., 2017). To the extent that higher leverage is associated with a higher cost of borrowing for firms,

their future cash flow is discounted more heavily due to higher effective interest rates which cause

these firms to discount the future more. Similarly, higher leverage might also increase the probability

of default in the future and thus lead to further discounting due to a higher probability of exit for

the firms.15 To link the debt-to-asset ratio in Compustat to default risk, we relied on the work done

by Ottonello and Winberry (2020). Using Compustat, they construct two measures of default risk,

the debt-to-asset ratio and an estimated probability of default. Even after controlling for firm fixed

effects and sector-by-quarter fixed effects, they show that debt-to-asset ratio is negatively correlated

with other the probability of default and S&P’s long-term issue rating of the firm, which gives

them (and us) confidence that debt-to-asset can proxy default risk. Taking these results together,

Prediction 3 would imply that we should see a smaller sensitivity of markups to future sales among

more leveraged firms.

15In contrast, it is important to note that there might be other confounding factors that would create

a positive relationship between leverage and forward-looking behavior: For instance, young firms

who are usually more leveraged also need to have longer planning horizons and hence might have

higher incentives to be more forward-looking. We thank two anonymous referees for suggesting

these mechanisms for how leverage and discounting might be related.
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Since leverage, size and markups are all correlated, to perform a meaningful test of Predictions

2 and 3 in the data, we use the joint distribution of debt-to-asset ratio and log markups to divide

the sample to low leverage and high markup firms vs. the rest of the sample. More specifically,

we divide the Compustat sample using the lag of negative debt-to-asset and the lag of log markup.

Therefore, for a given cutoff p, we create two samples: (i) one with all observations above the pth

percentile of the lag of debt-to-asset ×− 1 and above the pth percentile of the lag of log markup; (ii)

and another with all other observations.16 This subsampling method guarantees that both Predictions

2 and 3 go in the same direction, and we expect the coefficient on changes in future sales to be

larger for the above the pth percentile group. Next, we repeat the IV-GMM estimation in Equation

(13) for the resulting two subsamples.

The results of this exercise using 30th percentile as the cutoff is reported in Table 4 and is

consistent with Predictions 2 and 3.17 The coefficient on ∆log(Sales)i,t+1 for the group above the

percentile cutoff is significantly larger than the estimate using all other observations, and more than

thrice the size of the coefficient reported in our benchmark regression in Column (3) of Table 3.

[TABLES 4 AND 5 HERE.]

We selected 30th percentile as the cutoff to create two subsamples with approximately the same

number of observations, but it is important to note that the results are robust to other cutoff selections.

Moreover, the results are qualitatively similar if we proxy 1/N with a firm’s sales relative to their

SIC 1-digit industry sales within a year.

16Note that if the two variables are positively correlated and we select a cutoff based on one

variable only, then Predictions 2 and 3 will go in opposite directions. Thus, the predictions of the

models would be ambiguous.
17We can do a similar exercise and split the sample based on the lag of relative size rather than

the lag of log markup to proxy for 1/N in the model, which can stand either for competitiveness or

concentration in an oligopoly (See Section 5 for a discussion of this). The results are robust and

similar as presented in Table 5.
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3.3 Evidence from New Zealand

Our estimation strategy in Compustat relies on estimating markups as well as assuming rational

expectations with full information,18 so that we can instrument for these expectations using the

realized values of future sales and markups. In this section, we depart from these assumptions and

provide direct evidence for the law of motion for markups using data on a firm’s expectations from

an expectations survey conducted by Coibion et al. (2018) in New Zealand. In particular, in this

survey, firms were asked to provide information about their number of competitors, average markup,

current markup, their expected growth in sales, and their next expected price change, which provides

an alternative strategy to estimate the law of motion using firms’ answers to these questions. Table

6 provides summary statistics of these variables in the data. Using this dataset, we estimate the

following specification in the survey data:

µ̂i,j = ϕ1Ex∆Salesi,j + ϕ2Ex∆Pricei,j + λi + εi,j (15)

where i, j denotes firm j in industry i, µ̂i,j is the deviation of i, j’s markup from its average markup,

ExSalesi,j is the firm’s expected sales growth, Ex∆Price is its expected price change and λi is

an industry fixed effect. Online Appendix F shows how this cross-sectional data allows us to test

the predictions of the model. In particular, under fairly regular assumptions signs of ϕ1 and ϕ2

correspond directly to signs of ψ1 and ψ2 in the model. [TABLE 6 HERE.]

While the predictions of the customer base model hold for any number of competitors (including

monopolistic competition), a distinct characteristic of the implicit collusion model is that the

coefficients on the law of motion should be larger for firms with a smaller number of competitors.

With that in mind, to test the validity of the law of motion, we divide the sample into two sub-

18In Online Appendix G we show that while full information rational expectations is a sufficient

condition for our law of motion for markups, it is not necessary. In particular, we show that as

long as firms’ expectations of their own future sales growths coincide with full information rational

expectations of those sales growths, aggregation works in the sense that firms’ [lack of] knowledge

about aggregate variables is irrelevant to the derivation of the law of motion for markups.
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samples, firms with more than 20 competitors, i.e. competitive firms, and firms with fewer than

20 competitors.19 Table 7 shows the results of running the regression in Equation (15) for these

two subsamples. The results are consistent with the implicit collusion model in several dimensions.

[TABLE 7 HERE.]

First, the coefficients on expected sales and on expected price changes are positive and negative

respectively for the N < 20 sub-sample. Both of these signs are consistent with the implicit

collusion model but at odds with the customer-base model, as they suggest that oligopolistic firms

(1) increase their markup with higher expected sales, and (2) decrease their markups with positive

expected price changes. The positive sign on expected sales growth is consistent with the prediction

of the implicit collusion model that oligopolistic firms can sustain higher markups when sales are

expected to be higher in the future. In contrast, this positive sign goes against the prediction of

the customer base models that firms with higher expected sales in the future should reduce their

markups to attract more customers. Moreover, the fact that these coefficients are only significant for

firms with fewer competitors, but not for the more competitive firms, provides a placebo test for the

implicit collusion model—as it should hold more significantly for less competitive firms.

4 Implications for Cyclicality of Markups

Given that our empirical results support the predictions of the implicit collusion model, in this

section we investigate the implications of our law of motion for markups in a calibrated implicit

collusion model with supply (TFP) and demand (government spending) shocks by extending the

partial equilibrium model from Section 2.1 to a general equilibrium model. Our argument here

revolves around the fact that the firms’ net present value of future sales growths are closely linked

19We also drop firms with less than 2 competitors considering the possibility of a non-binding

incentive compatibility constraint for these firms. Figure 4 in the Online Appendix shows how these

estimates change as a function of this cutoff. The results are locally robust but the data is very

granular, with a substantial number of firms reporting they have a round number of competitors, as

shown in Figure 5.
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to output growth in the economy. Therefore, what determines the cyclicality of markups is the

cyclicality of output growth in the general equilibrium.

Households, the Government and Market Clearing. A representative household solves the

following standard problem with investment adjustment costs:

max{(Ct,Lt,It,Kt+1,Bt)}∞t=0
E0

∑∞
t=0 β

t
[
C1−θ

t

1−θ
− ϕ

L
1+1/ϵ
t

1+1/ϵ

]
s.t. PtCt + PtIt +Bt ≤ WtLt +RtKt + (1 + it−1)Bt−1 +

∫ 1

0

∑N
j=1Πi,j,tdi− Tt

Kt+1 = (1− δ)Kt + (1− S( It
It−1

))It, S( It
It−1

) ≡ a
2
(1− It

It−1
)2

where Ct is consumption, Lt is labor supply, It is investment, Kt is capital, and Bt is a nominal

riskless bond with nominal return it at t+1. The investment adjustment cost is included to allow for

a hump-shape in the response of output to shocks. As we discuss later, the extent of this hump-shape

response is crucial in determining the cyclicality of markups.

There is also a government that uses lump-sum taxes from households to conduct fiscal policy,

Gt. We assume that Gt follows an AR(2) stochastic process

Gt = ḠZg
t , log(Zg

t ) = ρg1 log(Z
g
t−1) + ρg2 log(Z

g
t−2) + σgεg,t, εg,t ∼ N (0, 1)

The AR(2) assumption on the government spending process is to allow for a hump-shaped response

of output to a fiscal policy shock. Moreover, we assume that the monetary policy is set based on the

Taylor rule it = ϕπ log(Pt/Pt−1). Finally, the market clearing conditions for the final good, capital

and labor markets are

Ct + It +Gt = Yt, Kt =

∫ 1

0

N∑
j=1

Ki,j,tdi, Lt =

∫ 1

0

N∑
j=1

Li,j,tdi

4.1 Calibration and Simulation

In this section, by simulating a log-linearized version of the model around a steady state in which

the incentive compatibility constraint binds, and show that the cyclicality of markups is directly

linked to how hump-shaped the response of output is to shocks.
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Parameters. We set β = 0.993 to match a steady-state annual real interest rate of 3 percent,

α = 0.35 to match a steady state share of capital income of 35 percent, δ = 0.025 to match a 10

percent annual rate of depreciation on capital, ϕ = 8 to match a steady state labor supply of 0.3,

Ḡ = 0.2 to match a steady state G/Y of 20 percent, and a = 2.48 following Christiano et al. (2005).

We also set the response of the central bank to inflation in Taylor rule, ϕπ to the common value of

1.5. Furthermore, we set the Frisch labor supply elasticity, ϵ, to 2.5. Moreover, we set the elasticity

of substitution across sectoral goods, σ, to 4, and the elasticity of substitution within sectoral goods,

η, to 20. We set γ = 0.8 and N = 15 to match a steady state markup level of 20 percent.20

Although the values of N and γ are calibrated in an arbitrary fashion, we show in a series of

robustness checks in Online Appendix C, the model is not very sensitive to reasonable variations in

them. The qualitative results in terms of the direction of the cyclicality of markups are robust to any

calibration as long as η > σ.

Finally, we set the persistence of the technology shock to 0.95. For the persistence parameters

of the government spending shock, we run the following regression on the quarterly data for real

government consumption expenditures and gross investment from 1947Q1 to 2014Q1:

log(Gt) = Constant+ ρg1 log(Gt−1) + ρg2 log(Gt−2) + εt

which gives the estimates ρg1 = 1.51 and ρg2 = −0.52. We also consider alternative persistence

parameters for robustness checks in Online Appendix C.

Impulse Response Functions. First, consider the case of no investment adjustment cost (a = 0).

The dashed curves in Figure 1a show the impulse responses of this model to a 1 percent technology

shock.21 The key observation is that in this setting, output jumps up on impact and converges back to

zero as the effect of the transitory shock fades away. Moreover, the response of stochastic discount

rate, which is given by Qt,t+1 = β u′(Ct+1)
u′(Ct)

, is countercyclical given that households are able to

20Given σ and η, this is the highest level for γ for which the incentive compatibility constraint

binds, and the Blanchard Kahn condition for the law of motion for markups holds.
21We use Dynare (Adjemian et al., 2011) to solve the model.
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smooth their consumption without being restricted by costly investment. The fact that consumption

has an inertial response to the technology shock is a crucial element to the countercyclicality of

stochastic discount rates. On impact, households expect that their consumption will peak later in

the expansion; therefore, they are not really concerned about future states as they know they will

have a higher consumption. [FIGURE 1 HERE.]

By Equation 7, the combination of countercyclical output growth and discount rates gives rise

to countercyclical markups. The interpretation from the firm side is that on impact, firms know that

demand is at its highest. This expectation along with the low price of future profits increases firms’

incentives to deviate from implicit collusion and forces the oligopoly to settle on a lower markup in

order to eliminate these incentives.

A similar exercise can be done with the government spending shock. Suppose that Zg
t is an

AR(1) process with persistence 0.95. The impulse response functions of the model to such a shock

is illustrated by the dashed curves in Figure 1b. On impact, government spending is at its highest,

which means that private consumption is at its lowest. First, since private consumption will increase

to its steady state level, such a shock would give rise to countercyclical stochastic discount rates.

Moreover, the income effect of G is at its highest on impact, so that Y will peak immediately due to

a jump in labor supply and converge back to its steady state as the shock fades away. Again, the

combination of countercyclical discount rates and output growth yields countercyclical markups.

However, empirical evidence on TFP shocks and government spending shocks suggests that

the response of output to these shocks is hump-shaped such that the peak effect happens not on

impact but in later periods.22 To allow for such a response, we introduce investment adjustment

costs and an AR(2) process for government spending. Solid curves in Figure 1a show the IRFs of

the model to a 1% technology shock when a = 2.48. With positive adjustment costs, two things

22For empirical evidence on the hump-shaped response of output to productivity and government

spending shocks, see, for example, Sims (2011); Smets and Wouters (2007); Ramey (2011); Ramey

and Shapiro (1998); Christiano et al. (2005); Monacelli and Perotti (2008); Nekarda and Ramey

(2020).
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happen. First, investment does not jump on impact and has an inertial response, which translates to

a hump-shaped response in output. Second, households now face a stronger trade-off in smoothing

their consumption because they face costly investment, which gives rise to procyclical stochastic

discount rates. Therefore, on impact firms expect their demand to increase in future periods, which

gives them the incentive to sustain higher markups as they expect their demand to increase. Hence,

on impact one would expect a higher markup than the steady state, making markups procyclical.

A similar exercise can be done with the government spending shock by assuming an AR(2)

process for Zg
t . Figure 1b depicts the IRFs of the model to such a shock. The hump-shaped

implementation of the fiscal policy translates to hump-shaped output and consumption responses, as

shown by solid curves in Figure 1b, which in turn produce procyclical markups for similar reasons

to the case of the technology shock with a > 0.23

Matching the Evidence for Conditional Cyclicality of Markups. So far we have shown that a

direct implication of our law of motion for markups is that it reverses the cyclicality of markups once

the model matches the hump-shaped response of output to shocks. Our model predicts that under

hump-shaped output response to TFP and government spending shocks, markups are procyclical.

These predictions directly relate to and are qualitatively consistent with, the evidence on the

conditional cyclicality of markups in recent work by Nekarda and Ramey (2020), who find that

(1) output response is hump-shaped with respect to TFP and government spending shocks, and

(2) markups are procyclical conditional on these two types of shocks. It is important to note that

without the hump-shaped response of output, the model would completely miss these two facts and

would deliver the wrong prediction that markups are countercyclical with respect to both TFP and

government spending shocks. [FIGURE 2 HERE]

23For completeness, we have also included IRFs of a customer-base model in Figure 6 in the

Online Appendix, where the calibration is such that the frictionless markup, µs, is 11.5%, and the

average markup, µ, is 10%. In terms of parameters, the only change compared to the previous

section is η = 10. Notice that in that model markups are countercyclical once the model matches

the hump-shaped response of output to shocks.
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To formally show this, Figure 2 plots the cross-correlation of markup and output conditional

on TFP shocks under the model with and without hump-shaped output response against empirical

estimates from Nekarda and Ramey (2020)’s analysis for these correlations.24 While the model

without inertia (hump-shaped response of output) fully misses the sign of these correlations,

implying that markup and output are negatively correlated, the model with inertia gets the sign of

and the magnitude of the contemporaneous and lagged correlations of markup and output conditional

on TFP shocks right.25

It is important to note that while the model matches the contemporaneous and lagged conditional

correlations correctly, it predicts that leads of markups should be countercyclical, which is not

the case in Nekarda and Ramey (2020)’s estimates. This is because in the model markups fall

below their steady-state level once output peaks, whereas in Nekarda and Ramey (2020)’s estimates,

markups remain procyclical for much longer and their point estimates only fall below their steady

state level after 7 quarters. For completeness, Figure 7 in the Online Appendix shows the results of

a similar exercise in a customer-base model, and illustrates how this model completely misses the

sign and structure of these cross-correlations.

24The empirical estimates for these correlations are constructed using replication codes from

Nekarda and Ramey (2020)’s TFP SVAR that includes log level of Fernald (2014)’s utilization

adjusted measure of TFP, log real GDP per capita, log of the output price deflator, the three months

Treasury bill rate and log of Nekarda and Ramey (2020)’s measure of markup based on the labor

share of output, allowing for overhead labor. Using the results of this estimation, we calculate the

correlations of output and markup conditional on shocks to TFP.
25The same exercise can be done with government spending shocks, and while the results

qualitatively remain the same – meaning that correlations in the inertial model are larger than in

the model with no inertia in the output response – the inertia created by the AR(2) process is not

enough to make the conditional correlation positive.
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5 Discussion

Strengths and Weaknesses of the Compustat Data. In order to use the production function

approach, we need detailed financial data that covers a long period of time for a broad section of the

firms in the economy. Compustat fits these criteria very well: It contains yearly data from 1950

to 2016 and it covers 29% of private U.S. employment (Davis et al., 2006). Nonetheless, there is

a serious concern that Compustat is not representative of the overall economy as it only contains

publicly traded firms. Therefore, a careful discussion of how this issue might affect the external

validity of our results is necessary.

Specifically challenging to our paper, Ali et al. (2009) show that measures of industry concen-

tration in the Compustat data are not strongly correlated with measures using the Census data. This

concern is relevant to our results because we use measures of concentration or markups to test

our model predictions in Section 3, which, in our model, are directly related to both concentration

(1/N is the market share of every firm) or competition (firms’ markups decrease with N as an

oligopoly becomes more competitive). There is a long history regarding the pros and cons of

associating market power and concentration, especially that macroeconomic models—including the

ones considered here—usually deliver a very tight relationship between the two (see, e.g., Syverson,

2019; Afrouzi et al., 2020). Thus, there is a question of how to map N to the data as both the

relative size and competitiveness of an industry might be appropriate proxies to N in the model.

However, due to concerns about the weak association of concentration measures between Census

and Compustat, we use the lag of log markups as our main proxy for the competitiveness of an

industry but show that our results are robust to using measures of concentration too. A finding by

De Loecker et al. (2020) that justifies why using lag of markups might not be subject to sample

selection issues in Compustat relative to Census is that the estimated markups using Census data for

the manufacturing, retail, and wholesale sectors present similar patterns as in Compustat.

There is also a related concern that, while the competition structure in the Compustat data is rep-

resented by an oligopoly model due to the high concentration of industries in that dataset, the overall
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economy might not be, especially since Compustat tends to contain larger and older firms. Thus our

results might be contaminated by the more concentrated nature of firms in Compustat, especially

if the overall economy is better represented by a model with perfect competition. Nonetheless,

evidence from the Census data supports the hypothesis that the overall competition structure of the

economy also exhibits oligopolistic traits. For instance, there is a growing literature documenting:

(i) a rise in sales concentration within (four-digit) industries and “superstar firms” (Autor et al., 2020;

Furman and Orszag, 2018; Ganapati, 2021); (ii) and an increase in profits (Barkai, 2020). While

selection to Compustat might affect the quantitative significance of our estimates, the qualitative

results hold for an arbitrarily competitive oligopolistic structure: It is only in the limiting case of

perfect competition (N → ∞) that these predictions become irrelevant.

Measurement of Markups. In this paper, we use the production-based methodology of De Loecker

et al. (2020) for estimating markups because it delivers markups estimates for a broad range of

firms over a long enough period of time so that we can take our model predictions to the data—See

Online Appendix E for a detailed discussion. However, by now, there is an extensive literature that

debates the advantages and disadvantages of using this method.

Markups are notoriously hard to estimate because marginal costs are not observed in the data,

and thus any attempt for providing estimates for a broad range of industries needs to systematically

address this issue. Production-based methods provide such a systematic approach by attempting to

estimate marginal costs from average costs of an arbitrary set of variable inputs (see, e.g., Basu,

2019). By utilizing the optimality conditions for firms’ cost minimization, these methods show that

marginal costs are proportional to the sales share of an arbitrary set of variable inputs up to the

elasticity of production with respect to these inputs. Since sales shares of different input costs are

observable in the data (barring issues with availability and measurement error, which Basu (2019)

discusses in detail), the main challenge for providing consistent estimates of markups is to estimate

these production elasticities, which is the main focus of De Loecker et al. (2020). In fact, many of

the criticisms to the production-based methodology are related to issues that arise in estimating such

production elasticities. For instance, Bond et al. (2021) point out that while the literature usually
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uses revenue data to estimate these elasticities, such attempts could lead to inconsistent estimates

(we discuss these criticisms in more detail in Online Appendix E).

These issues are especially relevant for the estimation of level of markups since any systematic

bias might lead to systematic over- or underestimation of markups. These criticisms also hold for

our use of these methods. However, we believe they are not as severe for our case as we only rely

on estimates of relative markups: Our estimation of the law of motion only uses the change in log

markups on the firm level. In turn, this means that we need to make weaker assumptions to obtain

consistency in our estimates. Even if there is a bias in estimating production elasticities since we are

interested in the change of the log of markups, we only need to assume that the change in the bias

of our elasticities is not correlated with our variables of interest, ∆ log (salesi,t+1) and log(Mi,t+1).

Similarly, most of the literature (including us) impose constant output elasticity within an

industry, which could be particularly problematic for estimating the level of markups. For instance,

suppose that firm A has twice the revenue share as firm B, but its output elasticity is also half. If

the firms are in the same industry, then we would estimate firm A’s markup as twice as firm B’s,

whereas in reality their markups are the same. However, as long as their change in the elasticity is

the same, we would correctly estimate the change in log markups.

Relation to New Keynesian Models. By assuming that prices are sticky but marginal costs are

not, New Keynesian models create variable markups both across time and across firms. In these

models, two forces interact in shaping the cyclicality of aggregate markups: among the fraction of

firms that are not resetting their prices, markups are countercyclical because in an expansion their

marginal costs rise but their prices stay the same. However, among firms that do reset their prices,

they might increase their prices by more than the contemporaneous increase in their marginal costs

due to the forward-looking nature of price-setting in these environments. Therefore, the aggregate

cyclicality would depend on which force dominates in total. To see this formally, consider the

linearized version of the firms side of the textbook New Keynesian model (see, e.g., Galí, 2015):

p∗t = (1− βθ)mct + βθEt[p
∗
t+1], pt = (1− θ)p∗t + θpt−1 (16)
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where p∗t is the log-deviation of reset price for firms that are changing their prices at time t from

its steady-state level, mct is the log-deviation of the nominal marginal cost of firms (which in our

setting is given as a function of aggregate wage and the rental rate of capital in Equation 4) from its

steady-state level, pt is the log-deviation of the aggregate price level from its steady-state level, β is

the discount rate and finally, 1− θ is the probability resetting prices at every period. Notice that we

can define two notions of markups in this economy: µ∗
t ≡ p∗t −mct as the markup of the firms that

reset their prices at time t and µt ≡ pt −mct as the aggregate markup based on the aggregate price

level. Rewriting the equations above in terms of these markups we get:

µ∗
t = βθEt[∆mct+1] + βθEt[µ

∗
t+1] (17)

µt = (1− θ)µ∗
t + θµt−1 + θ∆mct (18)

Notice that Equation (17), which is the law of motion for markups among price setters at time

t resembles our law of motion for implicit collusion and customer-base models with one major

difference: instead of relating markups to changes in the net present value of future sales growths, it

relates firms’ markups to a discounted average of future changes in marginal cost growths. Therefore,

insofar as growth in marginal costs, output growth and stochastic discount rates comove positively

in response to a shock, the mechanics of how µ∗
t evolves over the business cycle is akin to the

other models considered in this paper. Nonetheless, the dynamics of aggregate markups is more

complicated and also depend on the history of prices and marginal costs due to the stickiness of

prices among the fraction of firms that are not changing their prices at time t.

Furthermore, the baseline New Keynesian model does not capture the heterogeneity that we

observe in the Compustat based on relative size (Predictions 2 in Section 3). In the baseline,

New Keynesian model markups of all firms have the same comovement with their future expected

marginal cost growths which is uniquely determined by the discount factor and price stickiness (βθ).

However, it is worth mentioning that the New Keynesian model can also deliver similar predictions

through a completely different mechanism as long as price stickiness is positively correlated with
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measures of concentration, as documented by Carlton (1986).26 Nonetheless, such heterogeneity

must be assumed exogenously in the textbook New Keynesian model as it does not provide a

microfoundation for price stickiness.

Surprisingly, models that do microfound price stickiness, such as menu cost models, seem to

predict an opposite correlation between price stickiness and concentration: In a menu cost model

(e.g. the one in Golosov and Lucas Jr, 2007), firms that are relatively larger have more revenues at

stake for not changing their prices and as a result tend to have narrower Ss bands, which in turn

leads to higher frequencies of price changes. Since more concentration increases the market share

of such firms, the menu cost model associates more concentration with lower price rigidity.

More broadly, while we view our main contribution as highlighting how dynamic strategies in

oligopolistic environments affect markup dynamics in microfounded settings, we believe exploring

microfoundations of the price stickiness channel, and how they interact with granular competition,

is an interesting avenue for future research to study the interactions of these two mechanisms.27

On a final note, the standard New Keynesian models take a center stage in the analysis of

Nekarda and Ramey (2020), where they find the predictions of these models for the cyclicality of

markups conditional on demand shocks to be inconsistent with the empirical evidence. Nekarda and

Ramey (2020) argue that the key to matching the evidence for the cyclicality of markups is having

more nominal rigidity on wages than prices. By assuming that prices are stickier than wages, the

New Keynesian model inevitably leads to markups falling when wages go up due to demand shocks

while prices remain below their ideal level due to stickiness.

It is important to note that the same criticism also applies to the types of models that we consider

in this paper as we have focused on real price rigidities and have abstracted away from rigidities in

the wage market. While the model with a humped-shaped response of output pushes the cyclicality

26We thank an anonymous referee for highlighting this mechanism.
27See, e.g., Wang and Werning (2020) who in an environment with oligopolistic competition

and Calvo pricing deliver sharp analytical results on how price stickiness amplifies real rigidities

introduced by oligopoly.
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of markups and output conditional on demand shocks in the right direction, this channel, on its own,

is not strong enough to reverse the sign of this correlation. A possible remedy for this issue, that

would be an interesting avenue for future work, is to extend the models discussed in this paper to

settings where firms’ market power is also modeled in factor markets (see, e.g., Berger et al., 2022)).

Such models would then create rigidities both in prices as well as wages and would create a new

mechanism that would allow for a better model fit in response to demand shocks.

Models with Variable Elasticities of Demand. Another set of models that generate variable

markups over the business cycle rely on preferences that, in contrast to CES preferences, generate

variable demand elasticities along firms’ demand curves and populate firms along those demand

curves based on heterogeneity in size.

One approach for variable demand elasticities is to use a generalized aggregator (as in Kimball,

1995) that varies demand elasticity according to Marshall’s second law of demand—which requires

demand elasticity to decrease with relative price along the demand curve. For instance, this approach

has recently been used by Edmond et al. (2018) who study the cost of markups in a firm dynamics

model. In these models, markups are static but are determined as a function of a firm’s demand

elasticity given their marginal cost of production. Formally, let e(p) denote the elasticity of demand

at relative price p along the demand curve of the firm. Then, the optimal pricing strategy of a firm

with real marginal cost mc in these models is to choose p such that p = e(p)
e(p)−1

mc, which is an

implicit equation in the relative price of the firm and determines this relative price as a function of

mc. Marshall’s second law of demand then implies that firms with higher marginal costs charge

higher relative prices and lower markups (see, e.g., Lemma 1 in Afrouzi et al., 2020).

Since these models relate markups to relative prices, heterogeneity plays a crucial role for their

conclusions on how markups change over the business cycle. To see this, notice that in a model with

no heterogeneity, by symmetry, all firms have to charge the same price which implies all relative

prices are always 1, independent of whether the economy is booming or in a recession. Therefore,

in such an economy markups are always constant and given by e(1)/(e(1)− 1). It is when there is

heterogeneity in size that these models start to shine, and create predictions for the cyclicality of
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markups as the distribution of prices across the economy starts to change over the business cycle.

The implications of these effect for the cyclicality of markups, however, are unexplored to the best

of our knowledge and remains a promising area for future work.

Furthermore, variable demand elasticities also arise in nested CES preferences (similar to what

we assumed in Equation 1), combined with heterogeneity in productivity (Atkeson and Burstein,

2008; Burstein et al., 2020). Without any dynamic incentives (i.e. implicit collusion or customer

acquisition), pricing decisions in these models are static, where firms set a markup over their

marginal cost and their markups are determined by their demand elasticity, which in turn depends

on the firm’s market share within its sector.

Formally, in such a model, the demand elasticity of a firm j in a sector i with market share si,j

can be written as an average of two elasticities of substitution implied by the nested CES system,

weighted by the firm’s market share as e(si,j) = si,jη+(1− si,j)σ which then implies the following

markup for the firm (Equation 5 in Burstein et al. 2020):

µ(si,j) =
η

η − 1

[
1− (η−σ

η
)si,j

1− (η−σ
η−1

)si,j

]
(19)

Moreover, defining the aggregate markup of a sector as the inverse labor share of that sector implies

that the sectoral markup is the harmonic mean of the individual firms’ markups, weighted by their

market share (µ−1
i =

∑
j si,jµ(si,j)

−1; Equation 7 in Burstein et al. 2020). Notice now that the

sectoral cyclicality of markups depends on two objects: (1) cyclicality of individual firms’ markups,

and (2) redistribution of sales across the sector during the business cycle. Therefore, the cyclicality

of sectoral markups could go against the cyclicality of individual firms’ markups within that sector

if there is enough heterogeneity in size.

To relate our model in Section 2.1 to this framework, we depart from this setting in two ways.

First, we consider environments with dynamic incentives which introduce a different law of motion

for markups than the static case presented here. These dynamic incentives create intertemporal

considerations for firms in choosing their markups. However, for tractability, we do not allow for

heterogeneity in size within sectors, as our symmetric equilibria imply that all firms have the same
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and constant market share (1/N ) within their sectors. This assumption is of course restrictive but

allow for tractability as well as simplified testable predictions that we take to the data. Extending

these predictions and models to environments with heterogeneity in market shares would be a

natural next step for future work.

6 Conclusion

In this paper, we revisit the implicit collusion and customer-base models and show they both imply a

forward-looking law of motion that relates markups to firms’ expectations of the net present value of

their future sales growths. We then use data on markups and sales from Compustat and survey data

on firms’ expectations from New Zealand to test this implied law of motion and find the evidence to

be in favor of the implicit collusion models.

In a general equilibrium model, we also show that this law of motion reduces the net present

value of firms’ future sales growth to their expectations of output growth and stochastic discount

rates. Because markups are related to the expected output growth, and not to its level, the conditional

expectations of firms for the dynamics of output are key in the model for the cyclicality of markups.

In particular, if firms expect a hump-shaped response for output during the business cycle, the

predictions of these models are reversed.

Lack of sufficiently rich dynamics in output in previous models has led to the conclusion

that implicit collusion models lead to counter-cyclical markups. We show that this prediction is

overturned once empirically realistic dynamics of output are incorporated into the model, which also

helps the implicit collusion model to match the empirical evidence on the dynamic cross correlation

of output and markup conditional on TFP shocks.
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Tables and Figures

Table 2: Descriptive statistics for Compustat data

Statistic Real salesit % change in

salesi,t+1

markupit % change in

markupi,t+1

Mean 1565.40 25.60 1.41 10.51

P 25 27.57 -5.35 1.06 -3.25

P 50 138.06 5.14 1.23 0.03

P 75 648.47 18.76 1.51 3.33

SD 8458.53 841.17 0.79 321.95

Notes: Each column of the table shows the summary statistics of the corresponding variable in the

Compustat data. The dataset contains 242,155 observations for 20,252 firms across 67 years (1960-

2016). Real salesit for firm i and year t are reported in millions. To calculate markups, we followed

the procedure from De Loecker et al. (2020); Traina (2018)–we first estimated time-invariant but

industry-specific (SIC 2-digits) output elasticities using the production function estimation method

from De Loecker et al. (2020). We then define markupit as output elasticitiesj times sales over cost

of goods sold (COGS).
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Table 3: Law of motion for the U.S.

(1) (2) (3)

log(Mi,t) log(Mi,t) log(Mi,t)

∆ log(salesi,t+1) -0.163∗∗∗ 0.083 0.166∗∗

(0.010) (0.085) (0.083)

log(Mi,t+1) 0.833∗∗∗ 1.075∗∗∗ 1.078∗∗∗

(0.006) (0.006) (0.006)

R2 0.729 0.622 0.551

Year FE Yes Yes Yes

Industry FEs Yes No Yes

Method OLS IV-GMM IV-GMM

N 145,700 145,700 145,700

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01; standard errors are clustered at the firm-level. The

first column contains the results of an OLS regression of log(markupit) on ∆ log(salesi,t+1) and

log(markupi,t+1). We also include year and industry (SIC 2-digit codes) fixed effects. The second

and third columns report the results of the GMM estimator when using four lags of log(salesi,t)

and log(markupi,t) as instruments. The first column report the results of the OLS specification,

restricting the observations to the IV-GMM sample used in columns 2 and 3. Our dataset contains

66 industries, 67 years and 242,155 observations.
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Table 4: Law of motion for the U.S. split for above and below the 30th percentile of lag log markup
and negative of lag of debt-to-asset ratio

(1) (2)

log(Mi,t) log(Mi,t)

∆log(salesi,t+1) -0.338∗∗ 0.600∗∗∗

(0.157) (0.171)

log(Mi,t+1) 1.092∗∗∗ 1.026∗∗∗

(0.009) (0.013)

R2 0.577 0.114

Above 30th percentile No Yes

Industry FEs Yes Yes

Year FEs Yes Yes

Markert share 51.08 48.92

N 73085 72615

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01; standard errors are clustered at the firm-level. We report

the GMM estimator of the effects of ∆ log(salesi,t+1) and log(markupi,t+1) on log(markupi,t) using

four lags of log(salesi,t) and log(markupi,t) as instruments. We also include year and industry (SIC

2-digit codes) fixed effects. The second column reports the results for observations above the 30th

percentile of lag log markup and negative of lag debt-to-asset ratio, while the first column reports

the results for all other observations.
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Table 5: Law of motion for the U.S. split for above and below the 30th percentile of lag relative
sales and negative of lag debt-to-asset ratio

(1) (2)

log(Mi,t) log(Mi,t)

∆log(salesi,t+1) 0.105 0.220∗∗

(0.071) (0.088)

log(Mi,t+1) 1.104∗∗∗ 1.037∗∗∗

(0.008) (0.006)

R2 0.484 0.699

Above 30th percentile No Yes

Industry FEs Yes Yes

Year FEs Yes Yes

Market share 27.88 72.11

N 71999 73701

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01; standard errors are clustered at the firm-level. We report

the GMM estimator of the effects of ∆ log(salesi,t+1) and log(markupi,t+1) on log(markupi,t) using

four lags of log(salesi,t) and log(markupi,t) as instruments. We also include year and industry (SIC

2-digit codes) fixed effects. The second column reports the results for observations above the 30th

percentile of lag relative sales and negative of lag debt-to-asset ratio, while the first column reports

the results for all other observations. We define relative sales as the total sales for a firm in a given

year, divided by the total sales of the industry (SIC 1-digit) in that same year.
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Table 6: Descriptive statistics for New Zealand data

Statistic Firm production

value

Expected % change

in sales

Markup Expected size of

next price change

Mean 992,136.69 4.39 25.02 4.64

P 25 211,600.00 0.00 15.00 2.00

P 50 369,500.00 5.00 25.00 5.00

P 75 1,061,500.00 8.50 34.50 8.00

SD 1,935,235.80 5.84 12.18 5.27

The table provides summary statistics for the survey of firms’ expectations from New Zealand. The

dataset contains 3,153 observations for 3,153 firms in 18 industries and corresponds to the first

wave of the survey conducted by Coibion et al. (2015).
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Table 7: Law of Motion for Markups: Survey Data from New Zealand

(1) (2)

Markup Markup

Expected size of next price change -0.178∗∗∗ 0.025

(0.062) (0.090)

Expected growth in sales 0.163∗∗ -0.037

(0.082) (0.107)

R2 0.118 0.153

Industry FE Yes Yes

Number of competitors 2 ≤ competitors ≤ 20 2 > 20

N 495 200

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.01; robust standard errors. The table reports the coefficients for

the regression specified in Equation (15) allowing for industry fixed effects. The first column reports

the coefficients for firms that report less than 20 but more than 2 competitors. Second column

reports the coefficients for firms that report more than 20 competitors.
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Figure 1: Impulse Response Functions: Implicit Collusion Model

5 10 15 20
0

0.5

1

Output (Y)

5 10 15 20
0

0.2

0.4

0.6

Consumption (C)

5 10 15 20
0

0.5

1
Technology (Z

a
)

5 10 15 20

-0.05

0

0.05

0.1

Output Growth ( Y)

5 10 15 20

-0.1

0

0.1

Discount Rate (q)

5 10 15 20
-0.04

-0.02

0

0.02

0.04

Markup ( )

5 10 15 20

-0.2

-0.1

0

Inflation ( )

5 10 15 20
-0.4

-0.2

0

Nominal Rate (i)

(a) The dashed curves plot the impulse response functions of the implicit collusion model to a 1% technology
shock with no adjustment cost in which markups are counter-cyclical as output growth and stochastic discount
rates are counter-cyclical. Solid curves illustrate the impulse response functions of the same model to a 1%
technology shock with investment adjustment cost. Markups are pro-cyclical as long as firms expect output to
grow. See Section 4.1 for details.
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(b) The dashed curves plot the impulse response functions of the implicit collusion model to a 1% government
spending shock without inertia in which markups are counter-cyclical as output growth is negative during the
expansion. Solid curves illustrate the impulse response functions of the same model to an inertial government
spending shock that peaks at 1%. Markups are pro-cyclical on impact as output growth and stochastic discount
rates are pro-cyclical. See Section 4.1 for details.
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