Rationally Confused: On the Effects of Information Provision Policies

Miguel Acosta

Columbia University

Hassan Afrouzi

Columbia University

SED 2019 - St. Louis June 28, 2019

Outline

Background

Model Setup

Model Results

Conclusion

- Managing expectations has become an important aspect of monetary policy
 - e.g. forward guidance during the ZLB

- Managing expectations has become an important aspect of monetary policy
 - e.g. forward guidance during the ZLB
- Key question: how does shocks to beliefs affect macroeconomic outcomes?
 - Empirically, almost impossible to estimate.
 - Need exogenous variation in beliefs independent of actions in particular.

- Managing expectations has become an important aspect of monetary policy
 - ► e.g. forward guidance during the ZLB
- Key question: how does shocks to beliefs affect macroeconomic outcomes?
 - Empirically, almost impossible to estimate.
 - Need exogenous variation in beliefs independent of actions in particular.
- But what is an exogenous shock to beliefs anyway?
 - In models with full information, all information about present and past is endogenous.
 - ► So giving information about history is irrelevant.

- Managing expectations has become an important aspect of monetary policy
 - ► e.g. forward guidance during the ZLB
- Key question: how does shocks to beliefs affect macroeconomic outcomes?
 - Empirically, almost impossible to estimate.
 - Need exogenous variation in beliefs independent of actions in particular.
- But what is an exogenous shock to beliefs anyway?
 - In models with full information, all information about present and past is endogenous.
 - So giving information about history is irrelevant.
- That's not true!

Exogenous Expectation Shocks

- ► Coibion et al. (2018a) and Coibion et al. (2018b):
 - RCTs in New Zeland and Italy.
- Main idea:
 - 1. Survey a group of firms.
 - 2. Treat a random sample with information about current inflation.
 - 3. Follow up later and see if they behaved differently than the control group.

Exogenous Expectation Shocks

- ► Coibion et al. (2018a) and Coibion et al. (2018b):
 - ► RCTs in New Zeland and Italy.
- Main idea:
 - 1. Survey a group of firms.
 - 2. Treat a random sample with information about current inflation.
 - 3. Follow up later and see if they behaved differently than the control group.
- Result #1: Telling firms about current inflation changes their employment!

Exogenous Expectation Shocks

- ► Coibion et al. (2018a) and Coibion et al. (2018b):
 - ► RCTs in New Zeland and Italy.
- Main idea:
 - 1. Survey a group of firms.
 - 2. Treat a random sample with information about current inflation.
 - 3. Follow up later and see if they behaved differently than the control group.
- Result #1: Telling firms about current inflation changes their employment!
- Result #2: In different directions...

Expectation Changes and Firm Decisions

In response to an exogenous increase in a firm's inflation expectations, a firm

- ▶ in Italy (Coibion et al., 2018b)
 - raises prices slightly
 - reduces employment substantially
- ▶ in New Zealand (Coibion et al., 2018a)
 - raises prices slightly
 - increases employment substantially

Implication: communications that raise inflation expectations are *contractionary* in Italy and *expansionary* in New Zealand.

Question and Overview of Results

- What are the effects of communication policies?
- In particular, why is the the effect of information provision about inflation so different in these two countries?

Question and Overview of Results

- What are the effects of communication policies?
- In particular, why is the the effect of information provision about inflation so different in these two countries?
- This paper: a model of firm decision making with rational inattention under supply and demand shocks.
- We show firms in such an environment choose information sets that do not permit perfect identification of supply and demand.
- ► When a firm's inflation expectation is raised exogenously:
 - in a supply-driven economy, the firm attributes the higher inflation to a negative supply shock and reduces employment
 - in a demand-driven economy, the firm attributes the higher inflation to a positive demand shock and increases employment

Question and Overview of Results

- What are the effects of communication policies?
- In particular, why is the the effect of information provision about inflation so different in these two countries?
- This paper: a model of firm decision making with rational inattention under supply and demand shocks.
- We show firms in such an environment choose information sets that do not permit perfect identification of supply and demand.
- ► When a firm's inflation expectation is raised exogenously:
 - in a supply-driven economy, the firm attributes the higher inflation to a negative supply shock and reduces employment
 - in a demand-driven economy, the firm attributes the higher inflation to a positive demand shock and increases employment

Structural DSGE and VAR evidence suggests that supply shocks are dominant in Italy, and demand shocks are dominant in New Zealand [Kamber et al. (2016), Albonico et al. (2019)].

Outline

Background

Model Setup

Model Results

Conclusion

Firms: Setup

- Monopolistically competitive atoms
- Production linear in labor
- ► Rationally inattentive: information is costly where the cost of every bit of information is \u03c6
- Two decisions required in maximizing profits
 - choice of information structure (i.e., signals s_t)
 - choice of prices as a function of information

Environment

Fluctuations are driven by

- demand shocks: Q_t = P_tY_t fully-attentive optimizing households and a monetary authority
- supply shocks: Z_t $Y_{i,t} = Z_t N_{i,t}$

The logs of these shocks, (z_t, q_t) are Brownian motions. A firm's optimal price p_t^* and output y_t^* are functions of fundamental shocks.

$$p_t^* = q_t - z_t$$
$$y_t^* = q_t + z_t$$

Firms: Formal Problem

A second-order approximation to the above problem is

$$\min_{\{p_{i,t}(S_{i,t}), n_{i,t}(S_{i,t})\}_{t=0}^{\infty}} \int_{0}^{\infty} e^{-\rho t} \mathbb{E} \left[(p_{i,t} - p_{t}^{*})^{2} + \alpha (y_{i,t} - y_{t}^{*})^{2} + C(S_{i,t}) \mid S_{i,0} \right] dt$$

$$C(S_{i,t}) \equiv \psi \left[\lim_{dt \to 0} \frac{h\left(\begin{bmatrix} q_{t} \\ z_{t} \end{bmatrix} \mid S_{i,t-dt} \right) - h\left(\begin{bmatrix} q_{t} \\ z_{t} \end{bmatrix} \mid S_{i,t} \right)}{dt} \right]$$

$$S_{i,t} \equiv \{ s_{i,\tau}, \tau \leq t \}; \text{ given } S_{i,0}$$

with

- $s_{i,t}$ firm's signal at time t
- h conditional entropy
- p_t^*, y_t^* full information prices and output

Firms: Solution

Conditional on its information set, a firm sets its price and employment equal to expected full-information levels.

Proposition

The firm's optimal information structure consists of signals about its optimal price and optimal employment:

$$\begin{split} \mathbf{S}_{i,t}^{p} &= \mathbf{p}_{t}^{*} + \varepsilon_{i,t}^{p} \qquad \qquad \varepsilon_{i,t}^{p} \sim \mathcal{N}(\mathbf{0}, \sigma_{p}^{2}) \\ \mathbf{S}_{i,t}^{n} &= \mathbf{y}_{t}^{*} + \varepsilon_{i,t}^{y} \qquad \qquad \varepsilon_{i,t}^{y} \sim \mathcal{N}(\mathbf{0}, \sigma_{y}^{2}). \end{split}$$

The variances are chosen in order to minimize posterior uncertainty given the cost of processing information.

Outline

Background

Model Setup

Model Results

Conclusion

An Experiment in the Model

What are firms' responses to an exogenous shift in inflation expectations?

$$\mathbf{y}_{i,t+k} = \alpha_k + \phi_k \mathbb{E}_{i,t}[\pi_t] + \varepsilon_{i,t,k} \,.$$

Note that expectations are endogenous - need an IV.

An Experiment in the Model

What are firms' responses to an exogenous shift in inflation expectations?

$$\mathbf{y}_{i,t+k} = \alpha_k + \phi_k \mathbb{E}_{i,t}[\pi_t] + \varepsilon_{i,t,k} \,.$$

Note that expectations are endogenous – need an IV. We run the same experiment in the model:

- Let firms form their beliefs under optimal information acquisition.
- ► Select a sample and give a one time signals about inflation.
- ► Track their decisions over time relative to control group.

A subset of treated firms $i \in \mathcal{T}$ receive a signal about inflation $s_{i,t}^{\pi} = \pi_t + \varepsilon_{i,t}^{\pi}$. We instrument for $\mathbb{E}_{i,t} \pi_t$:

$$\mathbb{E}_{i,t}[\pi_t] = \boldsymbol{a} + \boldsymbol{b} \left(\mathbb{1}\{i \in \mathcal{T}\} \times \boldsymbol{s}_{i,t}^{\pi} \right) + \boldsymbol{e}_{i,t}$$

and study results for two economies

- ► a *supply economy* (primarily driven by supply shocks)
- ► a demand economy (primarily driven by demand shocks)

Responses of Output and Prices

Observations and Comparative Statics

Responses depend critically on

- ► Relative variance of supply vs. demand shocks
 - Supply shocks more important ⇒ in response to positive inflation news, firms adjust employment as if a negative supply shock hit (fire)
- Relative importance of employment objective relative to information processing parameter
 - when two decisions are relatively equally important (high weight), firms are well-informed about supply and demand shocks because signals are more informative for identification.

Outline

Background

Model Setup

Model Results

Conclusion

Plans for Future Work

- Realistic model calibration
- Study aggregate effects of the communications that affect economic expectations

End. Thanks!

References I

Coibion, Olivier, Yuriy Gorodnichenko, and Saten Kumar, "How Do Firms Form Their Expectations? New Survey Evidence," *American Economic Review*, 2018, *108*, 2671–2713.

_, _, _, and Tiziano Ropele, "Inflation Expectations and Firm Decisions," Working Paper 2018.