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A Additional Figures and Tables

Table A.1: Number of Competitors and Degree of Strategic Complementarity

Observations Number of Competitors Strategic Complementarity
Mean Std. Dev. Mean Std. Dev.

Industry (1) (2) (3) (4) (5)

Accommodation and Food Services 153 10.634 7.428 0.833 0.390
Agriculture, Forestry, and Fishing 1 32.000 . 1.000 .
Basic Chemical and Chemical Product Manufacturing 46 6.304 5.193 0.831 0.405
Beverage and Tobacco Product Manufacturing 32 9.844 6.624 0.755 0.537
Construction 206 7.083 5.415 0.858 0.383
Fabricated Metal Product Manufacturing 109 8.459 5.933 0.731 0.561
Financial and Insurance Services 413 9.075 6.672 0.809 0.440
Food Product Manufacturing 135 9.689 7.546 0.769 0.467
Furniture and Other Manufacturing 90 8.889 5.954 0.721 0.531
Information Media and Telecommunications 54 6.093 5.235 0.824 0.353
Machinery and Equipment Manufacturing 214 7.794 5.804 0.816 0.491
Non-Metallic Mineral Product Manufacturing 25 9.880 5.215 0.833 0.395
Petroleum and Coal Product Manufacturing 8 7.000 5.757 0.821 0.374
Polymer Product and Rubber Product Manufacturing 56 6.732 5.011 0.836 0.397
Primary Metal and Metal Product Manufacturing 18 6.278 5.839 0.781 0.413
Printing 58 8.621 7.684 0.824 0.421
Professional, Scientific, and Technical Services 407 7.990 6.064 0.839 0.424
Pulp, Paper and Converted Paper Product Manufacturing 16 4.875 3.739 0.873 0.359
Rental, Hiring, and Real Estate Services 121 9.702 6.196 0.837 0.485
Retail Trade 316 9.285 6.044 0.798 0.449
Textile, Leather, Clothing and Footwear Manufacturing 97 9.144 6.801 0.746 0.517
Transport Equipment Manufacturing 46 8.130 6.962 0.923 0.221
Transport, Postal, and Warehousing 197 7.746 5.458 0.860 0.482
Wholesale Trade 175 7.223 5.596 0.817 0.427
Wood Product Manufacturing 79 8.544 5.991 0.854 0.372

Total 3072 8.449 6.273 0.817 0.445

Notes: The table presents the raw (unweighted) summary statistics for the number of competitors and the degree of strategic complementarity in the survey data
from New Zealand for different industries using firms’ responses in the sixth and eighth waves of the survey (Coibion et al., 2018, 2021). Column (1) shows the
number of observations within each industry. Columns (2) and (3) report the mean and the standard deviation of the number of competitors that firms report they
face in their main product market. Columns (4) and (5) show the mean and the standard deviation for the degree of strategic complementarity from Equation (13).
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Figure A.1: Distribution of the Number of Competitors

Notes: The figure presents the raw (unweighted) distribution of the number of competitors that firms report they face in their
direct product market in the sixth wave of the survey from New Zealand. The numbers over bars denote the percentage of
firms within the corresponding bin. Firms with more than 30 competitors are omitted in this Figure but not in the calibration
(less than 1 percent of firms report they have more than 30 competitors; the maximum number of competitors reported is 42).
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Figure A.2: Distributions of the Size of Firms’ Nowcast Errors

Notes: The figure presents the raw (unweighted) distribution of the size of firms’ errors in perceiving the aggregate and
their industry inflation in the fourth wave of the survey (Coibion et al., 2018). The dashed vertical lines denote the means
of these distributions.
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Figure A.3: Sensitivity of δ to Cost of Attention (ω)

Notes: The black line shows the predicted value of δ from
the regression specified in Equation (29) in model generated
data as a function of ω. The blue dot shows the equivalent
estimate in the New Zealand data from Table A.2.

Table A.2: Calibration of Cost of Attention (ω)

(1) (2)
nowcast nowcast

forecast 0.163 0.052
(0.011) (0.008)

perceived target 0.674
(0.020)

Constant 3.107 0.734
(0.102) (0.081)

Observations 1257 1257

Notes: The table reports the result of regressing firms’
nowcasts of yearly inflation on their forecasts of yearly
inflation for the same horizon reported a year before. The
coefficient on the lagged forecast captures the weight that
firms put on their priors and increases with the degree of
information rigidity. Column (1) reports the result with no
controls. Column (2) controls for the firm’s expectation of
long-run inflation. Robust standard errors are in parentheses.
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Figure A.4: Information Capacity and Kalman Gains for Different Values ofK.

Notes: The left panel shows the produced information processing capacity of a firm as a function of the number of competitors
within its sector in the calibrated model. The right panel shows the model implied Kalman gains of firms (weight put on the
most recent signal by firms) as a function of the number of competitors within a sector. Firms with more competitors acquire
more information and have larger Kalman gains. The blue dotted line shows the average Kalman gain of firms weighted
by the distribution of the number of competitors in the data.
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Figure A.5: IRFs to a 1% Expansionary Shock

Notes: The figure shows the impulse response functions of output and inflation to a one percent expansionary shock to
the growth of nominal demand in three models. The black lines are impulse responses in the benchmark model where the
distribution of the number of competitors in the model is calibrated to the empirical distribution in the data (Figure A.1).
The dashed lines show the impulse responses in the model with monopolistic competition. The dash-dotted lines show the
impulse responses in duopolies. Plotted impulse responses are interpolated over a finer time grid for better visual depiction.
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Figure A.6: Strategic complementarity as a function ofK.

Notes: The figure shows the relationship between the number of competitors within a sector and the degree of strategic
complementarity in pricing. Firms with a larger number of competitors have a higher degree of strategic complementarity.
The dash-dotted line shows the average degree of strategic complementarity weighted by the calibrated distribution of the
number of competitors to the survey data as described in Table 3.
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Figure A.7: IRFs of Higher-Order Beliefs to a 1% Expansionary Shock

Notes: The figure shows the IRFs of firms’ higher-order beliefs to a one percent expansionary shock to the growth of nominal de-
mand across three different models. For any given order (n), firms’nth order beliefs in economies with a larger number of com-
petitors are more responsive to the shock. This is driven by the fact that firms in more competitive economies acquire more infor-
mation about the aggregate shock. Plotted impulse responses are interpolated over a finer time grid for better visual depiction.
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B Mutual Information and Data Processing Inequality
In this paper, following the rational inattention literature, I use Shannon’s mutual information function
for measuring firms’ attention. In the case of Gaussian variables, this function takes a simple form: if
X and Y are two Gaussian random variables, then the mutual information between them is given by
I(X;Y )= 1

2
ln( det(ΣX)

det(ΣX|Y )
), where ΣX|Y is the variance of X conditional on Y . Intuitively, the mutual

information is bigger if the Y reveals more information aboutX , captured by a smaller det(ΣX|Y ). In
the other extreme, whereX and Y are independent variables, ΣX|Y =ΣX and the mutual information
between them is zero, I(X;Y )=0. In other words, whenX is independent of Y , then observing Y does
not change the posterior of an agent aboutX and therefore reveals no information aboutX .

A result from Information Theory that I use in this Appendix is the data processing inequality. The
following Lemma proves a weak version of this inequality for completeness.

Lemma B.1. LetX→Y →Z be a Markov chain. Then I(X;Y )≥I(X;Z).

Proof. The inequality follows immediately from the chain rule of mutual information:43

I(X;(Y,Z))=I(X;Y )+I(X;Z|Y )=I(X;Z)+I(X;Y |Z)

SinceX⊥Z|Y , we have I(X;Z|Y )=0. Thus, I(X;Y )=I(X;Z)+I(X;Y |Z)︸ ︷︷ ︸
≥0

≥I(X;Z).

C Formalizing the Static Model
This section formalizes the static game in Section 2. The Appendix is organized as follows. Appendix C.1
briefly discusses how the problem of oligopolistic firms relates to the problems studied in the previous
literature and concludes by proving the feasibility and optimality of recommendation strategies for the
static game with exogenous capacity. Appendix C.2 shows that for a given exogenous information pro-
cessing capacity the equilibrium is unique in terms of the joint distribution of prices and the fundamental
(q). Appendix C.3 derives an intuitive reinterpretation of a firm’s attention problem that is discussed
in Section 2. Appendix C.4 derives firms’ best responses for the optimal capacity in the model with
endogenous information processing capacity. Appendix C.5 derives the equilibrium values of optimal
capacity in the endogenous capacity model. Appendix C.6 discusses the conditions underlying multiple
equilibria with endogenous capacity and provides intuition for why multiple equilibria arise in this setting.
Appendix C.7 discusses how firms’ attention to the fundamental varies with the number of competitors
in the model with endogenous capacity. Appendix C.8 derives first and second-order approximations
to equilibrium objects in the endogenous capacity model. Finally, Appendix C.9 contains the proofs
of propositions and corollaries for the static model.

43For a formal definition of the chain rule see Cover and Thomas (2012).
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C.1. Optimal Signals in Gaussian Settings: From Single-Agent Problems to Games

This section formalizes the static game with exogenous capacity, as introduced in Section 2, and
briefly discusses how well-known results for static single-agent rational inattention problems in Linear-
Quadratic-Gaussian settings can be extended to this game. We start by defining the set of available signals,
S, and the set of strategies of firms in the static game, A. The section concludes with a proposition that
proves the feasibility and optimality of recommendation strategies in this game and shows that the optimal
signals in the game take the well-known form of “ideal price plus noise,” as in single-agent problems.

To set the stage for the analysis of the static game, consider a firm j,k’s problem in Equation (1) for
a given strategy of its competitors, ς≡(Sl,m⊆S,pl,m :Sl,m→R)(l,m) ̸=(j,k):

minSj,k⊆SE
[
minpj,k:Sj,k→RE

[(
pj,k(Sj,k)−p∗j,k(ς)

)2∣∣Sj,k

]]
(C.1)

s.t. I(Sj,k;q,(pl,m(Sl,m))(l,m)̸=(j,k))≤κ

where p∗j,k(ς) = (1−α)q+α
∑

l ̸=kpj,l(Sj,l(ς)) is the ideal price of firm (j,k) given ς . Note that with
the distribution of p∗j,k(ς) given under ς , the problem above is identical to a single-agent static rational
inattention problem that have been extensively studied in the literature (see, Maćkowiak, Matějka, &
Wiederholt, 2023, for a review). It is known that, in such problems, optimal prices are sufficient statistics
for optimal signals, and if p∗j,k(ς)∼N (0,σ2), these optimal signals are proportional to the form “ideal
price plus noise:”

p∗j,k(S
∗
j,k)=S

∗
j,k=λp

∗
j,k(ς)+z

∗
j,k, z∗j,k⊥p∗j,k(ς), Var(z∗j,k)=λ(1−λ)σ2, λ≡1−e−2κ

(For such a single-agent problem see, e.g., Maćkowiak et al., 2023, Section 2.3.2).
However, extending this result to a game-theoretic setting requires an assessment of the assumptions

under which it is derived: In particular, while the distribution of p∗j,k(ς) is exogenous to the problem of
the agent, it is endogenous to the game and our assumptions above on its distribution need to be derived
as results in this setting. To do so, I first formally define the set S and the set of strategies for the game,
and then state the equivalent of the result above for the game in Proposition C.1.

Definition (Rich Set of Signals). Let B ≡ {q,e1,e2,...}, where q is the fundamental and ei’s are i.i.d.
standard normals that are orthogonal to each other and q. Define the set S as the vector space of generated
by B over the field of real numbers, i.e.,

S≡{a0q+
N∑
i=1

aieσ(i),N ∈N,(ai)Ni=0⊂RN+1,(σ(i))Ni=1⊂N}. (C.2)

Definition (Strategy Sets). A strategy for firm j,k is to choose a finite vector of signals Sj,k∈Snj,k , where
nj,k∈N is the number of signals that the firm chooses to observe, and a pricing strategy pj,k :Sj,k→R
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that maps the firm’s signal vector to a price.44 Thus, the set of firm j,k’s pure strategies is

Aj,k={ςj,k|ςj,k=(Sj,k∈Snj,k ,pj,k :Sj,k→R),nj,k∈N}.

Moreover, the set of pure strategies for the game is A={ς|ς=(ςj,k)j,k∈J×K ,ςj,k∈Aj,k,∀j,k∈J×K}.
With the definition of S and strategies in A at hand, we can prove the following Proposition.

Proposition C.1. Suppose ς=(Sj,k,pj,k(Sj,k))(j,k)∈J×K∈A is an equilibrium. Then,
1. Feasibility of Recommendation Strategies: The strategy ς̂(ς)=(pj,k(Sj,k),1)(j,k)∈J×K—where 1

denote the identity map—is also in A.
2. Optimality of Recommendation Strategies: Given ς , each firm j,k is indifferent between ς̂j,k(ς)=

(pj,k(Sj,k),1) and ςj,k=(Sj,k,pj,k(Sj,k)). Moreover, optimal signals under ς̂j,k(ς) are proportional
to the form “ideal price plus noise:”

pj,k(Sj,k)=λp
∗
j,k(ς)+zj,k, ej,k⊥(q,pj,k(Sl,m))(l,m) ̸=(j,k),Var(zj,k)=λ(λ−1)Var(p)

Proof of Part 1: Feasibility of Recommendation Strategies. The following lemma formalizes Part
1, establishing the feasibility of recommendation strategies.

Lemma C.1. If ς =(Sj,k ∈Snj,k ,pj,k :Sj,k →R)(j,k)∈J×K ∈A is an equilibrium, then ∀(j,k), pj,k(Sj,k)

is itself a signal in S.

Proof. A necessary condition for ς to be an equilibrium is that ∀(j,k)∈(J×L)

pj,k(Sj,k)=argminpj,k
E[(pj,k−(1−α)q−α 1

K−1

∑
l ̸=k

pj,l(Sj,l))
2|Sj,k].

which leads to the following first order condition: p∗j,k(Sj,k)=(1−α̃)E[q|Sj,k]+α̃E[p∗j(Sj)|Sj,k], where

α̃≡ α+ α
K−1

1+ α
K−1

<1, and p∗j(Sj)≡K−1
∑

k∈Kp
∗
j,k(S

∗
j,k). Iterating this forward, we arrive at

p∗j,k(Sj,k)= lim
M→∞

((1−α̃)
M∑

m=0

α̃mE(m)
j,k [q]+α̃M+1E(M+1)

j,k [p∗j(Sj)])

where E(0)
j,k [q]≡E[q|Sj,k] is firm j,k’s expectation of the fundamental q, and ∀m≥1,

E(m)
j,k [q]=K−1

∑
l∈K

E[E(m−1)
j,l [q]|Sj,k]

is firm j,k’s mth order higher order belief of its industry’s average expectation of the fundamental.
Similarly E(M+1)

j,k [p∗j(Sj)] is firm j,k’sM+1th order belief of their industry price. Since α̃<1, the later
term in the limit converges to zero (as long as firms’ expectations of their own industry prices are not
explosive under the strategy ς which is formally ruled out by Footnote 44) and we have:

p∗j,k(Sj,k)=(1−α̃)
∞∑

m=0

α̃mE(m)
j,k [q]. (C.3)

44As a technical assumption, we further assume that pricing strategies are L2-integrable with respect to the measure
generated by the corresponding signals—i.e.,

∫
|pj,k(x)|2G(dx)<∞ where G is the Gaussian distribution generated by

Sj,k∈S. This guarantees that both unconditional and conditional expectations of firms of their competitors’ prices under
a given strategy is well-defined and finite.
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Now, it only remains to show that E(m)
j,k [q] is linear in Sj,k for all m, which can be shown by

induction. Notationwise let ∀j, k, let Σq,Sj,k
≡ Cov(Sj,k, q) = E[qS ′

j,k]. Also given j, k, ∀l ̸= k,
ΣSj,l,Sj,k

= Cov(Sj,k, Sj,l) = E[Sj,lS
′
j,k] and ΣSj,k

= Var(Sj,k) = E[Sj,kS
′
j,k]. Now, for m = 0,

E(0)
j,k [q] = E[q|Sj,k] = Σq,Sj,k

Σ−1
Sj,k

Sj,k,, which implies that 0th order expectations of firms are linear
in their signals. Now suppose ∀j,l E(m)

j,l [q]=Aj,l(m)′Sj,l for someAj,l(m)∈Rnj,l . Thus,

E(m+1)
j,k [q]=K−1(Aj,l(m)+

∑
l ̸=kAj,l(m)ΣSj,l,Sj,k

Σ−1
Sj,k

)
′
Sj,k,

=⇒A
(m+1)
j,k =K−1(Aj,l(m)+

∑
l ̸=kAj,l(m)ΣSj,l,Sj,k

Σ−1
Sj,k

)∈Rnj,k

which shows that the (m+1)th order expectation is linear in Sj,k.45 Since this holds for allm, it follows
that pj,k(Sj,k) is a linear function of Sj,k. Since S is closed under linear combinations, this implies that
pj,k(Sj,k) is in S, where

pj,k(Sj,k)=E[(1−α)q+α 1
K−1

∑
l ̸=kpj,l(Sj,l)|Sj,k] (C.4)

Furthermore, letting p∗j,k(ς) = (1−α)q+α 1
K−1

∑
l ̸=kpj,l(Sj,l), we can see that p∗j,k(ς) is also a linear

combination of signals in S, and thus p∗j,k(ς)∈S has a Gaussian distribution.

Proof of Part 2: Optimality of Recommendation Strategies. In order to confirm that recommendation
strategies are optimal, we need to consider firms’ deviations from an equilibrium strategy to other feasible
strategies in their strategy sets. To do so, we first introduce the notation that formalizes such deviations
in Aj,k.

Suppose ς ∈A is an equilibrium. Let p(ςj,k) denote the optimal price of firm j,k under the given
strategy (which is in S by Part 1). Also, let ς−(j,k) ≡ ς\ςj,k denote the vector of the strategies for the
competitors of firms j,k. Finally, let θj,k(ς−(j,k))≡ (q,(p(ςj,l))l ̸=k,(p(ςm,n))m̸=j,n∈K) denote the vector
of prices other than j,k augmented with the fundamental q, and define:

w≡(1−α, α
K−1

,..., α
K−1︸ ︷︷ ︸

K−1 times

, 0,0,...,0︸ ︷︷ ︸
(J−1)×K times

).

Given this notation, firm j,k’s problem is to consider deviations from ς in Aj,k to solve

min
ς̂j,k∈Aj,k

Lj,k(ς̂j,k,ς−(j,k))≡E[(p(ς̂j,k)−w′θj,k(ς−(j,k)))
2|S(ς̂j,k)] (C.5)

s.t. I(S(ς̂j,k);θj,k(ς−(j,k)))≤κ

where S(ς̂j,k) denotes the signals in S that j, k observes under the strategy ς̂j,k and given the joint
distribution of (S(ς̂j,k),θj,k(ς−(j,k))), the mutual information is defined in Section B. Notice that since
w′θj,k(ς−(j,k)) is a linear combination of prices of other firms and the fundamental—all of which are in
S by Part 1 of the proof—it has a Gaussian distribution that firm j,k takes as given. Thus, the problem
above is identical to a single-agent rational inattention problem as in the previous literature cited at the
beginning of this section, with one difference: In single agent problems, the objective is minimized over

45Here, I have assumed ΣSj,k
is invertible, which is without loss of generality: if Σj,k is not invertible, since all signals

in Sj,k are non-zero then it must be the case that Sj,k contains co-linear signals. In that case we can exclude the redundant
signals without changing the posterior of the firm.
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the set of joint distributions, whereas here, we are considering deviations in the strategy space of firm j,k.
However, since we have defined this strategy space to be rich enough, the following lemma proves that
these deviations are equivalent to choosing a joint distribution as in single agent problems by showing
that the equilibrium strategies are weakly dominated by recomendation strategies.

Lemma C.2. For any j,k∈J×K, ∀ς =(ςj,k,ς−(j,k))∈A that is an equilibrium, firm j,k is indifferent
between ςj,k and ς̂j,k=(pj,k(ς),1)∈Aj,k. Moreover, optimal prices are proportional to the form “ideal
price plus noise:”

pj,k(ς)=λ((1−α)q+α
1

K−1

∑
l ̸=k

pj,l(ς))+zj,k, zj,k⊥(q,pl,m(ς))((l,m)̸=(j,k)

Var(zj,k)=λ(1−λ)Var((1−α)q+α 1

K−1

∑
l ̸=k

pj,l(ς)), λ=1−e−2κ

Proof. Given ς ∈ A, let Σςj,k ≡ Var(S(ςj,k)), Σθj,k,ςj,k ≡ Cov(θj,k(ς−(j,k)), S(ςj,k)) and Σθj,k ≡
Var(θj,k(ς−(j,k))). Moreover, since ς is an equilibrium, then by Part 1, pricing strategies are linear
and are given by:

pj,k(ς)=w′E[θj,k(ς−(j,k))|S(ςj,k)]=w′Σθj,k,ςj,kΣ
−1
ςj,k
S(ςj,k)

Now, define ς̂j,k ≡ (pj,k(ς),1) which is a strategy in Aj,k by Part 1 (as pj,k(ς)∈ S because it is a finite
linear combination of the elements of Sj,k, and S is rich). We have

Lj,k(ςj,k,ς−(j,k))=w′Var(θj,k(ς−(j,k))|S(ςj,k))w=w′Σθj,kw−w′Σθj,k,ςj,kΣ
−1
ςj,k

Σ′
θj,k,ςj,k

w.

so that j,k’s losses under both strategies are equal:

Lj,k(ς̂j,k,ς−(j,k))=w′Var(θj,k(ς−(j,k))|ŝj,k)w=Lj,k(ςj,k,ς−(j,k)).

Moreover, since pj,k(ς) is a linear function of Sj,k, θj,k(ς−(j,k)) ⊥ pj,k(ς)|S(ςj,k). Therefore, by the
data processing inequality in Lemma B.1, I(pj,k(ς);θj,k(ς−(j,k)))≤I(S(ςj,k);θj,k(ς−(j,k)))≤κ. So ς̂j,k
implies the same losses as ςj,k for firm j,k and consumes weakly less capacity. So it weakly dominates
ςj,k for firm j,k. On the other hand, (ςj,k,ς−(j,k)) is an equilibrium, which means that ςj,k should weakly
dominate all other strategies in Aj,k, including ς̂j,k. So the firm must be indifferent between the two.
Also, note that the joint distribution of prices and the fundamental q is the same under both strategies.

Now, to characterize the shape of optimal signals, consider a strategy (sj,k ∈ S,1)∈Aj,k, and let[
x2 y′

y Σθj,k

]
≡Var

(
(sj,k,θj,k(ς−(j,k)))

)
. First, recall that for (sj,k∈S,1) to be optimal, it has to be the

case that pj,k=w′E[θj,k(ς−(j,k))|sj,k]=x−2w′ysj,k. Thus,

x2=w′y.

Now, given sj,k ∈ S, the firm’s loss in profits is Var(w′θj,k(ς−(j,k))|sj,k)=w′Σθj,kw−x−2(w′y)2 and
the capacity constraint is 1

2
ln(|I−x−2Σ−1

θj,k
yy′|)≥−κ⇔ x−2y′Σ−1

θj,k
y≤ λ≡ 1−e−2κ. Moreover, by

richness of S, we know that for any (x,y) such that

[
x2 y′

y Σθj,k

]
⪰0, there is a signal in S that creates
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this joint distribution.46 Therefore, we let the agent choose (x,y) freely to solve

min
(x,y)

w′Σθj,kw−x−2(w′y)2 s.t. x−2y′Σ−1
θj,k

y≤λ, x2=w′y.

The solution can be derived by taking first-order conditions, but a more direct approach is to use
Cauchy-Schwarz inequality x−2(w′y)2=x−2(Σ

1
2
θj,k

w)′(Σ
− 1

2
θj,k

y)≤x−2(w′Σθj,kw)(y′Σ−1
θj,k

y). Thus,

w′Σθj,kw−x2(w′y)2≥(w′Σθj,kw)(1−x−2y′Σθj,ky)≥(1−λ)w′Σθj,kw,

We now show that our proposed signals in Part 2 of the proposition attain this global minimum. From the
properties of the Cauchy-Schwarz inequality, we know it holds with equality if and only if x−1Σ

− 1
2

θj,k
y=

c0Σ
1
2
θj,k

w for some constant c0. Therefore, there is a unique vectorx−1y that attains the global minimum of
the agent’s problem given their constraint:x−1y=c0Σθj,kw.Now, noting that the the capacity constraint
should bind at the optimum (otherwise we can decrease the losses further by making signals more precise),
observe that c0=

√
λ

w′Σθj,k
w
. Together with x2=w′y, this gives us the unique (x,y):y=λΣθj,kw,x=√

λw′Σθj,kw. Finally, notice that the set pj,k(ς)(j,k)∈J×K , as defined in Part 2 of Proposition C.1, gen-
erates these distributions—as Cov(pj,k(ς),θj,k(ς−(j,k)))=λΣθj,kw, and Var(pj,k(ς))=λw′Σθj,kw—and
all of its elements are in S because it is closed under finite linear operations.

C.2. Uniqueness of Equilibria in the Joint Distribution of Prices and the Fundamental

In Proposition C.1, we demonstrate that if a strategy is an equilibrium, then every firm is indifferent
between ς and a recommendation strategy that directly proposes the implied price under ς to the firm.
However, this does not guarantee the existence or uniqueness of equilibria. In this section, we address the
existence and uniqueness of equilibria through the following steps. First, we show that any equilibrium
ς ∈A is equivalent to an equilibrium among recommendation strategies in a sence that we precisely
define below. Next, we characterize a unique equilibrium among recommendation strategies to prove
uniqueness up to this equivalence relation.

Definition 1. Let E ≡ {ς ∈ A|ς is an equilibrium} denote the set of equilibria for the game. We say
{ς1,ς2}⊂E are equivalent and write ς1∼E ς2 if they imply the same joint distribution for prices of firms
and the fundamental. Formally, ς1∼E ς2 if (q,pj,k(ς1))j,k∈J×K∼G if and only if (q,pj,k(ς2))j,k∈J×K∼G.

Note that this is clearly an equivalence relation as it satisfies reflexivity, symmetry and transitivity
by properties of equality.

Lemma C.3. Suppose ς=(Sj,k∈Rnj,k ,pj,k :Sj,k→R)∈A is an equilibrium. Then, the recommendation
strategy ς̂(ς)=(pj,k(ς),1) as defined in Proposition C.1 is equivalent to ς: ς̂(ς)∼E ς .

Proof. The proof is by construction. Since ς is an equilibrium it solves all firms’ problems. Start from
the first firm in the economy and perform the following iteration process for all firms: from previous

46To see why, pick e ∈ B such that e⊥ θj,k(ςj,−k). Such e exists because there are countably many infinite elements
in B but θj,k(ς−(j,k)) load only on finitely many of them. Then, let s = y′Σ−1

θj,k
θj,k(ς−(j,k))+ e

√
x2−y′Σθj,ky. Note

that the term inside the square root is positive by positive semi-definiteness of (x y′;y Σθj,k). It is easy to verify that
(s,θj,k(ς−(j,k))) is distributed according to this matrix.
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section, we know firm 1,1 has a strategy ς̂1,1=(s1,1∈S,1) that is equivalent to ς1,1 given ς . Create a new
strategy ς1,1=(ς̂1,1,ς−(1,1)). We know that ς1,1 implies the same joint distribution as ς for the prices of all
firms in the economy because we have only changed firm 1,1’s strategy, and as discussed in the proof
of Lemma C.2, ς̂1,1 does not alter the joint distribution of prices and q. Now notice that ς1,1 is also an
equilibrium because (1) firm 1,1 was indifferent between ς1,1 and ς̂1,1 and (2) the problem of all other
firms has not changed because 1,1’s price has the same joint distribution with their signals under both
strategies. Now, repeat the same process for firm 1,2 given ς1,1 and so on. At any step given ςj,k repeat
the process for j,k+1 (or j+1,1 if k=K) until the last firm in the economy. At the last step, we have
ςJ,K=(ς̂j,k)j,k∈J×K∈A, which is (1) an equilibrium and (2) implies the same joint distribution among
prices and fundamentals as ς .

Having shown that any equilibrium is equivalent to one among recommendation strategies, we now
show that the later is unique.

Lemma C.4. Suppose the degree of strategic complementarity is strcitly less than 1, α∈ [0,1). Then,
the quotient set E/∼E is non-empty and a singleton, i.e., all equilibria of the game are equivalent under
the relationship in Definition 1.

Proof. We show this by directly characterizing the equilibrium. From the previous lemma, we know
that any equilibrium is equivalent to a recommendation strategy. Suppose that (s∗j,k,1)j,k∈J×K ∈A is an
equilibrium among such strategies, and notice that in this equilibrium, every firm sets their price equal to
their signal, pj,k≡s∗j,k. Also, Proposition C.1 showed that in this equilibrium, signals are of the following
form:

pj,k=λ(1−α)q+λα
1

K−1

∑
l ̸=k

pj,l+zj,k,zj,k⊥(q,pm,n)(m,n) ̸=(j,k)

whereVar(zj,t)=λ(1−λ)Var((1−α)q+α 1
K−1

∑
l ̸=kpj,l).Now, we want to find all the joint distributions

for (q,pj,k)j,k∈J×K that satisfy this rule. Since all signals are Gaussian, the joint distributions will also be
Gaussian.

To derive this distribution, we start by characterizing the covariance of any firm’s price with the fun-
damental. For any industry j, let pj≡(pj,k)k∈K and zj≡(zj,k)k∈K⊥q. Moreover, for ease of notation, in
this section, let γ≡ 1

K−1
. Now, the equilibrium condition implies pj=λ(1−α)1q+λαγ(11′−I)pj+zj

where 1 is the unit vector inRK , and I is identity matrix inRK×K (therefore 11′−I is a matrix with zeros
on diagonal and 1’s elsewhere). With some algebra it is straightforward to show that Cov(pj,q)= λ−λα

1−λα
1.

Thus, in any equilibrium, the covariance of any firm’s price with the fundamental q has be to equal to

δ≡ λ−λα
1−λα

(C.6)

Next, we show that the prices of any two firms in separate industries are orthogonal conditional on the fun-
damental. Let pj be the vector of prices in industry j as defined above. Pick any firm from any other indus-
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try l,m∈J×K,l ̸=j. Notice that by the equilibrium conditions zj is orthogonal to pl,m. Now, notice that

Cov(pj,pl,m)=λ(1−α)1Cov(q,pl,m)︸ ︷︷ ︸
=δ

+λαγ(11′−I)Cov(pj,pl,m)+Cov(zj,pl,m)︸ ︷︷ ︸.
=0

With some algebra, we get Cov(pj,pl,m) = δ21⇒Cov(pj,pl,m|q) = 0. Therefore, in any equilibrium,
prices of any two firms in two different industries are only correlated through the fundamental. This
implies that firms do not pay attention to mistakes of firms in other industries.

Now, we only need to derive the joint distribution of prices within industries. We have pj=B(λ(1−
α)1q+ zj) where B≡ 1

1+αλγ
I+ αλγ

(1+αλγ)(1−αλ)
11′. This gives pj = δ1q+Bzj, where Bzj ⊥ q. This

corresponds to the decomposition of the prices of firms to parts that are correlated with the fundamental
and their mistakes. The vector Bzj is the vector of firms’ mistakes in industry j, and is the same as the
vector vj in the text. Let Σz,j =Cov(zj,zj) and Σp,j =Cov(pj,pj). We have Σp,j = δ211′+BΣz,jB

′.

Also, since zj,k⊥pj,l ̸=k, we have Dj ≡Cov(pj,zj)=BΣz,j where Dj is a diagonal matrix whose k’th
element on the diagonal is Var(zj,k). From the equilibrium conditions we have

Var(zj,k) = λ(1−λ)Var((1−α)q+αγ
∑
l ̸=k

pj,l)

= λ(1−λ)(1−α)2+λ(1−λ)α2γ2w′
kΣp,jwk+2λ(1−λ)α(1−α)δ

where wk is a vector such that w′
kpj =

∑
l ̸=kpj,l. This givesK linearly independent equations andK

unknowns in terms of the diagonal of Dj . Guess that the unique solution to this is symmetric. After
some algebra, we get that the implied distribution for prices is such that

Var(pj,k)=
1−αλ
1−αλ̃

λ−1δ2,∀j,k;Cov(pj,k,pj,l)=
1−αλ
1−αλ̃

λ̃

λ
δ2,∀j,k,l ̸=k, (C.7)

where λ̃≡ λ+αγλ
1+αγλ

.

Thus, any equilibrium should have the same distribution of prices and fundamentals derived in this
proof, which concludes our proof of existence and uniqueness.

C.3. Reinterpretation of a Firm’s Attention Problem

This section presents an alternative formulation of the firms’ attention problem, where they maximize
their payoffs by choosing the correlation of their prices with the fundamental and the mistakes of their
competitors. This alternative formulation is mathematically equivalent to the equilibrium characterized
in the previous section, but provides additional economic insights about firms’ incentives.

Take any firm j,k∈J×K and suppose all other firms in the economy are playing the equilibrium
strategy. Moreover, here I take it as given that the firm does not pay attention to mistakes of firms in
other industries (Cov(pj,k,pl,m|q)l ̸=j = 0). Now, take a strategy ςj,−k for other firms and decompose
the average price of others under this strategy to its projection on q and the part that is orthogonal to
q: pj,−k(ςj,−k)=

1
K−1

∑
l ̸=kpj,l(ςj,l)=δq+vj,−k. Furthermore, let σ2

v≡Var(vj,−k) be the variance of the
average mistake of other firms in j,k’s industry when they play ςj,−k. For any sj,k∈S define ρq(sj,k)≡
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cor(sj,k,q),ρv(sj,k)≡cor(sj,k,vj,−k).Notice that firm j,k’s loss in profit, given that it observes sj,k, is

Var((1−α)q+αpj,−k|sj,k) = (1−α+αδ)2Var(q+
α

1−α(1−δ)
vj,−k|sj,k).

With some algebra, it is straightforward to show that the variance in the second part of the above equation
is given by

Var(q+
α

1−α(1−δ)
vj,−k|sj,k) = 1+(

α

1−α(1−δ)
)2σ2

v−(ρq(sj,k)+
ασv

1−α(1−δ)
ρv(sj,k))

2.

Now, to derive the information constraint in terms of the two correlation terms, we have

I(sj,k;(q,p∗j,−k))≤κ⇔
1

2
ln(

Var(sj)
Var(sj,k|(q,p∗j,−k))

)≤κ

Notice that
Var(sj |(q,p∗j,−k))

Var(sj)
=1−(ρq(sj)

2+ρv(sj)
2). Thus, the information constraint becomesρ2q(sj)+

ρ2v(sj)≤λ≡1−e−2κ. So, j,k’s problem reduces to

max
ρq ,ρv

(ρq(sj,k)+
ασv

1−α(1−δ)
ρv(sj,k))

2 s.t. ρq(sj,k)
2+ρv(sj,k)

2≤λ.

C.4. Derivations for Optimal Information Processing Capacity

In this section, we establish conditions for the optimal choice of an endogenous κ, as formalized and
discussed in Section 2.4. The section concludes by deriving the best response function of firms for their
optimal capacities.

Consider a strategy for firm j,k’s competitors where pj,−k = δq+vj,−k,vj,−k ∼N (0,σ2
v),vj,−k ⊥ q.

Then, given any κj,k, and letting λj,k≡1−e−2κj,k , we know from Equation (2) that the optimal strategy
of the firm is such that

pj,k=Sj,k=λj,kp
∗
j,k+zj,k

=λj,k(1−α+αδ)q+αλj,kvj,−k+zj,k

where, p∗j,k ≡ (1−α+αδ)q+αvj,−k is firm j,k’s ideal price under its competitors’ strategy. We also
know form Equation (2) that if

V ∗
j,−k≡Var(p∗j,k)=(1−α+αδ)2+α2σ2

v

is the unconditional variance of p∗j,k, then zj,t∼N (0,λj,k(1−λj,k)V ∗
j,−k). Thus, calculating the firm’s

expected losses from mis-pricing under κj,k we have
1

2
BE[(pj,k−p∗j,k)2|Sj,k]=

1

2
B(1−λj,k)V ∗

j,−k

=
1

2
e−2κj,kBV ∗

j,−k

Now, replacing this into the objective of the firm we arrive at the following problem:

min
κj,k≥0

{1
2
e−2κj,kBV ∗

j,−k+ωκj,k}

Now, when the constraint does not bind, the first-order condition of this problem gives us the optimal
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κj,k as:

−e−2κj,kBV ∗
j,−k+ω=0

⇒κj,k=
1

2
ln(

BV ∗
j,−k

ω
)

which is strictly positive in accordance with the constraint whenBV ∗
j,−k>ω. Thus,

κj,k=
1

2
max{0,ln(BV ∗

j,−k/ω)}=

1
2
ln(

BV ∗
j,−k

ω
) BV ∗

j,−k>ω

0 BV ∗
j,−k≤ω

C.5. Derivation of V ∗
j,−k in a Symmetric Equilibrium

In this section, we use the best responses of firms for endogenous capacity from above to derive the value
of this endogenous capacity in a symmetric equilibrium as function of the underlying parameters of the
model.

In the previous section, we saw that the firms’ best responses for their optimal information capacities
depend on the variance of their ideal prices, V ∗

j,−k, which in turn depends on the strategies of their
competitors. Here, we first characterize the value of V ∗

j,−k in a symmetric equilibrium, which then allows
us to derive the optimal information processing capacity of firms in a symmetric equilibrium.

Consider a symmetric equilibrium where a firm j,k’s competitors’ strategy is such that pj,−k=δq+

vj,−k,vj,−k∼N (0,σ2
v),vj,−k⊥q, for some δ and σv. Thus, dropping the j,−k index from V ∗

j,−k, we have

V ∗=Var((1−α)q+αpj,−k)

=Var((1−α+αδ)q+αvj,−k)

=(1−α+αδ)2+α2σ2
v (C.8)

Now, we need to calculate σ2
v , the variance of the average mistakes of a firm’s competitors in the symmet-

ric equilibrium. For that, we need to derive the relationship between firms’ mistakes in the equilibrium.
Given firm j,k’s optimal attention strategy and given the optimal κ∗ = κ∗j,k that we solved above, we
know from Equation (2) that:

pj,k=λ((1−α+αδ)q+vj,−k)+zj,k, zj,k⊥(q,vj,−k), zj,k∼N (0,λ(1−λ)V ∗) (C.9)

where λ=1−e−2κ∗ . A similar decomposition of firm j,k’s price in the symmetric equilibrium to its
projection on q and a mistake vj,k gives

pj,k= δ̂q+vj,k=λ(1−δ+αδ)q+λαvj,−k+zj,k (C.10)

By symmetry, δ= δ̂ and we have δ= (1−α)λ
1−αλ

as before. Also, recalling the parameter γ= 1
K−1

, we can
write:

vj,k=αλvj,−k+zj,k, (C.11)

vj,−k=γ
∑
l ̸=k

vj,l (C.12)

Thus, to calculate σ2
v , the variance of vj,−k, we need to know the covariance matrix of the vector of
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mistakes, (vj,l)l∈[K]. However, note that due to symmetry, this covariance matrix is summarized by two
parameters: the variance of each of vj,k’s and the covariance of any two mistakes vj,k and vj,l ̸=k. To
calculate these two objects, first we take the variance of the two sides in Equation (C.11):

Var(vj,k)=α2λ2σ2
v+λ(1−λ)V ∗ (C.13)

Second, we take the covariance of both sides of Equation (C.11) with vj,−k:

Cov(vj,k,vj,−k)=αλσ
2
v (C.14)

which is implied by zj,k⊥vj,−k. Now, the final step is to see that

Cov(vj,k,vj,−k)=γ
∑
l ̸=k

Cov(vj,k,vj,l)=Cov(vj,k,vj,l ̸=k),∀l ̸=k⇒Cov(vj,k,vj,l ̸=k)=αλσ
2
v (C.15)

Taking the variance of both sides of Equation (C.12) with vj,l ̸=k, and using Equations (C.13) and (C.15)
we get:

σ2
v=γVar(vj,k)+(1−γ)Cov(vj,k,vj,l ̸=k)

=γα2λ2σ2
v+γλ(1−λ)V ∗+(1−γ)αλσ2

v

=
γλ(1−λ)V ∗

(1−αλ)(1+γαλ)
(C.16)

Combining this equation with Equation (C.8) and using δ= (1−α)λ
1−αλ

, we get:

V ∗=(
1−α
1−αλ

)2Var(q)+α2 γλ(1−λ)
1−γα2λ2−(1−γ)αλ

V ∗

=(
1−α
1−αλ

)2
1+γαλ

1+γα (1−α)λ
1−αλ

Var(q)

=
(1−α)2(K−1+αλ)

(1−αλ)2(K−1)+α(1−α)(1−αλ)λ
Var(q) (C.17)

where we have normalized Var(q)=1.

C.6. Discussion of Multiple Symmetric Equilibria with Endogenous Capacity

In this section, I discuss the possibility of multiple symmetric equilibria in the model with endogenous
capacity. The section concludes by discussing when multiple equilibria might arise under certain values
of parameters and establishes conditions on the parameter space for uniqueness.

Since we have shown in Appendix C.2 that for any fixed κ, the model has a unique symmetric
equilibrium, we can conclude that the model has multiple symmetric equilibria if and only if there
are multiple values of κ∗ (or λ∗ ≡ 1− e−2κ∗) that satisfy the equilibrium conditions. As derived in
Appendices C.4 and C.5 and shown in Equations (9) and (10), in any symmetric equilibrium, λ∗ is a
solution to the following two equations:

λ∗=max{0,1− ω

BV ∗} (C.18)

V ∗=(
1−α
1−αλ∗

)2
K−1+αλ∗

K−1+αλ∗ 1−α
1−αλ∗

Var(q)︸ ︷︷ ︸
=1

(C.19)
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To see whether multiple λ∗’s satisfy these equations, it is useful to consider both of these equations in the
(V ∗,λ∗) plane and investigate their intersections. It is straightforward to see that both equations define
λ∗ as a weakly increasing function of V ∗. Normalizing Var(q)=1 as in the main text, the first equation
takes values of V ∗∈ [0,1] and maps it to a range of λ∗∈ [0,1− ω

B
] while the second equation takes values

of λ∗∈ [0,1] and maps it to a range of V ∗∈ [(1−α)2,1].

V ∗

λ∗

(1−α)2

1

Var(q)=1ω
B

1− ω
B

V ∗

λ∗

1

Var(q)=1ω
B

1− ω
B

Figure C.1: Symmetric Equilibria with Endogenous Information Processing Capacity

Notes: The figure shows how the equilibrium λ∗ is determined by the intersection of the two curves defined by Equations (9)
and (10). In the left panel, the blue curve depicts Equation (10) with ω/B=0.15, and the red curve depicts Equation (9) with
α=0.5. In the right panel, the blue curve is is kept the same, but we have added two additional curves that depict Equation (9)
for two additional values of α=0.8 (dark green) and α=0.7 (magenta). When (1−α)2>ω/B, there is a unique equilibrium
with λ∗>0 (red curve), but when (1−α)2<ω/B, there is always an equilibrium with λ∗=0 (both dark green and magenta
curves) and possibly other equilibria with λ∗>0 (magenta curve).

As proved formally in Proposition 4, it follows that if (1−α)2>ω/B, these two curves only intersect
once, guaranteeing the uniqueness of a symmetric equilibrium in which λ∗>0.47 An example of this
case is depicted in the left panel of Figure C.1. On the other hand, if (1−α)2<ω/B, the two curves
intersect at least once at λ∗=0 (the dark green curve in the right panel of Figure C.1), and possibly at
one or two other points with λ∗>0. The magenta curve in the right panel Figure C.1 shows an example
where there are three equilibria, one with λ∗=0, and two with λ∗>0.

Intuition for Multiple Equilibria. To see why multiple equilibria arise in terms of information pro-
cessing capacity, it is useful to revisit the economic incentives of firms in information acquisition.
The key force here is that strategic complementarities in pricing induce strategic complementarities in
information acquisition.

47See Proposition 4 and its proof for a precise argument. A brief version of this argument in this setting is as follows:
the second equation defines an increasing curve that connects (V ∗,λ∗)= ((1−α)2,0) and (V ∗,λ∗)= (1,1). Moreover, if
(1−α)2>ω/B then first equation is strictly increasing and concave in the domain V ∗∈ [(1−α)2,1]. Thus, there can only
be at most one crossing between the two curves. Moreover, since the first equation ranges from λ∗=0 to λ∗=1−ω/B there
should at least be one crossing between the two curves. Hence, with (1−α)2>ω/B there is a unique equilibrium with λ∗>0.
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For example, consider a situation where all of a firm j,k’s competitors choose a zero capacity,
λ∗j,−k=0. In this case, their prices will not respond to any fundamental shocks and will be fixed at their
prior expected value of q, which has been normalized to 0. In this situation, firm j,k has no incentive
to learn about its competitors’ prices because they will not respond to any shocks. The only incentive
for firm j,k to acquire information is to learn about q, which only affects their ideal price with a weight
of 1−α. Thus, the larger α is, the less valuable information about q becomes. If α or ω are large enough
such that the benefit of acquiring information about q is not greater than the cost, then firm j,k will also
choose a zero capacity, resulting in a symmetric equilibrium with λ∗=0.

However, if firm j,k’s competitors follow a strategy with a positive λ∗, then even with all other
parameters fixed, firm j,kwill have a higher incentive to acquire information. This is because, in addition
to the incentive to learn about q, the firm also values information about its competitors’ prices, which
now partially respond to shocks and may be subject to mistakes. This is depicted by the magenta curve
in the right panel of Figure 1, where α and ω are in a range where both types of equilibria can coexist.

Finally, if ω or α are large enough, no firm will ever choose a positive capacity independent of what
its competitors do, resulting in λ∗ =0 as the only possible equilibrium (dark green curve in the right
panel of Figure C.1). On the other hand, if ω or α are small enough, the value of information, even when
competitors choose a zero capacity, is high enough relative to its cost that any firm will always choose
a positive capacity regardless of what its competitors do (red curve in the right panel of Figure C.1). See
Proposition 4 and its proof for a formal statement of the latter case.

C.7. Attention to Fundamental with Endogenous Capacity

This section extends the predictions of Proposition 1 to the case with endogenous capacity. Specifically,
we examine how firms’ attention to fundamental shocks depends on the parameters of the model when
firms choose their information capacities as in Section 2.4. As we have already shown that the symmetric
equilibrium is unique for a given κ in Appendix C.2, our focus is on studying how the correlation between
the fundamental and firms’ signals varies with model parameters under different values of κ that can
arise in a symmetric equilibrium with endogenous capacities.

Using Equations (C.6) and (C.7) in Appendix C.2, for a given λ∗ in a symmetric equilibrium, the
correlation between a firm’s price and the fundamental is given by

ρ∗2q =
K−1+α (1−α)λ∗

1−αλ∗

K−1+αλ∗
λ∗ (C.20)

Thus, we can see that ρ∗2q depends on K and α both directly—i.e., holding λ∗ fixed as discussed in
Proposition 1—and indirectly through λ∗. In general, either one of these forces can dominate the other
but for small enough values of ω the predictions of Proposition 1 persist. In the remainder of this section,
I provide some intuition and two examples in each of which a different force dominates. In the next
section, I do a Taylor expansion of ρ∗2q around a small ω and show that the predictions of Proposition 1
are indeed valid for small ω.
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λ∗

ρ∗2q

1

1
λ∗

ρ∗2q

1

1

Figure C.2: Firms’ Attention to the Fundamental q

Notes: The figure shows two different parameterizations of Equation (C.20) (the red curve with K=2 and the green curve
with K→∞) and Equation (C.24) (the blue curve). The figure on the left-hand side shows the joint determination of ρ∗2q
when ω is small (I have set ω/B = .12 and α=0.5). In this case, the intersection for both K =2 and K =∞ are on the
decreasing side of the blue curve and thus as K increases ρ∗2q increases (i.e., the force discussed in Proposition 1 persists)
even though λ∗ decreases (per Proposition 4). The figure on the right-hand side shows the joint determination of ρ∗2q when
ω is large (I have set ω/B= .25 and α=0.48). In this case, the intersection for K→∞ is on the increasing side of the blue
curve and thus as K increases ρ∗2q decreases (i.e., the force discussed in Proposition 1 is reversed by the decline in λ∗).

Perhaps the best way to see how these two effects interact is to consider the equation above in
conjunction with the equations that implicitly characterize λ∗. In particular, recall that λ∗ is given by

λ∗=max{0,1− ω

BV ∗} (C.21)

V ∗=(
1−α
1−αλ∗

)2
K−1+αλ∗

K−1+αλ∗ 1−α
1−αλ∗

(C.22)

Now consider an equilibrium with λ∗> 0 (otherwise ρ∗q =0 and does not vary with neither α nor K).
Replacing V ∗ in the first equation with the second equation and using the expression for ρ∗2q from above,
we obtain

λ∗=1− ω

BV ∗ =1− ω

Bλ∗
(
1−αλ∗

1−α
)2ρ∗2q (C.23)

Re-writing this equation such that ρ∗2q is on the left-hand side, we have

ρ∗2q =
Bλ∗(1−λ∗)

ω
(
1−α
1−αλ∗

)2 (C.24)

Therefore, the pair (λ∗,ρ∗2q ) in the unique equilibrium are characterized by the intersection of two
curves defined by Equations (C.20) and (C.24). Figure C.2 depicts two different parameterizations of
these equations, where on the left-hand side panel, where ω/B is small, an increase inK increases ρ∗2q
(firms’ attention to fundamental increases withK) while the on the right-hand side, where ω/B is large,
an increase inK decreases ρ∗2q (firms’ attention to fundamental decreases withK).

20



C.8. First- and Second-Order Effects of Rational Inattention with Endogenous Capacity

Although our characterizations of the equilibrium capacities, κ, attention to the fundamental, ρq, and
covariance of prices with the funddamentla, δ, in the model with endogenous choice of κ are analytical,
they are only implicit. As a result, it is not possible to solve for κ or ρq as explicit functions of the
parameters. In this section, I provide a second-order approximation of the equilibrium κ, ρq and δ in
the model with endogenous choice of κ. These approximations are arbitrarily accurate when the cost
of capacity approaches zero (i.e. ω/B=0). By using these approximations, we can write κ and ρq as
explicit functions of model parameters up to the first or second order, which provides further intuition
for the comparative statics of the model.

Consider the unique equilibrium that arises in the model with endogenous capacity when ω <
B(1−α)2. Focusing on this equilibrium, we observe that it only arises when the ratio ω

B
<(1−α)2<1 is

small. Moreover, recall that λ∗ is strictly positive in this equilibrium and solves the following equations:

λ∗=1− ω

BV ∗ (C.25)

V ∗=(
1−α
1−αλ∗

)2
K−1+αλ∗

K−1+αλ∗ 1−α
1−αλ∗

(C.26)

which define λ∗ as an implicit function of the parameters ω/B, α andK, λ∗=λ∗(ω/B,K,α) (note that
ω/B was originallyω/(B×Var(q))where we have setVar(q)=1. So a smallω/B should be interpreted
as a case where ω is small relative to B and/or the unconditional variance of q). Moreover, the set of
ω/B’s that satisfy the uniqueness condition also includes ω=0 which corresponds to the frictionless
benchmark with rational expectations and full information. It is straightforward to see that when ω↓0,
optimal capacity grows unboundedly towards infinity and λ∗(ω/B,α,K)↑1. In fact, compactifying R+

with the addition of +∞, we can define this limit as the solution to the capacity choice problem of firms,
where with ω=0, κ∗=+∞ and λ∗=1.

Moreover, once we have the equilibriumλ∗, we can calculate the attention of firms to the fundamental
ρ∗2q = ρ∗2q (ω/B,α,K) =

K−1+α 1−α
1−αλ∗ λ

∗

K−1+αλ∗ as well as the comovement of prices with the fundamental
δ∗= δ∗(ω/B,α,K)= (1−α)λ∗

1−αλ∗ also as functions of ω/B, α andK. Again, the case of ω=0 provides a
natural benchmark for these values as well, since with no cost of attention, firms pay full attention to
the fundamental q, ρ∗2q (0,α,K)=1 and prices comove one to one with the fundamental δ(0,α,K)=1.

Since the unique equilibrium considered here arises for small values of ω/B<(1−α)2, it is appro-
priate and useful to consider a second-order approximation of the equilibrium functions, λ∗(ω/B,α,K),
ρ∗2q (ω/B,α,K) and δ(ω/B,α,K) around the benchmark ω/B = 0. We derive these approximations
below.

Approximation of λ∗(ω/B,α,K). Note that when with ω/B<(1−α)2, the implicit function defining
λ∗(ω/B,α,K) is smooth and continuously differentiable. A second order Taylor expansion is given by:

λ∗(
ω

B
,α,K)=

=1︷ ︸︸ ︷
λ∗(0,α,K)+[

∂λ∗

∂ ω
B

]ω=0×
ω

B
+
1

2
[
∂2λ∗

∂ ω
B

2 ]ω=0×(
ω

B
)2+O(∥ω

B
∥3) (C.27)
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Now, to calculate the first and second-order derivatives of the λ∗ with respect to ω/B note that from
λ∗=1− ω

BV ∗ , we have:
∂λ∗

∂ ω
B

=− 1

V ∗+
ω

BV ∗2
∂V ∗

∂ ω
B

(C.28)

∂2λ∗

∂ ω
B

2 =
2

V ∗2
∂V ∗

∂ ω
B

+
ω

B

∂

∂ ω
B

( 1

V ∗2
∂V ∗

∂ ω
B

)
(C.29)

Evaluating these at ω=0 and noting that the first and second derivatives of V ∗ with respect to ω/B are
finite so that multiplied by ω=0 they are zero as well, we have:

[
∂λ∗

∂ ω
B

]ω=0=−[
1

V ∗( ω
B
,α,K)

]ω=0=−1 (C.30)

[
∂2λ∗

∂ ω
B

2 ]ω=0=[
2

V ∗2
∂V ∗

∂ ω
B

]ω=0=2[
∂V ∗( ω

B
,α,K)

∂ ω
B

]ω=0 (C.31)

where we have evaluated the value of V ∗(0,α,K) using the equation for V ∗ above (Equation (9)). Also,
note that for the seoncd derivative of λ∗, we need to calculate the first derivative of V ∗ with respect to
ω/B which, by Equation (9), is only a function of ω/B through λ∗. Using the chain rule this derivative
is given by:
∂V ∗

∂ ω
B

=
∂V ∗

∂λ∗
∂λ∗( ω

B
,α,K)

∂ ω
B

(C.32)

=[2
α

1−αλ∗
+

α

K−1+αλ∗
− α

(1−αλ∗)(K−1)+α(1−α)λ∗
1−α
1−αλ∗

]V ∗︸ ︷︷ ︸
= ∂V ∗

∂λ∗

×(− 1

V ∗+
ω

BV ∗2
∂V ∗

∂ ω
B

)︸ ︷︷ ︸
=

∂λ∗( ω
B

,α,K)

∂ ω
B

Evaluating this at ω=0 gives:

[
∂V ∗

∂ ω
B

]ω=0=− α

1−α
(1+

K−1

K−1+α
) (C.33)

Thus, plugging in the values of the derivatives to Equation (C.27), we have:

λ∗(
ω

B
,α,K)=1− ω

B
− α

1−α
(1+

K−1

K−1+α
)(
ω

B
)2+O(∥ω

B
∥3) (C.34)

Approximation of ρ∗2q (ω/B,α,K). Using Equations (C.6) and (C.7) in Appendix C.2, the correlation
between the firm’s price and the fundamental is given by

ρ∗2q =
K−1+α (1−α)λ∗

1−αλ∗

K−1+αλ∗
λ∗ (C.35)

Thus, we see that ρ∗2q is a function of α, K and ω/B through λ∗. A second order Taylor expansion of
ρ∗2q around ω=0 is:

ρ∗2q (
ω

B
,α,K)=

=1︷ ︸︸ ︷
ρ∗2q (0,α,K)+[

∂ρ∗2q
∂ ω

B

]ω=0×
ω

B
+
1

2
[
∂2ρ∗2q

∂ ω
B

2 ]ω=0×(
ω

B
)2+O(∥ω

B
∥3) (C.36)
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Now, since ρ∗2q only depends on ω/B through λ∗, we can use the chain rule to calculate its first and
second derivative as:

∂ρ∗2q
∂ ω

B

=
∂ρ∗2q
∂λ∗

∂λ∗

∂ ω
B

(C.37)

∂2ρ∗2q

∂ ω
B

2 =
∂2ρ∗2q
∂λ∗2

(
∂λ∗

∂ ω
B

)2+
∂ρ∗2q
∂λ∗

∂2λ∗

∂ ω
B

2 (C.38)

While these are straightforward to derive, the expression for the second derivative is quite long. However,
up to first-order, we have:

ρ2
∗

q (
ω

B
,α,K)=1−(1−α K−1

K−1+α
)

ω

B(1−α)
+O(∥ω

B
∥2) (C.39)

Approximation of δ∗(ω/B,α,K). Recall from Equation (C.6) that the covariance of the aggregate price
with the fundamental, denoted by δ∗ is given by:

δ∗(
ω

B
,α,K)=

(1−α)λ∗

1−αλ∗
(C.40)

which depends on ω/B andK through λ∗, but depends on α both directly as well as indirectly through
λ∗. A second order Taylor expansion of δ∗ around ω=0 is:

δ∗(
ω

B
,α,K)=

=1︷ ︸︸ ︷
δ∗(0,α,K)+[

∂δ∗

∂ ω
B

]ω=0×
ω

B
+
1

2
[
∂2δ∗

∂ ω
B

2 ]ω=0×(
ω

B
)2+O(∥ω

B
∥3) (C.41)

Now, since δ∗ only depends on ω/B through λ∗, we can use the chain rule to calculate its first and second
derivative as:

∂δ∗

∂ ω
B

=
∂δ∗

∂λ∗
∂λ∗

∂ ω
B

(C.42)

∂2δ∗

∂ ω
B

2 =
∂2δ∗

∂λ∗2
(
∂λ∗

∂ ω
B

)2+
∂δ∗

∂λ∗
∂2λ∗

∂ ω
B

2 (C.43)

Noting that
∂δ∗

∂λ∗
=

1−α
(1−αλ∗)2

(C.44)

∂2δ∗

∂λ∗2
=

2α(1−α)
(1−αλ∗)3

(C.45)

Evaluating these at ω=0 and using Equations (C.30) and (C.31) we have

[
∂δ∗

∂ ω
B

]ω=0=− 1

1−α
(C.46)

[
∂2δ∗

∂ ω
B

2 ]ω=0=−2
α

(1−α)2
(
K−1

K−1+α
) (C.47)

So that

δ∗(
ω

B
,α,K)=1− ω

B(1−α)
− (K−1)α

K−1+α
(

ω

B(1−α)
)2+O(∥ω

B
∥3) (C.48)
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C.9. Proofs of Propositions for the Static Model

This section includes the proofs of Propositions in the static model. The proofs and derivations for
Section 4 are included in Appendix H.

Proof of Proposition 1

1. First, observe from Equations (C.6) and (C.7) in Appendix C.2 that the correlation between the
firm’s price and the fundamental is given by

ρ∗2q =
Cov(pj,k,q)2

Var(pj,k)
=
K−1+αδ

K−1+αλ
λ. (C.49)

Moreover, notice that δ= 1−α
1−αλ

λ<λ as long as λ>0 and α>0. This implies directly that ρ∗2q <λ.
Thus, the correlation between the firm’s price and the mistakes of its competitors is strictly positive:
ρ∗2v =λ−ρ∗2q >0, meaning that firms pay attention to the mistakes of their competitors.

2. Shown in the proof of Lemma C.4.
3. Differentiating the correlation ρ∗q with respect to the number of competitorsK, we have

∂ρ∗2q
∂K

1

ρ∗2q
=

α(λ−δ)
(K−1+αλ)(K−1+αδ)

>0

Also, with respect to α:
∂ρ∗2q
∂α

1

ρ∗2q
=
(K−1)(δ−λ)+(K−1+αλ)α ∂δ

∂α

(K−1+αδ)(K−1+αλ)
<0.

The inequality comes from δ−λ<0 and ∂δ
∂α

=δ λ−1
(1−α)(1−αλ)

<0.

Proof of Proposition 2

First, observe that the aggregate price is given by

p≡J−1K−1
∑

j,k∈J×K

pj,k=δq+
1

JK

∑
j,k∈J×K

vj,k

Since J is large and vj,k’s are independent across industries, this average mistake across all the firms
in the economy converges to zero by the law of large numbers as J→∞. Therefore, p=δq.Moreover,
Ej,k[pj,−k]=

Cov(sj,k,pj,−k)

Var(pj,k)
sj,k= λ̃pj,k and Ej,k[p]=

Cov(sj,k,p)
Var(pj,k)

pj,k=
1−αλ̃
1−αλ

λpj,k where λ̃= λ(K−1)+αλ
K−1+αλ

>λ

is defined as in the proof of Lemma C.4. So, Ej,k[pj,−k]= λ̃p, Ej,k[p]= 1−αλ̃
1−αλ

λp. Therefore,

Cov(Ej,k[pj,−k],p) = λ̃Var(p)>
1−αλ̃
1−αλ

λVar(p)=Cov(Ej,k[p],p).

Also, ifK→∞ then λ̃→λ and Cov(Ej,k[p],p)→Cov(Ej,k[pj,−k],p).
Now, note that conditional on realization of the aggregate price |p−Ej,k[p]|= (1− 1−αλ̃

1−αλ
λ)|p|>

(1−λ̃)|p|= |p−Ej,k[pj,−k]|.
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Proof of Proposition 3

Recall that

pj,k=(1−α)Ej,k[q]+αEj,k[pj,−k]

given the equilibrium strategy of other firms with decomposition pj,−k= δq+vj,−k and using the fact
that the equilibrium is a recommendation strategy (so that Sj,k=pj,k), we have

Ej,k[q]=E[q|pj,k]=
Cov(q,pj,k)
Var(pj,k)

pj,k

Ej,k[pj,−k]=δE[q|pj,k]+E[vj,−k|pj,k]

=δ
Cov(q,pj,k)
Var(pj,k)

pj,k+
Cov(vj,−k,pj,k)

Var(pj,k)
pj,k

Now, let δ̂≡Cov(q,pj,k) and σv≡Var(vj,−k). Note that we can re-write the equations above in terms
of firms’ optimal correlation choices ρq and ρv

Ej,k[q]=E[q|pj,k]=
1

δ̂

=ρ2q︷ ︸︸ ︷
Cov(q,pj,k)2

Var(pj,k)Var(q)
pj,k

Ej,k[pj,−k]=δE[q|pj,k]+E[vj,−k|pj,k]

=
δ

δ̂

Cov(q,pj,k)2

Var(pj,k)Var(q)︸ ︷︷ ︸
ρ2q

pj,k+
σv

δ̂

Cov(vj,−k,pj,k)√
Var(vj,−k)Var(pj,k)︸ ︷︷ ︸

ρv

× Cov(q,pj,k)√
Var(q)Var(pj,k)︸ ︷︷ ︸

ρq

pj,k

where we have used Var(q) = 1. Using the fact that in the equilibrium δ̂ = δ ⇔ Cov(q, pj,−k) =

Cov(q,pj,k), and aggregating the above equations across all firms, we have

Ej,k[q]=
ρ2q
δ
p=ρ2qq

Ej,k[pj,−k]=ρ
2
qp+ρqρvσvq

where we have also used p=δq. Finally, note that from the first-order conditions of the firms’ problem
with respect to ρq and ρv, we have

αρqσv=(1−α+αδ)ρv s.t. ρ2q+ρ
2
v=λ

Substituting these above we get

Ej,k[pj,−k]=ρ
2
qδq+α

−1(1−α+αδ)ρ2vq

=ρ2qδq+α
−1(1−α+αδ)(λ−ρ2q)q

=α−1δq−(α−1−1)ρ2qq

Thus, to examine how these covariances change with the number of competitors, we have:

∂KCov(q,Ej,k[q])=∂Kρ
2
q>0

∂KCov(q,Ej,k[pj,−k])=∂K
[
α−1δ−(α−1−1)ρ2q

]
=−(α−1−1)∂Kρ

2
q<0
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These two equations show that as the number of competitors increases, aggregate prices comove
more with firms’ average expectations of q and comove less with their expectations of their competitors’
prices. The reason is that, because we are keeping κ fixed, higher attention to the fundamental comes at
the expense to lower attention to competitors’ prices. Note also that in this step, we have already imposed
∂Kδ=0 because we have already derived the expression for δ and shown its independence fromK in
Equation (C.6) and proof of Lemma C.4, independent of the argument put forth here.

Now, to see how these two forces balance, note that

p=(1−α)Ej,k[q]+αEj,k[pj,−k]

⇒Cov(p,q)=(1−α)Cov(q,Ej,k[q])+αCov(q,Ej,k[pj,−k])

⇒∂KCov(p,q)=(1−α)∂KCov(q,Ej,k[q])︸ ︷︷ ︸
=∂Kρ2q

+α∂KCov(q,Ej,k[pj,−k])︸ ︷︷ ︸
=−(α−1−1)∂Kρ2q

=(1−α)∂Kρ2q−α(α−1−1)∂Kρ
2
q

=0

Therefore, δ=Cov(p,q) does not change with K because higher attention to q is exactly offset with
lower attention to competitors’ prices with a fixed κ.

Proof of Proposition 4

Recall that a symmetric equilibrium is characterized by a λ∗ that solves Equations (9) and (10):

λ∗=max{0,1− ω

BV ∗} (C.50)

V ∗=(
1−α
1−αλ∗

)2
K−1+αλ∗

K−1+αλ∗ 1−α
1−αλ∗

(C.51)

The first step is to show that if ω<B(1−α)2 then λ∗=0 cannot be an equilibrium. To see this, suppose
λ∗=0. Then, the second equation implies that V ∗=(1−α)2. Now, plugging this into the first equation
we get

λ∗=max{0,1− ω

B(1−α)2
}=1− ω

B(1−α)2
>0 (C.52)

which contradicts the assumption thatλ∗=0. Therefore,λ∗=0 cannot be an equilibrium ifω<B(1−α)2

and we can assume without loss of generality that λ∗>0 and that it solves:

λ∗=1− ω

BV ∗ (C.53)

V ∗=(
1−α
1−αλ∗

)2
K−1+αλ∗

K−1+αλ∗ 1−α
1−αλ∗

(C.54)

Plugging V ∗ into the first equation, we get:

1−λ∗= ω

B(1−α)2
(1−αλ∗)(1−α+α(1−λ

∗)(K−1)

K−1+αλ∗
) (C.55)

Now note that the left-hand side of the equation above is strictly decreasing in λ∗ and ranges from 1 to
0 as λ∗ goes from 0 to 1. The right-hand side is also strictly decreasing in λ∗ and goes from ω

B(1−α)2
<1
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to ω/B>0 as λ∗ goes from 0 to 1. Since the range of the left-hand side is a strict subset of the range of
the right-hand side for λ∗∈ [0,1] and both sides are strictly decreasing in λ∗, then there must be a unique
λ∗>0 that solves this equation as long as ω<B(1−α)2.

Now to see how λ∗ varies with ω,B,α andK, note that larger values of ω, α orK shift the right-hand
side upwards and move the intersection to the left, decreasing λ∗. A largerB, on the other hand, shifts
the right-hand side downwards and moves the intersection to the right, increasing λ∗. Therefore, λ∗ is
decreasing in ω,α andK and increasing inB.

D Strategic Complementarity and Number of Competitors in Survey Data
As discussed in Section 4.2, micro-foundations of strategic complementarity relate this object to firms’
market shares in the equilibrium. Since around the symmetric steady-state market share is the inverse
of the number of firms in the oligopoly, these micro-foundations relate strategic complementarity to
the number of competitors. Moreover, we have shown that different micro-foundations have different
implications for this relationship. For instance, the two-layer CES structure, as in Atkeson and Burstein
(2008), on its own implies that strategic complementarity should increase with market share and thus
decrease with the number of competitors (for example, recall that in the benchmark model of this paper,
without decreasing returns to scale, α= 1−η−1

K
). However, more general aggregators might reverse this

relationship (see, e.g., Wang and Werning (2022)’s discussion of this relationship in the Kimball model,
which is also derived in Appendix G in this paper as α= ζ(K−2)+(1−η−1)2

ζ(K−2)+(1−η−1)K
, where ζ=0 nests CES but

in general is related to superelasticity of demand. For ζ >1 we can see that α increases withK similar
to Wang and Werning (2022)). Moreover, the decreasing returns to scale also add a force that makes
strategic complementarity increase with the number of competitors, as is the case in the calibrated model
of Section 4. While different models have different predictions for how strategic complementarity varies
with the number of competitors, we can examine this relationship empirically in the survey data.

One issue that needs to be addressed is that variation inK in the survey is not that large which makes
the estimates ofα noisier for largerK. To address this, I divide the data into equally sized bins, in terms of
the number of observations, as a function of the inverse of the number of competitors (which corresponds
to steady-state market share in the model). Panels A and B in Figure D.1 present connected lines with
average α by 1/K bin, after controlling for industry dummies. Shaded areas denote 1 standard deviation.
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Figure D.1: Strategic Complementarity as a Function of 1/K (±1 Standard Deviation)
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Notes: This figure presents a binned plot where dots denote average α over equally sized bins of the inverse of the number
of competitors 1/K after controlling for industry fixed effects. The shaded area denotes +/−1 standard deviation.

We can make the following observations from this graph. First, quantitatively, α is somewhat flat
across 1/K bins, with a slight increase around the first quartiles in Panel A, which is qualitatively
consistent with studies that document strategic complementarity to decline with market share (Amiti,
Itskhoki, & Konings, 2019). Second, repeating the exercise with deciles of 1/K in Panel B, α seems
to increase slightly and then decrease hinting at a slight non-monotonicity. However, the magnitude of
changes based on the point estimates seems to be relatively small, ranging from 0.8 to slightly below 0.9.
To make this observation more rigorously, Table D.1 regresses strategic complementarity on different
quartiles of 1/K and while hinting at the slight non-monotonicity seen in Figure D.1, it shows that we
cannot reject the null-hypothesis that strategic complementarity is not different across different quartiles.

Dep. Variable: Strategic Complementarity α
(1) (2)

Constant 0.827*** (0.018) 0.805*** (0.022)
First Quartile 1/K 0.039 (0.046) 0.038 (0.046)
Second Quartile 1/K 0.099** (0.050) 0.100** (0.050)
Third Quartile 1/K 0.013 (0.054) 0.011 (0.055)
Fourth Quartile 1/K - - - -

Observations 2,824 2,823
Industry dummies No Yes

Table D.1: Differential Strategic Complementarity by 1/K quartiles

Notes: This table estimates how strategic complementarity varies across different quartiles of 1/K relative
to its fourth quartile. Robust standard errors in parenthesis. *** Significant at the 1 percent level. **
Significant at the 5 percent level. * Significant at the 10 percent level.
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E Available Information in the Dynamic Model
The set of available signals in the dynamic model is an extension of the set defined in Appendix C.1. The
key notion in this extension is that nature draws new shocks every period, and the set of available infor-
mation in the economy expands to incorporate these new realizations. To capture this evolution, I define
a signal structure as a sequence of sets (St)∞t=−∞ where St−s⊂St,∀s≥0. Here, St denotes the set of avail-
able signals at time t, and it contains all the previous sets of signals that were available in previous periods.

To construct the signal structure, suppose that every period, in addition to the shock to the nominal de-
mand, the nature draws countably infinite uncorrelated standard normal noises. Similar to Appendix C.1,
let St be the set of all finite linear combinations of these uncorrelated noises along with the newest
innovation to qt. Now, define St={

∑∞
s=0aτet−τ |∀τ≥0,aτ ∈R,et−τ ∈St−τ},∀t. First, for all t, qt∈St, as

it is a linear combination of all ut−τ ’s and ut−τ ∈St−τ ,∀τ≥0. This implies that while perfect information
is available about the fundamentals of the economy, signals with arbitrarily less precision are also
available for the firms, should they choose to acquire them.

F Derivations for the Dynamic Model

F.1. Solution to Household’s Problem (16)

Let βtφ1,t and βtφ2,t be the Lagrange multipliers on household’s budget and aggregation constraints, re-
spectively. For ease of notation letCj,t≡(Cj,1,t,...,Cj,Kj ,t) be the vector of household’s consumption from
firms in industry j∈J , so thatCj,t≡Φj(Cj,t) where Φj(.) is an aggregator function that is homogenous
of degree one and at least thrice differentiable in its arguments (note that this embeds the CES aggregator
in the main text as well as the Kimball aggregator discussed in Appendix G). Moreover, for less crowded
notation, I drop subscript j for ϕj andKj whenever the industry index is implied from context. First, I
derive the demand of the household for different goods. The first order condition with respect toCj,k,t is

Pj,k,t=
1

J

φ2,t

φ1,t

Ct
Φk(Cj,t)
Φ(Cj,t)

(F.1)

where Φk(Cj,t)≡ ∂Φ(Cj,t)
∂Cj,k,t

.Given these optimality conditions, we can show that total sales in the economy
is proportional to aggregate output:∑

(j,k)∈J×K

Pj,k,tCj,k,t=
1

J

φ2,t

φ1,t

Ct

∑
j∈J

∑
k∈K

Φk(Cj,t)
Φ(Cj,t)

Cj,k,t︸ ︷︷ ︸
=1,∀j∈J

=
φ2,t

φ1,t

Ct

where the equality under curly bracket is from Euler theorem for homogeneous function Φ(.). Therefore,
Pt≡ φ2,t

φ1,t
is the price of the aggregate consumption basketCt and we can writeQt=PtCt as the nominal

demand of the household for the aggregate consumption good. Now, for the particular case of the CES
function in the main case, Equation (F.1) becomes:

Pj,k,t=(JKj)
−1QtC

−η−1

j,k,t C
η−1−1
j,t ⇒

∑
k∈Kj

P 1−η
j,k,t =(JKj)

η−1KjQ
1−η
t Cη−1

j,t (F.2)
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where the right hand side follows from raising the left hand side to the power of 1−η and summing over
k. Now, raising the right hand side to the power of −η and dividing it by the left hand side gives the
demand curve in the text:

Cj,k,t=QtD(Pj,k,t,Pj,−k,t), D(Pj,k,t,Pj,−k,t)≡
1

J

P−η
j,k,t∑

k∈Kj
P 1−η
j,k,t

(F.3)

Now, for a general Φ: from Equation (F.1), Pj,t≡ (Pj,1,t,...,Pj,K,t)=∇log(Φ(
Cj,t

J−1PtCt
)). I need to

show that this function is invertible to prove that a demand function exists. For ease of notation, define
function f :RK →RK such that f(x)≡∇log(Φ(x)). Notice that f(.) is homogeneous of degree −1,
and them,n’th element of its Jacobian, denoted by matrix J f (x), is given by J f

m,n(x)≡ ∂
∂xn

Φm(x)
Φ(x)

=
Φm,n(x)

Φ(x)
− Φn(x)

Φ(x)
Φm(x)
Φ(x)

. Let 1 be the unit vector in RK . Since Φ(.) is symmetric along its arguments, for
any k ∈ (1,...,K), Φ1(1) =Φk(1), Φ11(1) =Φkk(1)< 0. Since Φ(.) is homogeneous of degree 1, by
Euler’s theorem we have Φ(1)=

∑
k∈KΦk(1)=KΦ1(1).Also, since Φk(.) is homogeneous of degree

zero.48 Similarly we have 0=0×Φk(1)=
∑

l∈KΦkl(1). So, for any l ̸=k, Φkl(1)=− 1
K−1

Φ11(1)>0.

This last equation implies that J f (1) is an invertible matrix.49 Therefore, by inverse function theorem
f(.) is invertible in an open neighborhood around 1, and therefore any symmetric point x=x.1 such
that x>1. We can write Cj,t

J−1PtCt
=f−1(Pj,t). It is straight forward to show that f−1(.) is homogeneous

of degree -1 because f(x) is homogeneous of degree -1: for any x∈RK , f−1(ax)=f−1(af(f−1(x))=

f−1(f(a−1f−1(x)) = a−1f−1(x). Now, Cj,k,t = J−1PtCtf
−1
k (Pj,t), where f−1

k (x) is the k’th element
of the vector f−1(Pj,t). Finally, since f(.) is symmetric across its arguments, so is f−1(Pj,t), meaning
that f−1

k (Pj,t)= f−1
1 (σk,1(Pj,t)), where σk,1(Pj,t) is a permutation that changes the places of the first

and k’th element of the vector Pj,t. Now, to get the notation in the text let (Pj,k,t,Pj,−k,t)≡σk,1(Pj,t) and
D(x)≡J−1f−1

1 (x), which gives us the notation in the text:Cj,k,t=PtCtD(Pj,k,t,Pj,−k,t),where D(.,.)

is homogeneous of degree -1. Finally, the optimality conditions of the household’s problem with respect
toBt,Ct and Lt are straight forward and are given by PtCt=β(1+it)Ef

t [Pt+1Ct+1] and PtCt=Wt.

F.2. Quadratic Approximation to Firms’ Profits

Define a firm’s revenue net of its production costs at a given time as

Π(Pj,k,t,Pj,−k,t,Qt)=Pj,k,tQtD(Pj,k,t,Pj,−k,t)−(1−s̄j)Q
2+γ
t D(Pj,k,t,Pj,−k,t)

1+γ (F.4)

Now for any given set of signals over time that firm j,k could choose to see, its profit maximization
problem is

max
(Pj,k,t:S

t
j,k→R)∞t=0

E[
∞∑
t=0

βtQ−1
t Π(Pj,k,t,Pj,−k,t,Qt)|S−1

j,k ]= max
(Pj,k,t:S

t
j,k→R)∞t=0

E[
∞∑
t=0

βtΠ(
Pj,k,t

Qt

,
Pj,−k,t

Qt

,1)|S−1
j,k ].

48Follows from homogeneity of Φ(x). Notice that Φ(ax)= aΦ(x). Differentiate with respect to k’th argument to get
Φk(ax)=Φk(x).

49With some algebra, we can show that J f (1)= Φ11(1)
K−1 I− Φ11(1)+K−1

K(K−1) 11′, meaning that J f (1) is a symmetric matrix
whose diagonal elements are strictly different than its off-diagonal elements. Hence, it is invertible.
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where the second equality follows from the fact that the profit function is homogeneous of degree 1 as
D(.,.) is homogeneous of degree -1. Now, let small letters denote logs of corresponding variables so that
pj,k,t−qt≡ ln(Pj,k,t/Qt) and pj,−k,t−qt≡ ln(Pj,−k,t/Qt) and define the loss function of the firm from
mispricing at a given time as

L(pj,k,t−qt,pj,−k,t−qt)≡Π(
P ∗
j,k,t

Qt

,
Pj,−k,t

Qt

,1)−Π(
Pj,k,t

Qt

,
Pj,−k,t

Qt

,1),

where P ∗
j,k,t= argmaxxΠ(x,Pj,−k,t,Qt) is the firms’ optimal price for the particular realizations ofQt

and Pj,−k,t. Now note that

min
(pj,k,t:S

t
j,k→R)∞t=0

E[
∞∑
t=0

βtL(pj,k,t−qt,pj,−k,t−qt)|S−1
j,k ]

has the same solution as profit maximization problem of the firm. Moreover, recall from the main
text that in the symmetric equilibrium of the full-information economy Pj,k,t

Qt
=

Pj,−k,t

Qt
= 1. Taking a

second-order approximation to the net present value of firm’s losses at a given time around the symmetric
full-information equilibrium, we arrive at:

∞∑
t=0

βtL(pj,k,t−qt,pj,−k,t−qt)≈−1

2
Π11(1,1,1)︸ ︷︷ ︸

>0

∞∑
t=0

βt(pj,k,t−p∗j,k,t)2,

where p∗j,k,t is such that Π1(exp(p
∗
j,k,t)/Qt,Pj,−k,t/Qt,1)=0,meaning that

p∗j,k,t=qt+

(
1+

Π13(1,1,1)

Π11(1,1,1)

)
︸ ︷︷ ︸

strategic complementarity = αj

× 1

Kj−1

∑
l ̸=k

(pj,l,t−qt) (F.5)

=(1−αj)qt+αjpj,−k,t (F.6)

It is straightforward to calculate the derivatives Π11(1,1,1) and Π13(1,1,1) as

Π11(1,1,1)=−rsj(ε
ε
j,D+(1+γ)(εjD−1)) (F.7)

Π13(1,1,1)=rsj(ε
j
D−1) (F.8)

where rsj ≡ D(1,1) = (JKj)
−1 is the revenue share (or relative size) of the firm in the symmetric

full-information equilibrium, εjD is the demand elasticity and εεj,D is the superelasticity of demand for
a firm in sector j in the full-information symmetric equilibrium. Note that this gives a general expression
for strategic complementarity as:

αj=1− εjD−1

εεj,D+(1+γ)(εjD−1)
(F.9)

Thus, note that we can write Π11 as:

Π11=−rsj
εjD−1

1−αj

(F.10)
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and the firm’s objective for its attention problem is therefore given by

max
{κj,k,t,Sj,k,t,pj,k,t(S

t
j,k)}t≥0

−rsjE


∞∑
t=0

βt

1

2

εjD−1

1−αj

(pj,k,t(S
t
j,k)−p∗j,k,t)2︸ ︷︷ ︸

loss from mispricing

+(1−sj)ωκj,k,t︸ ︷︷ ︸
cost of capacity

|S−1
j,k


 (F.11)

Dividing the objective by 1−sj=
εjD−1

εjD
gives us the objective in the main text where

Bj=
εjD

1−αj

=
η−(η−1)K−1

j

(1−(1−η−1)K−1
j )( 1+γ

1+γη(1−(1−η−1)K−1
j )2

)
=
η+γ(η−(η−1)K−1

j )2

1+γ
(F.12)

where the equalities follow from the expression for demand elasticities and strategic complementarities
in the main text.

G Strategic Complementarity under Kimball Demand
In the paper’s main text, I consider a nested CES aggregator and derive the strategic complementarities
under the demand system implied by that aggregator. An alternative approach in the literature is using
the Kimball aggregator but mainly used with monopolistic competition. In this section, I derive the
demand functions of firms given this aggregator in an oligopolistic setting for comparison.

The Kimball aggregator assumes that the function Φ(Cj,1,t,...,Cj,K,t) is implicitly defined by

1=K−1
∑
k∈K

f(
KCj,k,t

Φ(Cj,1,t,...,Cj,K,t)
), (G.1)

where f(.) is at least thrice differentiable, and f(1) = 1 (so that Φ(1, ... , 1) = K). Observe that
this coincides with the CES aggregator when f(x) = x

η−1
η . To derive the demand functions, recall

that the first order conditions of the household’s problem are Pj,k,t = J−1Qt

∂
∂Cj,k,t

Cj,t

Cj,t
,∀j, kwhere

Cj,t=Φ(Cj,1,t,...,Cj,K,t). Implicit differentiation of Equation (G.1) gives

Pj,k,t=J
−1Qt

f ′(
KCj,k,t

Cj,t
)∑

l∈KCj,l,tf ′(
KCj,l,t

Cj,t
)
,∀j,k. (G.2)

To invert these functions and get the demand for every firm in terms of their competitors’ prices, guess

that there exists a function F :RK →R such that
∑

l∈KCj,l,tf
′(

KCj,l,t
Cj,t

)

J−1Qt
=F (Pj,1,t,...,Pj,K,t). I verify this

guess by plugging in this guess to Equation (G.2), which implies the function F (.) is implicitly defined
by 1=K−1

∑
k∈Kf(f

′−1(Pj,l,tF (Pj,1,t,...,Pj,K,t))).Note that this is consistent with the guess and F (.)
only depends on the vector of these prices. It is straight forward to show that F (.) is symmetric across
its arguments and homogeneous of degree -1.50 Now, given these derivations, we can derive the demand
function of firm j,k as a function of the aggregate demand, its own price and the prices of its competitors.

50Symmetry is obvious to show. To see homogeneity, differentiate the implicit function that defines F (.) with respect to
each of its arguments and sum up those equations to get that for any X=(x1,...,xK)∈RK , −F (X)=

∑
k∈Kxk

∂
∂xk

F (X).

Now, notice that for any a∈R,X∈RK , ∂aF (aX)
∂a =0. Thus, for any X∈RK , aF (aX) is independent of a, and in particular

aF (aX)=F (X)⇒F (aX)=a−1F (X).
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Similar to the main text we can write this as

Cj,k,t=J
−1QtD(Pj,k,t,Pj,−k,t),D(Pj,k,t,Pj,−k,t)≡

f ′−1(Pj,k,tF (Pj,1,t,...,Pj,K,t))∑
l∈KPj,l,tf ′−1(Pj,l,tF (Pj,1,t,...,Pj,K,t))

In the spirit of the CES aggregator I define η≡− f ′(1)
f ′′(1)

as the inverse of the elasticity of f ′(x) at x=1,
and assume η>1. It is straightforward to show that η is the elasticity of substitution between industry
goods around a symmetric point. Moreover, the elasticity of demand for every firm around a symmetric

point is η−(η−1)K−1 similar to the case of a CES aggregator. Also, define ζ(x)≡
∂log(− ∂log(f ′(x))

∂log(x)
)

∂log(x)
as

the elasticity of the elasticity of f ′(x):ζ(x)= f ′′′(x)
f ′′(x)

x− f ′′(x)
f ′(x)

x+1. For notational ease let ζ≡ ζ(1) and
assume ζ≥0 (ζ=0 corresponds to the case of CES aggregator). These assumptions (η>1 and ζ≥0

are sufficient for weak strategic complementarity, α∈ [0,1)). While the usual approach in the literature
is to assumeK→∞ and look at super elasticities in this limit, a part of my main results revolve around
the finiteness of the number of competitors and the fact that the degree of strategic complementarity
is decreasing inK. Therefore, I derive the degree of strategic complementarity for any finiteK. With
some intense algebra we get α= ζ(K−2)+(1−η−1)2

ζ(K−2)+(1−η−1)K
∈ [0,1). This imbeds the CES aggregator when ζ=0,

in which case α=(1−η−1)K−1.

H Proofs of Propositions for the Dynamic Model

Proof of Proposition 5

This proof has two parts. Part I casts a firm’s problem into the abstract problem studied in Afrouzi and
Yang (2019) and then applies Lemmas 1 and 3 from that paper,51 concluding that it is optimal for firms
to always observe one Gaussian signal at any given time t, for any β ∈ [0,1). Part II of the proof then
derives the optimal shape of the signal under the assumption of β=0 and shows that these signals take
the form of “ideal price plus noise.”

Part I (Optimality of One Signal at Each Time for β∈ [0,1)). Let (S−1
l,m)(l,m)∈J×K denote the initial

signal structure of the economy that firms inherit at time 0. Pick any firm j,k as the firm whose problem is
being studied here and, to economize on notation, drop (j,k) when it is clear from the context. Consider
a strategy profile for all other firms in the economy, denoted by ς=(Sl,m,t⊂St,pj,l,t :S

t
l,m→R)t≥0

(l,m)̸=(j,k).
Define x⃗t(ς)≡ (qt,pl,m,t(S

t
l,m))(l,m)̸=(j,k) and X t(ς)≡{x⃗j,k,τ (ς) : 0≤ τ ≤ t}. Note that under strategy

profile ς ,X t(ς) has a stochastic process that is exogenous to firm j,k and is taken as given by that firm.
Moreover, note thatX t(ς) contains all the variables that firm j,k would potentially pay attention to at
time t subject to the feasibility of available information, as captured by St. Define also the function vj(.)
as the firm j,k’s losses from mispricing at time t under price pt and strategy ς as

vj(pt,x⃗t(ς))≡−1

2
Bj(pt−p∗(x⃗t(ς)))2, p∗(x⃗t(ς))≡(1−αj)qt+αjpj,−k,t(ς) (H.1)

51https://afrouzi.com/dynamic_inattention/draft_2019_10.pdf#page=7.
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With slight abuse of notation, also let St−1=St−1
j,k , denote firm j,k’s information set at time t−1. Then,

we can re-write the problem of firm j,k in Equation (26) as

max
{St⊂St,pt(St)→R}t≥0

∞∑
t=0

βtE[vj(pt;x⃗t(ς))−ωI(X t(ς);St|St−1)|S−1] (H.2)

subject to St=St−1∪{St}, ∀t≥0, S−1 given.

where we have substituted the information processing constraint into the objective in Equation (26).52

We can see that, for a ς that firm j,k takes a given, Equation (H.2) is exactly the problem studied in
(Afrouzi & Yang, 2019, RI Problem, p. 7).53 Applying Lemma 1 from that paper we conclude that
if {St ⊂ St,pt : S

t →R} is a solution to Equation (H.2), then—letting pt ≡ {pτ : 0≤ τ ≤ t}∪S−1—
X t(ς)→pt→St forms a Markov chain for all t≥0; i.e.,

X t(ς)⊥St|pt ⇐⇒I(X t(ς);St|pt)=0 (H.3)

Thus, under the optimal information structure and pricing strategies, pt is a sufficient statistic for St

concerningX t(ς), which means that the firm’s pricing history reveals all of its acuqired information up
to time t. Moreover, since signals are Gaussian (by Lemma 3 in Afrouzi and Yang (2019)), pt is also
a Gaussian process and pt∈St. Thus, pt is a recommendation strategy for firm i that weakly dominates
St. Therefore, recommendation strategies are also optimal for the dynamic problem, and firms prefer
to observe one signal per period of time which recommends the price they should charge in that period.

Part II (Shape of the Optimal Signals with β=0). While we have shown that with any β∈ [0,1) it is
optimal for firms to observe only one signal at any given time, we have not characterized the shape of
this optimal signal, particularly how it loads on different shocks. In general, optimal signals can have
complicated representations, but the case of β =0 is special. We can show that in this case, optimal
signals are of the intuitive form as in the static model of “ideal price plus noise.” This is, however, not ex
ante obvious, since in contrast to the static model, shocks in the dynamics model can be auto-correlated
and firms can choose to pay attention to past realizations of the state vector, x⃗t−τ (ς) :τ≥1. If we make
the additional assumption that x⃗t(ς) is a Markov process, we can directly apply the first-order conditions
from Afrouzi and Yang (2019) to prove that optimal signals take the shape above. But, for β=0, we
can characterize this result more generally without the Markov assumption, which is different here
from Afrouzi and Yang (2019). The rest of this part is devoted to proving this result. (Later, to solve
the dynamic model numerically, we approximate x⃗t(ς) with a Markov process and use the numerical
methods from Afrouzi and Yang (2019) to solve for the shape of optimal signals for a calibrated value
of β>0, which no longer take the form ideal price plus noise).

Similar to Part I, fix a firm (j,k)∈J×K and consider its problem at time t for a given strategy of

52Here we are using the result that the information processing capacity in Equation (26) always binds. To see why, suppose
that the constraint does not bind for some t. Then, the firm produces information capacity that is not used for acquiring
information. Thus, the firm would be strictly better off reducing the production capacity for some small ϵ without affecting
its information structure, implying that the constraint should always bind at the optimum.

53See https://afrouzi.com/dynamic_inattention/draft_2019_10.pdf#page=7.
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other firms in the economy, which we denote by ς . To economize on notation, we continue dropping
(j,k) when it is clear from the context. Let x⃗t(ς),X t(ς), and p∗(xt(ς)) defined as in Part I. Note that the
firm’s ideal price, p∗(xt(ς)), can be written as:

p∗(x⃗t(ς))=w′x⃗t, w′≡(1−αj,
αj

Kj−1
,...,

αj

Kj−1︸ ︷︷ ︸
Kj−1 times

, 0,0,...,0︸ ︷︷ ︸
(J−1)×Kj times

) (H.4)

where the coefficient 1−αj applies to qt, coefficients αj

Kj−1
apply to the firm’s own competitors and the

0 coefficients apply to firms in other industries. Plugging these into Equation (H.2) and setting β=0

we obtain the following Problem for the firm at time t:

max
St∈St,pt:St→R

E[−Bj

2
(pt−w′x⃗t)

2−ωI(X t(ς);St|St−1)|S−1] (H.5)

First, we can see that for any choice of St∈St, the optimal pricing strategy is given by:

pt(S
t)=w′E[x⃗t|St] (H.6)

=⇒−E[
Bj

2
(pt−w′x⃗t(ς))|S−1]=−Bj

2
E[Var(w′x⃗t(ς)|St)|S−1] (H.7)

Moreover, by the chain rule of mutual information, we have the following decomposition of the firm’s
cost of information:

ωI(X t(ς);St|St−1)=ωI(X t(ς);St,S
t−1|St−1)=ωI(X t(ς);St|St−1) (H.8)

=ωI(X t−1(ς),x⃗t(ς);St|St−1) (H.9)

=ωI(x⃗t(ς);St|St−1)+ωI(X t−1(ς);St|St−1,x⃗t(ς)) (H.10)

Thus, the firm’s problem with β=0 at time t can be written as:

max
St∈St

−E[
Bj

2
w′Var(x⃗t(ς)|St)w︸ ︷︷ ︸
losses from mispricing

+ ωI(x⃗t(ς);St|St−1)︸ ︷︷ ︸
cost of info. about x⃗t conditional on St−1

+ ωI(X t−1(ς);St|St−1,x⃗t(ς))︸ ︷︷ ︸
cost of info. about Xt−1 conditional on St−1,x⃗t

|S−1]

(H.11)

Our first observation about this problem is that it is optimal to choose St such that the third term (cost
of info. aboutX t−1 conditional on St−1,x⃗t) is zero; i.e., choose a signal that is not informative about past
fundamentals and prices conditional on today’s prices and fundamentals. To see why, suppose that this
term is strictly positive so that St contains some information aboutX t−1 that is independent of x⃗t,St−1.
But that cannot be optimal because one can construct a new signal that has the same amount of information
about x⃗t(ς) conditional on St−1 but less information aboutX t−1(ς) conditional on St−1,x⃗t(ς). Such a
signal would imply the same losses from mispricing but would economize on irrelevant information
aboutX t−1(ς) that are not relevant for predicting x⃗t(ς). Thus, the firm’s problem reduces to:

max
St∈St

−E[
Bj

2
w′Var(x⃗t(ς)|St)w+ωI(x⃗t(ς);St|St−1)|S−1] (H.12)

Now, given St−1 and x⃗t(ς), let Σt|t−1≡Var(x⃗t(ς)|St−1). Assume, without loss of generality, that Σt|t−1
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is invertible.54 Moreover, notice that by restricting the strategies to be among Gaussian signals as well
as the fact that qt itself is a Gaussian process, for any non-zero signal St∈St, we have:

ωI(St,x⃗t(ς)|St−1)=
ω

2
ln(1−z′tΣ

−1
t|t−1zt),

where zt≡ Cov(St,x⃗t(ς)|St−1)√
Var(St|St−1)

. Moreover, notice that firm’s losses from mispricing become

Var(w′x⃗t(ς)|St−1
j,k ,Sj,k,t)=w′Σj,k,t|t−1w−(w′zt)

2.

Since both the cost of information and losses from mispricing are functions of the signal through zt, the
firm can directly choose zt (as long as there is a signal in St that induces that covariance vector zt, which
corresponds to the no-forgetting constraint). Assuming that the no-forgetting constraint does not bind
for the moment, the first order condition for zt is:

Bj(w
′z∗t )w=ω

Σ−1
t|t−1z

∗
t

1−z∗t
′Σ−1

t|t−1z
∗
t

(H.13)

multiplying this FOC with z∗t and w from left, implies that

(w′z∗t )
2=

ω

Bj

z∗
′

t Σ
−1
t|t−1z

∗
t

1−z∗t
′Σ−1

t|t−1z
∗
t

, Var(p∗(x⃗t(ς))|St−1)=w′Σt|t−1w=
ω

Bj

1

1−z∗t
′Σ−1

t|t−1z
∗
t

(H.14)

Combining these two equations, we have:

(w′z∗t )
2=w′Σt|t−1w− ω

Bj

(H.15)

Since the left-hand side is a positive number, this requires that

Var(p∗(x⃗t(ς))|St−1)=w′Σt|t−1w≥ ω

Bj

(H.16)

which is what is required for the no-forgetting constraint to not bind; i.e., the prior uncertainty of the firm
about its ideal price, w′Σt|t−1w, needs to be large enough so that it pays attention to it. Otherwise, the op-
timal signal has zero covariance with x⃗t(ς). Therefore, the optimal covariance is proportional toΣt|t−1w:

z∗t =
max{

√
w′Σt|t−1w− ω

Bj
,0}

w′Σt|t−1w
×Σt|t−1w (H.17)

where the first term is a scalar that depends on the cost and benefit parameters ω,Bj . The last step is to
characterize a signal St∈St that implies this optimal covariance. To see this, let

S∗
t ≡w′x⃗t(ς)+et=(1−α)qt+α

1

K−1

∑
l ̸=k

pj,l,t(ς)+et.

where et is a Gaussian noise independent of x⃗t(ς). It is straight forward to show that this signal implies
z∗t for an appropriately chosen variance for et.55

54To see why this is without loss of generality, note that if Σt|t−1 is not invertible, then there are elements in x⃗t(ς) that
are colinear conditional on St−1

j,k , in which case knowing about one completely reveal the other; this means we can reduce
x⃗t(ς) to its orthogonal elements without limiting the signal choice of the agent.

55Here one needs to define Var(et)=∞ to correspond to the case where z∗t =0, which is a well-defined limit.

36



Proof of Proposition 6

The independence of strategic complementarity αj from j follows from the symmetry in the number
of competitors across industries. Moreover, in the stationary equilibrium capacity is time-invariant
because it only depends on the underlying parameters and the variances of subjective beliefs, which
are constant under the steady-state Kalman filter. Symmetric equilibrium also implies that optimal
capacities are also symmetric across all firms; so κj,k,t=κ≥ 0. To see that κ> 0, suppose that in the
equilibrium κ=0. Then firms are not acquiring any information about the prices of their competitors and
the monetary policy shocks. But monetary policy shocks have a unit root which under the assumption
that κ=0 implies that firms’ uncertainty about their optimal price, which is proportional to their losses
from imperfect information, is growing linearly over time and exceeds any finite upper-bound. Now,
consider an information acquisitoin strategy that sets κ=ϵ>0. It follows that firms’ losses under this
strategy is bounded above by O(1

ϵ
) which dominates κ=0. Thus, in the stationary equilibrium, κ>0.

Now, from the proof of Proposition 5, recall that in the equilibrium, for all (j, k) ∈ J × K,
pj,k,t(S

t
j,k)=w′E[x⃗j,k,t(ς)|St

j,k] where St
j,k=(St−1

j,k ,Sj,k,t) and

Sj,k,t=(1−α)qt+α
1

K−1

∑
l ̸=k

pj,l,t(S
t
j,l)+ej,k,t

From Kalman filtering

w′E[x⃗j,k,t(ς)|St
j,k] = E[w′x⃗j,k,t(ς)|St−1

j,k ]

+
w′Cov(Sj,k,t,x⃗t(ς))

Var(Sj,k,t|St−1
j,k )

(Sj,k,t−E[Sj,k,t|St−1
j,k ]).

Notice from the proof of Proposition 5 that w′Cov(Sj,k,t,x⃗j,k,t(ς))

Var(Sj,k,t|St−1
j,k )

= λ
w′Σj,k,t|t−1w

w′Σj,k,t|t−1w= λ. Thus,

using pj,k,t as shorthand for pj,k,t(St
j,k), pj,k,t = (1 − λ)E[Sj,k,t|St−1

j,k ] + λSj,k,t. Finally, notice that
pj,k,t−1 = E[Sj,k,t−1|St−1

j,k ]. Subtract this from both sides of the above equation to get πj,k,t ≡ pj,k,t−
pj,k,t−1 =(1−λ)E[∆Sj,k,t|St−1

j,k ]+λ(Sj,k,t−pj,k,t−1), where ∆Sj,k,t =Sj,k,t−Sj,k,t−1. Subtract λπj,k,t
from both sides and divide by (1−λ) to get πj,k,t=E[∆Sj,k,t|St−1

j,k ]+ λ
1−λ

(Sj,k,t−pj,k,t).Averaging, this
equation over all firms gives us the Phillips curve:

Ej,k
t−1[∆Sj,k,t] ≡ 1

JK

∑
(j,k)∈J×K

E[∆Sj,k,t|St−1
j,k ]=(1−α)Ej,k

t−1[∆qt]+αE
j,k
t−1[πj,−k,t].

where πj,−k,t≡ 1
K−1

∑
l ̸=k(pj,l,t−pj,l,t−1) is the average price change of all others in industry j except

k. Moreover,
1

JK

∑
(j,k)∈J×K

(Sj,k,t−pj,k,t) = (1−α)qt+
α

JK

∑
(j,k)∈J×K

1

K−1

∑
l ̸=k

pj,l,t−
1

JK

∑
(j,k)∈J×K

pj,k,t︸ ︷︷ ︸
=α−1

JK

∑
(j,k)∈J×Kpj,k,t

.

The last term asymptotically converges to zero as J→∞ as mistakes are orthogonal across sectors—
ej,k,t ⊥ pm,l,t,∀m ̸= j. Now, define pt ≡ 1

JK

∑
(j,k)∈J×K pj,k,t, and recall that qt = pt+ yt. Therefore,
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1
JK

∑
(j,k)∈J×K(Sj,k,t−pj,k,t)=(1−α)yt. Finally, define aggregate inflation as the average price change

in the economy, πt≡ 1
JK

∑
(j,k)∈J×Kπj,k,t. Plugging these into the expression above we get

πt=(1−α)Ej,k
t−1[∆qt]+αE

j,k
t−1[πj,−k,t]+(1−α) λ

1−λ
yt.

Finally, notice that λ
1−λ

= 1−e−2κ

e−2κ =e2κ−1.

I Calibration Details

I.1. Calibration of the Benchmark Model

This section discusses the calibration of several model parameters in detail.

Elasticity of substitution. A usual approach in monopolistic competition models is to choose η to match
an average markup given by η

η−1
. In the oligopolistic competition model, markups depend on the number

of competitors and in the steady-state are given by

µj=1+
1

(η−1)(1−K−1
j )

(I.1)

whereKj is the number of competitors in j. The survey elicits firms’ markups by asking the following
question: “Considering your main product line or main line of services in the domestic market, by what

margin does your sales price exceed your operating costs (i.e., the cost material inputs plus wage costs

but not overheads and depreciation)? Please report your current margin as well as the historical or

average margin for the firm.” The average markup reported by firms in the sample is 1.3 and varies from
1.1 to 1.6. These values are in the plausible range of markups measured in the literature for the US. Given
this measure of markups, I run the analogous regression to Equation (I.1) and set η=12 to match the
coefficient on 1

1−K−1
j

in Column (2) of Table I.1, which reports the result of this regression. This value
is well in line with the values used in the literature for the US.

Table I.1: Calibration of η

(1) (2)
Average Markup Average Markup

1/(1−K−1) 0.107 (0.016) 0.089 (0.018)
Firm age 0.000 (0.000)
Manufacturing 0.037 (0.007)
Professional and Financial Services 0.166 (0.007)
Trade 0.027 (0.007)
Other -0.031 (0.044)
Constant 1.205 (0.018) 1.140 (0.021)
Observations 3152 3152

Notes: Column (1) of the table reports the result of regressing the average markups of firms on 1/(1−K−1
j ) in the first

wave of the survey from Coibion et al. (2018). Column (2) controls for industry fixed effects shown in the table as well
as firm age. The coefficient on 1/(1−K−1

j ) corresponds to 1/(η−1) in the model.
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Curvature of the production function. Given the empirical distribution of the number of firms, K, and
the elasticity of substitution, η=12, I set γ=0.945 (1/(1+γ)=0.514) to match the average degree of
strategic complementarity ᾱ=0.817 from Table A.1. Given this value, the elasticity of output to labor
in the model is 0.514. This is consistent with calibrations of this parameter for the U.S. if we were to
calibrate it to the labor share of income in the U.S. data (see e.g. Bilal, Engbom, Mongey, & Violante,
2019, where the targeted value for the U.S. is 0.518).56

Persistence and variance of shocks to nominal demand. I calibrate ρ=0.707 to match the persistence
of the growth of nominal GDP in New Zealand for post-1991 and pre COVID-19 data.57 Nonetheless,
the model is not very sensitive to this parameter in this range and I present results for an alternative value
of ρ=0.23 in Section 5.4.

Given the quarterly persistence, I then set σu=0.011 to match the unconditional standard deviation
of quarterly nominal GDP growth.58 Nonetheless, since monetary policy shocks are the only shocks
in the model, the standard deviation of all variables – including endogenous non-fundamental shocks
– are scaled by the standard deviation of the innovations to nominal demand. Accordingly, in my counter-
factual comparisons, I will mainly focus on numbers relative to a benchmark so that the reported relative
numbers are independent of this scale.59

I.2. Calibration of the Monopolistic Competition Model

In Section 5, I compare the calibrated benchmark model to a monopolistic competition model with
the same average degree of strategic complementarity. In this section, I discuss the calibration of this
monopolistic competition model. Since changingK affects both the degree of strategic complementarity,
αj , as well as the curvature of the profit function,Bj in Equation (28), by taking the limitK→∞ in the
benchmark model, we would inevitably alter both the curvature and the degree of strategic complementar-
ity. To avoid this and create the degree of freedom that allows for keeping the strategic complementarity
fixed asK→∞, in the monopolistic competition model I replace the within-industry CES aggregators
with a Kimball aggregator. In particular, I use the oligopolistic Kimball aggregator derived in Appendix G
which keeps the demand elasticities the same at εDj =η−(η−1)K−1 but introduces the parameter ζ that
controls the degree of strategic complementarity. The degree of strategic complementarity in this case

56Although we have not explicitly modeled capital, one could think of the production function of firms as one with constant
returns to scale in capital and labor, where capital is exogenously fixed.

57This coefficient is obtained by regressing the annual log-growth of nominal GDP in New Zealand on one lag where
I obtain a yearly persistence of 0.25. I then convert this to the quarterly persistence through ρ=0.251/4=0.707. I restrict
the time series to post 1991 data to be consistent with New Zealand’s shift in monetary policy towards inflation targeting
in that time frame. I also restrict the data to pre 2020 to exclude the COVID-19 period from the sample.

58The unconditional standard deviation is given by σu√
1−ρ2

in the model which is 0.0154 in the data.
59This is due to potential concerns in matching the unconditional volatility. Calibrating the standard deviation needs

to be done on the part of nominal demand that is driven by monetary policy shocks. In the US one can calibrate this variance
by projecting nominal demand on known monetary policy shock series, such as Romer and Romer (2004) shocks, and fitting
an AR(1) to the predicted series (See, for instance, Midrigan (2011)). For the case of New Zealand, however, this becomes
a complication since, as far as I know, there is no unanimously agreed-upon series for monetary shocks.
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and whenK→∞, is then given by

lim
K→∞

αK=ζ
1

1+γη
+(1−ζ)γ(η−1)

1+γη
(I.2)

The new parameter ζ allows us to match the degree of strategic complementarity to any target in the
monopolistic competition model. Importantly, ζ does not directly affect anything else in the model and
only shows up in the expression for α.

J Symmetric Stationary Equilibria and Solution Method
This appendix has four subsections. Appendix J.1 defines the notion of a symmetric stationary equilib-
rium for the dynamic model and discusses some of its properties. Appendix J.2 derives the equations
that need to hold in such an equilibrium. It further characterizes this equilibrium as the fixed point of a
mapping on a set of lag polynomials for the evolution of prices, given a Markov state space approximation
that is used for solving the dynamic rational inattention problem of firms. Appendix J.3 outlines the main
algorithm that I use for finding this fixed point using an “integrated moving average (MA)” state space
approximation (Algorithm 1). It concludes with a description of how this method is implemented in the
replication package of the paper, which is publicly available at https://doi.org/10.7910/DVN/AO6C85.
Finally, Appendix J.4 examines the robustness of Algorithm 1 by replacing the integrated MA approx-
imation with an alternative one based on an ARMA approximation (Algorithm 2), as in Maćkowiak,
Matějka, and Wiederholt (2018), and shows that the results delivered by these two alternative algorithms
are numerically identical by comparing the maximum distance between their implied IRFs as well as
replicating the main quantitative results in Tables 4 to 6.

J.1. Definition of Symmetric Stationary Equilibria

To define the notion of an equilibrium for the dynamic game, let (S−1
j,k )(j,k)∈(J×K) denote the initial

information sets that firms take as given at time 0. Moreover, let ςj,k denote a strategy profile for any
firm j,k in the economy, which consists of choices of signals over time along with pricing strategies for
every period that maps the firm’s information set at that time to a price:

ςj,k=(Sj,k,t⊂St,St
j,k=S

t−1
j,k ∪Sj,k,t,pj,k,t :S

t
j,k→R)t≥0 S−1

j,k given. (J.1)

We start by revisiting the problem of a single firm given a set of strategy profiles for other firms. Fix
a firm j,k, and (with a slight abuse of notation) let ς ≡ (ςl,m)(l,m)̸=(j,k) a set of strategies (not nec-
essarily equilibrium strategies) for all other firms. Define x⃗j,k,t(ς) ≡ (qt,pl,m,t(S

t
l,m))(l,m)̸=(j,k) and

X t
j,k(ς) ≡ {x⃗j,k,τ (ς) : 0 ≤ τ ≤ t}. Note that under strategy profile ς , X t

j,k(ς) has a stochastic (but
potentially time-varying) process that is exogenous to firm j,k and is taken as given by that firm—this
process can be time-varying because ς can be such that other firms are changing their pricing strategies
over time beyond what is implied by shocks alone.

In proof of Proposition 6, in Equation (H.2), we showed that with this notation, given a ς , firm j,k’s

40

https://doi.org/10.7910/DVN/AO6C85


problem under an initial information set S−1
j,k can be cast in the following form:

max
{Sj,k,t⊂Stj,k,pj,k,t(St)→R}

t≥0

−
∞∑
t=0

βtE[
1

2
Bj(pj,k,t−p∗(x⃗j,k,t(ς)))2+ωI(X t

j,k(ς);S
t
j,k|St−1

j,k )|S−1
j,k ] (J.2)

subject to St
j,k=S

t−1
j,k ∪Sj,k,t, ∀t≥0, S−1

j,k given, p∗(xj,k,t(ς))≡(1−αj)qt+αjpj,−k,t(ς)

With this specification of a firm’s problem at hand, the following definition extends the notion of a
pure strategy Gaussian equilibrium that we defined for the static game in Definition 1 to the dynamic case:

Definition 2. A pure strategy Gaussian equilibrium is a collection of initial information sets, (S−1
j,k )(j,k)∈J×K

along with a collection of strategies for firms (ςj,k)(j,k)∈(J×K) such that (1) given these strategies and
initial information sets, no firm j,k has the incentive to deviate from ςj,k according to the objective defined
in Equation (J.2), and (2) (qt,pj,k,t(St

j,k))
(j,k)∈(J×K)
t≥0 is a multivariate Gaussian process. Moreover, we

call such a pair of initial information sets and strategies, (S−1
j,k ,ςj,k)(j,k)∈(J×K), a symmetric stationary

Gaussian equilibrium, if they also satisfy the following additional conditions:
1. Symmetry: the pricing strategies of firms within all sectors withKj=K∈Supp(K) competitors

are independent of firms’ identity (index) and only depend on their information sets:

∀t≥0,∀St⊂St,∀(j,k),(l,m)∈(J×K),Kj=Kl : pj,k,t(S
t)=pl,m,t(S

t) (J.3)

2. Stationarity: the pricing strategies of all firms depend on time only through their history of signals
and not on the time index itself:

∀t,h≥0,∀St∈St,∀(j,k)∈(J×K) : pj,k,t(S
t)=pj,k,h(S

t) (J.4)

Discussion. To clarify the restrictions of symmetry and stationarity, let us note that since, in a Gaussian
equilibrium, the ideal price of firm j,k, p∗(xj,k,t(ς)) in Equation (J.2) is also Gaussian (because it is the
sum of Gaussian processes), firm j,k’s optimal price, pj,k,t(St

j,k)=E(p∗(x⃗j,k,t)|Sj,kt), will be a linear
function of the history of its signals:

pj,k,t(S
t
j,k)=

∑
τ≥0

δτj,k,tSj,k,t−τ (J.5)

where coefficients (δj,k,t)τ≥0 are determined by its optimal Kalman filtering problem. In this context,
symmetry requires that for any two firms (j,k) and (l,m) in oligopolies withKj =Kl=K ∈Supp(K)

competitors

δτj,k,t=δ
τ
l,m,t=δ

τ
K,t, ∀t≥0,∀τ≥0 (J.6)

Furthermore, stationarity requires that

δτK,t=δ
τ
K,h=δ

τ
K , ∀t,h≥0,∀τ≥0 (J.7)

An immediate observation is that stationarity can arise only for specific initial information sets. For
instance, if δτj,k,t ̸=0,∀τ≥0 which is usually the case in imperfect information models with endogenous
signals (usually referred to as the “infinite regress property”), a necessary condition for the equilibrium
to be stationary is that there should be countably infinitely many signals in S−1

j,k for all (j,k)∈(J×K).
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Moreover, these infinitely many signals should be such that given this history and others’ strategies, a
firm j,k will continue to choose signals over time that induce similar optimal filtering behavior. This
is a well-known property of the equilibrium in rational inattention pricing models with monopolistic
competition, pointed out by Maćkowiak and Wiederholt (2009). In such models with monopolistic
competition, the game specified here is a mean-field game with infinitely many firms, where every
infinitesimal firm takes a stationary process for the average price of all firms as given, and chooses
its own pricing plan to maximize its profits. It is then assumed that each firm receives infinitely many
signals at the initial period so that its own optimal pricing strategy is also stationary. The equilibrium
in that setting is then a fixed point where the stationary process of the average price is consistent with
the optimal pricing plan of each individual firm.

In this sense, the definition above formalizes and extends this fixed point notion to the case of the
game with many sectors with finite and potentially different numbers of competitors: each firm j,k takes
as given that its competitors are following a stationary pricing strategy, and chooses its own pricing
strategy to maximize its profits. We then require that this firm starts from an initial information set that
is such that its optimal pricing strategy is stationary (as in Maćkowiak and Wiederholt (2009), this is
similar to assuming that once the firm has solved its problem at time 0, it will receive infinitely many
signals such that its initial information set induces a stationary filtering behavior going forward).

The equilibrium is then again a fixed point for these strategies and initial information sets such that
the stationary strategy of other firms is consistent with the optimal pricing strategy of each individual
firm, given its own initial information set.60

Finally, it is worth noting that while a symmetric stationary equilibrium implies that firms’ pricing
strategies remain time-invariant over time (and in this sense constitutes a “steady state”), it does not
necessarily need to emerge as the limiting steady state of the rational inattention game starting from any

arbitrary set of initial information sets. But conditional on a steady state emerging from a set of initial
information sets for the game, such a steady state must be a stationary equilibrium. In this sense, the
definition of stationarity above is a necessary condition for the existence of a steady state for the game.61

J.2. Solution Method and Characterization of the Symmetric Stationary Equilibrium

Suppose the pair (S−1
j,k ,ςj,k)(j,k)∈(J×K) is a Gaussian symmetric stationary equilibrium. This section

outlines a two-stage procedure for finding the fixed point described above. In the first stage, I solve for
a firm’s optimal pricing strategy, given that others play a stationary strategy. In the second stage, I derive
the conditions for the symmetric stationary equilibrium fixed point. I use these conditions in the next

60For a broader context on this definition, it might also be useful to consider the following analogy with heterogeneous
agent models such as Bewley-Huggett-Aiyagari models. In these models, policy functions are typically time-dependent
given the initial distribution of endogenous variables, but a stationary equilibrium can be defined as the one that arises under
a particular “stationary initial distribution” that induces optimal policy functions that are time-independent.

61This is again analogous to the case of heterogeneous agent models where a stationary equilibrium is a necessary
condition for the existence of a steady state but such a steady state might or might not emerge as the limiting steady state
of such an economy starting from any initial distribution.
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two subsections to outline two iteration algorithms for how one can update the guess for the symmetric
stationary strategies of other firms in the equilibrium and repeat the process until convergence.

Stage 1: Solving a single firm’s problem. Fix a firm (j,k)∈(J×K) and suppose that each of its com-
petitors price according to a symmetric stationary pricing strategy so that their price can be decomposed
to its projection on fundamental shocks and orthogonal residuals:

pj,l,t=ψj,u(L)ut+ψj,v(L)vj,l,t, ∀l ̸=k (J.8)

where ψj,u(L) and ψj,v(L) are lag polynomials and ut and vj,l,t are Gaussian innovations to money
growth and the mistake of firm j,l (due to the rational inattention errors in its signals), respectively. It
then follows that the average price of firm j,k’s competitors, pj,−k,t, follows:

pj,−k,t=
1

Kj−1

∑
l ̸=k

pj,l,t=ψj,u(L)ut+ψj,v(L)vj,−k,t, vj,−k,t=
1

Kj−1

∑
l ̸=k

vj,l,t (J.9)

where we normalize the scales of the lag polynomials such that Var(ut) =Var(vj,−k,t) = σ2
u. It then

follows that the firm j,k’s ideal price is given by:

p∗j,k,t=(1−αj)qt+αjpj,−k,t (J.10)

=((1−αj)ψq,u(L)+αjψj,u(L))ut+αjψj,v(L)vj,−k,t (J.11)

where ψq,u(L) is the lag polynomial that maps innovations to money growth to nominal demand:

∆qt=ρ∆qt−1+ut =⇒ qt=
ut

(1−ρL)(1−L)
=⇒ ψq,u(L)=

1

(1−ρL)(1−L)
(J.12)

Now, for ease of notation, let us define:

xuj,k,t≡((1−αj)ψq,u(L)+αjψj,u(L))ut (J.13)

xvj,k,t≡αjψj,v(L)vj,−k,t (J.14)

so that we can write

p∗j,k,t=x
u
j,k,t+x

v
j,k,t (J.15)

where xuj,k,t is the projection of the ideal price on the history of monetary shocks. xvj,k,t is then the residual,
representing the variation in the firm’s ideal price that is induced by its competitors’ mistakes in their
signals, which are potentially correlated but are independent of monetary shocks.62

In the next step, to map this problem to the Gaussian dynamic rational inattention problem as in
Maćkowiak et al. (2018) or Afrouzi and Yang (2019), we approximate the processes ψj,u(L)ut and
ψj,v(L)vj,−k,t such that they can be written as a linear function of a multivariate process with a Markov
state space representation.63 In particular, suppose there exist Markov Gaussian processes ξut ∈Rn and
ξvt ∈Rm for some n,m∈N such that

xuj,k,t≈H ′
j,uξ

u
j,t, ξuj,t=Aj,uξ

u
j,t−1+Qj,uut, Aj,u∈Rn×n, Qj,u∈Rn (J.16)

62In monopolistic competition models with rational inattention, it is assumed that xv
j,k,t=0, but that is not the case here

because of a finite number of firms in every sector.
63See, e.g., Han, Tan, and Wu (2022) for a proof that such processes can be approximated in this way with arbitrary accuracy.
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xvj,k,t≈H ′
j,vξ

v
j,k,t, ξvj,t=Aj,vξ

v
j,t−1+Qj,vvj,−k,t, Aj,v∈Rm×m, Qj,v∈Rm (J.17)

Below, I will discuss two different approaches to perform this approximation and obtain the matrices
Hj,u,Hj,v,Aj,u,Aj,v,Qj,u,Qj,v, one using an integrated MA truncation and another using an ARMA
approximation as in Maćkowiak et al. (2018) and show both methods deliver numerically identical
results. For this section, however, let us take the state space representations of ξuj,t and ξvj,k,t as given. We

can define the augmented state ξj,k,t=

[
ξuj,t

ξvj,k,t

]
which has the following stationary Markov state space

representation:

ξj,k,t=

[
Aj,u 0

0 Aj,v

]
︸ ︷︷ ︸
Aj∈R(n+m)×(n+m)

ξj,k,t−1+

[
Qj,u 0

0 Qj,v

]
︸ ︷︷ ︸

Qj∈R(n+m)×2

[
ut

vj,−k,t

]
︸ ︷︷ ︸

≡ϵj,k,t∼N(0,σ2
uI2)

(J.18)

Therefore, p∗j,k,t is approximated byH ′
jξj,k,t whereHj=

[
Hj,u

Hj,v

]
.

With this state space representation, the problem in Equation (J.2) is analogous to the one derived
in Lemma 2.4 (Proposition 1 in October 2019 version) in Afrouzi and Yang (2019). Following the same
steps in the proof of that problem, we can then write the firm’s problem as

max
{Σj,t|t≿0}t≥0

−1

2

∞∑
t=0

[
Bjtr(HjH

′
jΣj,t|t)+ωln

(
|Σj,t|t−1|
|Σj,t|t|

)]
(J.19)

s.t. Σj,t+1|t=AjΣj,t|tA
′
j+σ

2
uQjQ

′
j, ∀t≥0 (J.20)

Σj,t|t−1−Σj,t|t≿0 ∀t≥0, Σ0|−1≡Var(ξj,k,0|S−1
j,k ) (J.21)

where ≿0 denotes positive semi-definiteness. Here Σj,t|t−1=Var(ξj,k,t|St−1
j,k ) and Σt|t=Var(ξj,k,t|St

j,k)

denote the prior and posterior covariance matrices of the firms’ beliefs about ξj,k,t at time t given their
information sets at time t−1 and t, respectively. Moreover, Σj,0|−1 is the prior covariance matrix of ξj,k,0
given the initial information set S−1

j,k . The above representation of the problem indicates that, given a
quadratic objective and an initial Gaussian prior, the distribution of firms’ belief about the state ξj,k,t only
matters through its conditional covariance matrices over time. We can then solve this problem using
the same method as in Afrouzi and Yang (2019) and obtain the stationary pair (Σj,−1,Σj,0) such that
given that Σj,0|−1=Σj,−1 then it is optimal for the agent to set Σj,t|t=Σj,0,∀t≥0, and the initial prior is
reproduced by Σj,0 in the sense that the law of motion for the covariance matrix of the state implies

Σj,−1=AjΣj,0A
′
j+σ

2
uQjQ

′
j (J.22)

The interpretation of this procedure is that when the firm’s ideal price follows the stationary process
described above, if firm j,k’s initial information set is such that Var(ξj,k,0|S−1

j,k )=Σ−1, the firm’s optimal
posterior beliefs about the state are also stationary over time and are given by Σ0. One can interpret this
similarly to Maćkowiak and Wiederholt (2009) as when the firm receives infinitely many signals at time
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0 such that Σ−1 emerges as their initial prior.
A byproduct of this solution is that we obtain the shape of optimal signals that emerge under this

information structure. In particular, we know that the firm receives a one-dimensional signal in this case
because there is only one action taken at each period (see, e.g., Maćkowiak et al., 2018) or (Afrouzi &
Yang, 2019, Lemma 1):

Sj,k,t=Y
′
j ξj,k,t+ej,k,t (J.23)

where Yj∈Rn+m is the loading of the signal and ej,k,t∼N(0,σ2
j,e) is the rational inattention noise of the

firm that is orthogonal to the history of (uτ ,vj,−k,τ )τ≤t.64 Then, letting Λj≡Σj,−1Yj(Y
′
jΣj,−1Yj+σ

2
j,e)

−1

to denote the Kalman gain that emerges under these signals for predicting ξj,k,t, we can write the firm’s
beliefs about the state as

ξ̂j,k,t≡E[ξj,k,t|St
j,k]=Aj ξ̂j,k,t−1+ΛjY

′
j (ξj,k,t−Aj ξ̂j,k,t−1)+Λjej,k,t (J.24)

=⇒ ξ̂j,k,t−ξj,k,t=(I−ΛjY
′
j )Aj(ξ̂j,k,t−1−ξj,k,t−1)+Λjej,k,t−(I−ΛjY

′
j )Qjϵj,k,t, ϵj,k,t=(ut,vj,−k,t)

′

Now iterating this backward and replacing ξj,k,t=
∑∞

τ=0A
τ
jQjϵj,k,t−τ , we obtain the projection of

ξ̂j,k,t on the history of shocks in ϵj,k,t=(ut,vj,−k,t)
′ and the history of the firm’s own rational inattention

errors ej,k,t:

ξ̂j,k,t=
∞∑
τ=0

[
Aτ

j−((I−ΛjY
′
j )Aj)

τ (I−ΛjY
′
j )
]
Qjϵj,k,t−τ+

∞∑
τ=0

((I−ΛjY
′
j )Aj)

τΛjej,k,t−τ (J.25)

and, finally, since the optimal price of the firm is given by pj,k,t=H ′
j ξ̂j,k,t, we have:

pj,k,t=
∞∑
τ=0

H ′
j

[
Aτ

j−((I−ΛjY
′
j )Aj)

τ (I−ΛjY
′
j )
]
Qjϵj,k,t−τ+

∞∑
τ=0

H ′
j((I−ΛjY

′
j )Aj)

τΛjej,k,t−τ (J.26)

which can be opened up as

pj,k,t=
∞∑
τ=0

wj,u,τut−τ+
∞∑
τ=0

wj,v,τvj,−k,t−τ+
∞∑
τ=0

wj,e,τej,k,t−τ (J.27)

where

wj,u,τ =H
′
j

[
Aτ

j−((I−ΛjY
′
j )Aj)

τ (I−ΛjY
′
j )
]
(Q′

j,u,0
′)′ (J.28)

wj,v,τ =H
′
j

[
Aτ

j−((I−ΛjY
′
j )Aj)

τ (I−ΛjY
′
j )
]
(0′,Q′

j,v)
′

wj,e,τ =H
′
j((I−ΛjY

′
j )Aj)

τΛj

Stage 2: The Fixed Point. Recall that, at Stage 1, we started by taking the stationary process of other
firms’ prices as given and solved for a single firm’s optimal pricing strategy. In particular, we assumed

64Note that for the Kalman filtering problem, the scale of this signal is indeterminate; i.e., one can multiply the signal
by any scalar without altering its optimality since such multiplication does not alter the signal to noise ratio; i.e., the Kalman
gain vector Λj adjusts with the scale such that the scale of the signal is irrelevant for inference. The DRIPs.m package of
Afrouzi and Yang (2019) sets this scale such that the the signal of the firm is its optimal price up to an additive constant
(this makes the signal correspond to the equivalent of the recommendation strategies discussed in the static model).
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that for l ̸=k, pj,l,t has the following decomposition:

pj,l,t=ψj,u(L)ut+ψj,v(L)vj,l,t (J.29)

Now, in a symmetric equilibrium, the sameψj,u(L) andψj,v(L) should also represent the pricing strategy
of firm j,k. Therefore, we have two representations for j,k’s price; one from the guess

pj,k,t=
∞∑
τ=0

ψj,u,τut−τ+
∞∑
τ=0

ψj,v,τvj,k,t−τ (J.30)

and the other from the optimal pricing strategy derived under this guess:

pj,k,t=
∞∑
τ=0

wu,τut−τ+
∞∑
τ=0

(wv,τvj,−k,t−τ+we,τej,k,t−τ ) (J.31)

It follows that in the symmetric stationary equilibrium, the following conditions should hold:

wj,u,τ =ψj,u,τ ,∀τ≥0 (J.32)

ψj,v,τvj,k,t−τ =wj,v,τvj,−k,t−τ+wj,e,tej,k,t−τ ,∀τ≥0 (J.33)

Note that the first equation already defines a part of the fixed point problem for the projection of prices
on monetary shocks. However, to characterize we also need an updating rule for ψj,v,τ , which can be
obtained by making the following observations about vj,k,t,vj,−k,t and ej,k,t. Since ej,k,t⊥vj,−k,t we can
take the variance of both sides of the second equation above to obtain:

ψ2
j,v,τVar(vj,k,t−τ )=w

2
j,v,τσ

2
u+w

2
j,e,τσ

2
e,j (J.34)

where we have already plugged in the normalization thatVar(vj,−k,t)=σ
2
u. Second, since the distribution

of (vj,l,t)l∈Kj
should be symmetric in the symmetric stationary equilibrium, we obtain the following

condition by taking the covariance of both sides with vj,−k,t:

ψj,v,τCov(vj,k,t−τ ,vj,−k,t−τ )=wj,v,τσ
2
u (J.35)

Finally, by symmetry and our previous normalization of Var(vj,−k,t)=σ
2
u:65

σ2
u=Var(vj,−k,t−τ )=Var

(
1

Kj−1

∑
l ̸=k

vj,l,t−τ

)
=

1

Kj−1
Var(vj,k,t−τ )+

Kj−2

Kj−1
Cov(vj,k,t−τ ,vj,−k,t−τ )

(J.36)

Multiplying both sides of this last equation by ψ2
j,v,τ and substituting the first two equations above, we

obtain:

ψ2
j,v,tσ

2
u=

1

Kj−1
(w2

j,v,τσ
2
u+w

2
j,e,τσ

2
e,j)+

Kj−2

Kj−1
ψj,v,τwj,v,τσ

2
u (J.37)

which is a quadratic equation in ψj,v,t and has only one positive root givenwj,v,τ andwj,e,τ .
Therefore, we have a the following mapping between (ψj,u,τ ,ψj,v,τ ) and (wj,u,τ ,wj,v,τ ,wj,e,τ ):

ψj,u,τ =wj,u,τ ,∀τ≥0 (J.38)

65In deriving this equation, I have used Var(vj,k,t)=var(vj,l,t) and Cov(vj,k,t,vj,−k,t)=Cov(vj,k,t,vj,l,t) for any l ̸=k.
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ψj,v,τ =
1

2

(
Kj−2

Kj−1
wj,v,τ+

√
(Kj)2

(Kj−1)2
w2

j,v,τ+
4

Kj−1
w2

j,e,τ (
σe,j
σu

)2

)
,∀τ≥0 (J.39)

Finally, recall that in the definition of a symmetric equilibrium (Definition 1) we are looking within
strategies in which all sectors with the same number of competitors have the same pricing strategies; thus,
the index j on the lag polynomialsψj,u(L) andψj,v(L) emphasizes that these coefficients can vary for dif-
ferent values ofKj but not with j directly. As a result in the rest of this section, we will often use notation
ψK,u,τ andψK,v,τ to emphasize that these coefficients are the same for all firms in a sector withK competi-
tors. The solution of the model then boils down to characterizing the coefficients of the lag polynomials
for everyK in the support of the distribution of the number of competitors K, (ψK,u,τ ,ψK,v,τ )

τ≥0
K∈Supp(K),

such that the fixed point condition in Equations (J.38) and (J.39) holds for allK∈N and τ≥0.
Once we have these coefficients, we can then construct the impulse response of prices and output

to monetary shocks for sectors withK competitors using the symmetry of responses within such sectors,
and then construct the impulse response of aggregate price and output by weighting the responses of
sectors withK competitors by their shares in the distribution of number of competitors, K.66 Formally,
letting sK denote the share of firms withK competitors in the distribution of the number of competitors,
we can write the aggregate price as:

pt=
∑
j∈J

1

JKj

∑
k∈Kj

pj,k,t=
∑
j∈J

1

JKj

∑
k∈Kj

(ψKj ,u(L)ut+ψK,v(L)vj,−k,t) (J.40)

Now, noting that mistakes are independent across sectors and J is large (because firms only pay attention
to mistakes of firms within their own sector but across sectors), the term involving mistakes washes out
in the aggregate prices and we have:

pt=
∑
j∈J

1

JKj

∑
k∈Kj

ψKj ,u(L)ut=
∑

K∈Supp(K)

sKψK,u(L)ut=ψp,u(L)ut, ψp,u(L)≡
∑

K∈Supp(K)

sKψK,u(L)

(J.41)

It then follows that output is given by

yt=qt−pt=(ψq,u(L)−ψp,u(L))ut (J.42)

J.3. Integrated MA State Space Representation and Solution Algorithms

In this section, I discuss the first algorithm that I use to find the fixed points for the coefficients of the
lag polynomials (ψK,u,τ ,ψK,v,τ )

τ≥0
K∈Supp(K), which is based on an integrated MA truncation algorithm.

We derived the fixed point conditions in Equations (J.38) and (J.39) by relying on an approximation

66First note that in the benchmark model, pj,t+yj,t = qt since sectoral goods are neither complements nor substitutes
(Cobb-Douglas preferences imply that the expenditure share of household on sector j is constant so in log-deviations total
nominal demand moves one to one with sectoral nominal demand of j). Thus, yj,t can be constructed as yj,t = qt−pj,t
once we have pj,t. Moreover, note that in the symmetric steady-state around which we have linearized the economy, the
total expenditure share of the household on sectors with K competitors is simply the share of such firms in the distribution
of the number of competitors, K. So the aggregate price pt, which is the expenditure share weighted price across all sectors,
can be calculated by summing up the responses of sectors with K competitors weighted by their shares in K. Aggregate
output is then given by the difference between the nominal GDP, qt, and the aggregate price, pt, as qt=pt+yt.
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of the process for the ideal price of firms in Equation (J.15) with a Markov state space representation
in Equation (J.16). Using Equations (J.13) and (J.15) we can write the ideal price of firm j,k (where j
is an industry withK competitors) as:

p∗j,k,t=
∞∑
τ=0

((1−αK)ψq,u,τ+αKψK,u,τ )ut−τ︸ ︷︷ ︸
≡xu

K,t

+αj

∞∑
τ=0

ψK,v,τvj,−k,t−τ︸ ︷︷ ︸
≡xv

j,k,t

(J.43)

Thus, the coefficients (ψq,u,τ ,ψK,u,τ ,ψK,v,τ )
∞
τ=0 constitute the MA(∞) representation of the ideal

price with respect to shocks to nominal GDP growth and the average mistakes of other firms in j’s sector.
Now, if prices were stationary, then these sequences would have been square summable (often

denoted as being in ℓ2), and thus their coefficients must have converged to zero as τ →∞. Hence,
one could have approximated these coefficients arbitrarily well with an MA(T ) process for large T .
However, since nominal GDP is assumed to have a unit root, this is not a proper approximation by
itself as ψq,u,τ is no longer square summable. Moreover, prices themselves also inherit the unit root
from qt.67 Therefore, neither ψq,u,τ nor ψK,u,τ converge to 0 as τ→∞. Thus, we need an approach for
approximating these polynomials that takes these unit roots into account. As for the mistakes polynomial
coefficients, ψK,v,τ , these are square summable because they are only a function of the current and past
signal noises (ej,k,t :k∈Kj) of firms in sector j. Since signal noises of any firm are i.i.d. over time, and
firms put less and less weight on their past signals to partly take their newer signals into account, we
can truncate the MA(∞) representation of these arbitrarily well with an MA(T ) process.

The idea behind finding a state space representation for the Markov process that respects the unit
roots of qt and pj,−k,t is to use an integrated MA truncation by defining a random walk process in terms
of monetary shocks:

ũt=
ut

1−L
=

∞∑
τ=0

ut−τ (J.44)

We can then re-write the ideal price of firm j,k in terms of ũt:

p∗j,k,t=(1−αK)ψq,u(L)ut+αKψK,u(L)ut+αKψK,v(L)vj,−k,t (J.45)

=(1−αK)∆ψq,u(L)ũt+αK∆ψK,u(L)ũt+αKψK,v(L)vj,−k,t (J.46)

where we have defined ∆ψq,u(L)≡(1−L)ψq,u(L) and ∆ψK,u(L)≡(1−L)ψK,u(L). It is easy to verify
that the coefficients of these two polynomials are square summable. To see why, we can make the
observation that they correspond to the IRFs of the growth in nominal GDP and prices of other firms:

∆qt=(1−L)qt=(1−L)ψq,u(L)ut=∆ψq,u(L)ut (J.47)

∆pj,−k,t=(1−L)pj,−k,t=(1−L)ψK,u(L)ut=∆ψK,u(L)ut (J.48)

Now, since both qt and pj,−k,t have exactly one unit root, their difference, ∆qt and∆pj,−k,t, are stationary

67To see why, note that if prices do not have exactly one unit root, then any firm’s losses, ((1−αj)qt+αjpj,−k,t−pj,k,t)
2,

would grow unboundedly so optimal information acquisition around a steady state with bounded profit loss implies that
prices should have exactly one unit root
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and their IRFs are square summable. This implies that the coefficients ∆ψq,u,τ and ∆ψK,u,τ converge
to 0 for large τ . So for a given level of tolerance, we can find Tu and Tv such that for τ≥Tu and τ≥Tv,
∆ψq,u,τ and ∆ψK,u,τ are approximately zero under that tolerance level.68

Now, consider the following state space representation. Fixing Tu and Tv as above, let U t
j,k ≡

(ũt,...,ũt−Tu ,vj,−k,t,...,vj,−k,Tv)
′∈RTu+Tv . Then, we can write the law of motion for U t

j,k as:

ũt

ũt−1

ũt−2

...
ũt−Tu


︸ ︷︷ ︸

≡Ũt

=



1 0 0 ... 0

1 0 0 ... 0

0 1 0 ... 0
...

... . . . . . . ...
0 0 0 1 0


︸ ︷︷ ︸

≡Au



ũt−1

ũt−2

ũt−3

...
ũt−Tu−1


︸ ︷︷ ︸

=Ũt−1

+σu



1

0

0
...
0


︸ ︷︷ ︸
≡Qu

ut (J.49)

so that the first row gives ũt= ũt−1+ut and the rest of the rows give ũt−h= ũt−h,∀h≥1. Moreover, note
that 

vj,−k,t

vj,−k,t−1

vj,−k,t−2

...
vj,−k,t−Tv


︸ ︷︷ ︸

≡V t
j,−k

=



0 0 0 ... 0

1 0 0 ... 0

0 1 0 ... 0
...

... . . . . . . ...
0 0 0 1 0


︸ ︷︷ ︸

≡Av



vj,−k,t−1

vj,−k,t−2

vj,−k,t−3

...
vj,−k,t−Tv−1


︸ ︷︷ ︸

≡V t
j,−k

+



1

0

0
...
0


︸ ︷︷ ︸
≡Qv

vj,−k,t (J.50)

so that each row gives vj,−k,t−h = vj,−k,t−h. Given these laws of motion, we then have the following
augmented state space representation for U t

j,k:

U t
j,k=

[
Ũ t

V t
j,−k

]
=

[
Au 0Tu×Tv

0Tv×Tu Av

]
︸ ︷︷ ︸

≡A

U t−1
j,k +

[
Qu 0Tu×1

0Tv×1 Qv

]
︸ ︷︷ ︸

≡Q

[
ut

vj,−k,t

]
(J.51)

We then approximate the ideal price of firm j,k as:

p∗j,k,t≈ p̂∗j,k,t≡
Tu∑
τ=0

((1−αKj
)∆ψq,u,τ+αKj

∆ψKj ,u)ũt−τ+αj

Tv∑
τ=0

ψτ
Kj ,v

vj,−k,t−τ =H
′
Kj
U t
j,k (J.52)

68In the code for solving and calibrating the benchmark model, I set that Tu=60 and Tv=30 (i.e. implicitly assuming
that inflation and output responses to monetary converge to zero within 60 quarters (15 years). These are then confirmed
in the implied IRFs of the calibrated model, where both these responses converge to zero within 12 to 16 quarters. See, e.g.,
Figure A.5). Thus, these values are large enough that, but small enough that the state space representation is not too large
(90×90). Additionally, I solve the model also with Tu=40 and Tv=20, obtaining identical results. In that sense, Tu=60
and Tv =30 are conservative choices that allow for longer truncations, but these turn out to be unnecessary. Beyond the
benchmark model, I set Tu=40 and Tv=20 across some of the robustness exercises in Appendices L and M.

49



where

HKj
=(1−αKj

)



∆ψq,u,0

...
∆ψq,u,Tu

0
...
0


+αK



∆ψKj ,u,0

...
∆ψKj ,u,Tu

ψKj ,v,0

...
ψKj ,mv,Tv


(J.53)

Note that this integrated MA truncation is only inaccurate because it implicitly assumes that ∆ψK,u,τ =

0,∀τ ≥Tu+1 and ψK,v,τ =0,∀τ ≥Tv+1. But since these coefficients are square summable, for large
enough Tu and Tv, we know that (∆ψK,u,τ )

∞
τ=Tu

,(ψK,v,τ )
∞
τ=Tv

are arbitrarily small and close to zero.
Moreover, one subtlety here is that by differencing out the lag polynomials, we have pushed the unit

root of the process to the state space itself (as captured by the fact that the matrixA now has an eigenvalue
on the unit circle). Accordingly, the unconditional covariance matrix of U t

j,k is now unbounded, which
might undermine the accuracy of this approximation. However, the key is to recognize that this approx-
imation only needs to be accurate from the perspective of a firm that takes the process of its ideal price as
given and solves its rational inattention problem. Such a firm does not evaluate the variance-covariance
matrix of theU t

j,k unconditionally, but rather conditional on their information set. It is then straightforward
to see that a covariance matrix that is growing unboundedly cannot be an optimal choice for firms in equi-
librium, as it would mean that their losses from mispricing grow unboundedly with time. However, since
the cost of attention is only logarithmic in the determinant of this covariance matrix, as uncertainty gets
larger, the marginal cost of reducing that uncertainty becomes arbitrarily smaller for the firm. So it must
be that the equilibrium covariance matrix forU t

j,k is bounded and the approximation above is accurate.69

So the fixed point problem boils down to finding the finite sequences (∆ψK,u,τ )
Tu
τ=0,(ψK,v,τ )

Tv
τ=0,

which we can solve using the following algorithm:

Algorithm 1 (Solving the Model with Integrated MA Approximation). For a givenK∈Supp(K):
1. Start with a guess for (∆ψK,u,τ )

Tu
τ=0,(ψK,v,τ )

Tv
τ=0 (at iteration 0, set them equal to their values under

rational expectations with full information: ∆ψK,u,τ =ρ
τ and ψK,v,τ =0).

2. Form matrices A, Q, and HK using Equations (J.51) and (J.53). Solve the rational inattention
problem of the firm in Equation (J.19) using the method in Afrouzi and Yang (2019).

3. Using the solution to the dynamic rational inattention problem, find the stationary pair (Σj,−1,Σj,0)

69See also the discussion in Section 4.4 of Maćkowiak et al. (2018). In that paper, the dual rational inattention problem
is studied where the capacity of processing information κ is exogenous. Therefore, an additional condition is that κ needs
to be large enough. Here, since we are considering the problem where the firm also chooses κ endogenously, it is then implied
that the equilibrium κ would be such that equilibrium beliefs are finite; otherwise, firms are making unboundedly large losses
in profits from mispricing, which cannot be an optimal choice of κ. For the simplest working example, see also the simple
pricing model in Afrouzi and Yang (2019) which assume that the nominal GDP process is a random walk, and shows that
the equilibrium beliefs of firms are bounded above by a reservation uncertainty level. More generally, the proofs provided in
that paper for the characterization of stationary covariance matrices go through when A has an eigenvalue on the unit circle.
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and the implied Yj , Λj and σ2
e,j to construct the time-invariant IRFs of a firm’s optimal price with

respect to shocks in Equations (J.27) and (J.28).
4. Use Equations (J.38) and (J.39) to derive the implied (ψK,u,τ )

Tu
τ=0,(ψK,v,τ )

Tv
τ=0.

5. Update the guess for (∆ψK,u,τ )
Tu
τ=0,(ψK,v,τ )

Tv
τ=0 using the implied values from Step 4 and repeat

the process in Steps 1 to 5 until convergence.
6. Once the fixed point is found for all K ∈ Supp(K), construct the aggregate IRFs of prices and

output using Equations (J.41) and (J.42).

Implementation in the Replication Package. To conclude this section, I briefly discuss how Algorithm 1
is implemented in the replication package of the project. The code in the replication package is automated
to produce all model-based results through the single file ./main.m. In particular, lines 19 to 32 of this
file are switches that take values ’Y’ (yes) or ’N’ (no) that determine whether the user wants to replicate
a particular result. Each switch, when set to ’Y’, then calls a particular part of the ’main.m’ file that sets
up the parameters, solution method options, as well as simulation and calibration options when required
and dispatches the proper internal functions to solve, simulate and calibrate the respective model.

Specifically, the replicate.Calibrate_Benchmark switch replicates the solution, simulation,
and calibration of the benchmark model using Algorithm 1. The two files that implement the solution
of the model using this algorithm are ./codes/matlab/solve_models_int_ma.m as well as the
accompanying file ./codes/matlab/solve_model_int_ma.m. To briefly describe what each of these
functions does, the file solve_model_int_ma.m solves the model for a given set of parameters using
Algorithm 1. This file is exclusively called by solve_model_int_ma.m, which takes an array of values
ofK∈Supp(K) as well as other parameters (e.g., multiple values ofω) and dispatches multiple instances
of the first file for parallel computation in order to solve several models simultaneously. A key observation
about Algorithm 1 is that it requires simultaneous convergence of the DRIPs.m algorithm of Afrouzi and
Yang (2019) (this happens in Step 3 of the algorithm when we find the matrices Yj,Σj,−1,Σj,0,σ

2
e,j given a

guess for the coefficients of lag polynomials) as well as the convergence of the lag polynomials themselves
(which happens in Step 5). It turns out that doing these sequentially is computationally expensive, so in
the solve_model_int_ma.m, I further parallelize the convergence of these objects using the following
procedure: for every guess of the coefficients of the lag polynomials, I only do a small number of
iterations in the DRIPs.m package (10 iterations) but augment the convergence error of the rational
inattention problem to the convergence of Algorithm 1 (this is returned automatically by the DRIPs.m

package as ri.ss.err). Then, I compute the implied coefficients for the lag polynomials in an inner
loop. The algorithm confirms convergence when all convergence errors are small; i.e., both ri.ss.err

and the difference between the coefficients of the lag polynomials in two consecutive iterations are
jointly smaller than a given tolerance level. With this approach, the algorithm avoids solving the dynamic
rational inattention problem fully for every wrong guess of the coefficients for the lag polynomials, but
once everything converges, it is implied that the rational inattention problem is also solved properly.
This updated algorithm is very fast in solving the problem, which is necessary for solving the model
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with high precision for a large number of values ofK∈Supp(K) and ω’s required for calibration.
Once the model is solved for a given ω and allK∈Supp(K), solve_models_int_ma.m returns a

structure containing all the impulse response functions of the model for different values ofK as well
as the IRFs of aggregate inflation and aggregate output. The file ./codes/matlab/simulate.m then
simulates the model for a large number of firms and computes their forecasts and nowcasts of inflation
over a time series of length T , burns some initial periods, and generates two cross-sections of firms’
expectations, similarly apart in time according to the survey evidence I use to calibrateω. It then adds this
simulated dataset to the solution structure of the model and returns this augmented structure. The function
./codes/matlab/calib_eval.m then runs the regression for the calibration of ω in the simulated data
and calculates the model implied moment. It then computes the distance between this simulated
moment and its equivalent from the data in Table 3 and returns the quadratic difference between the two.
Finally, the function ./codes/calibrate.m automates the procedure of minimizing this calibration
loss function to find the value of ω that minimizes the distance between the data simulated moment and
its empirical counterpart using a Nelder-Mead optimization algorithm. To confirm identification, I then
resolve the model on a grid of ω’s around the optimized value of ω and plot the simulated and empirical
moments as a function of ω in Figure A.3 to show that (1) the empirical moment is informative of ω in
the model and (2) the value of ω returned by the Nelder-Mead algorithm matches this moment well.

Finally, it is worth noting that in order to standardize the initial guesses for ω across different models
and parameter values, I use the following change of variables in the code. Recall the dynamic rational
inattention problem of a firm in Equation (J.19):

max
{Σj,t|t≿0}t≥0

−1

2

∞∑
t=0

[
Bjtr(HjH

′
jΣj,t|t)+ωln

(
|Σj,t|t−1|
|Σj,t|t|

)]
(J.54)

s.t. Σj,t+1|t=AjΣj,t|tA
′
j+σ

2
uQjQ

′
j, ∀t≥0 (J.55)

Σj,t|t−1−Σj,t|t≿0 ∀t≥0, Σ0|−1≡Var(ξj,k,0|S−1
j,k ) (J.56)

When coding this problem, I utilize the following change of variables: ω̃ ≡ ω
B∞σ2

u
where B∞ =

limKj→∞Bj from Equation (28), Σn
j,t|t ≡Σj,t|t/σ

2
u, and Σn

j,t|t−1 ≡Σj,t|t−1/σ
2
u. It then follows that the

problem can be written as

max
{Σn

j,t|t≿0}t≥0

−Bjσ
2
u

2

∞∑
t=0

[
tr(HjH

′
jΣ

n
j,t|t)+ω̃

B∞

Bj

ln

(
|Σn

j,t|t−1|
|Σn

j,t|t|

)]
(J.57)

s.t. Σn
j,t+1|t=AjΣ

n
j,t|tA

′
j+QjQ

′
j, ∀t≥0 (J.58)

Σn
j,t|t−1−Σn

j,t|t≿0 ∀t≥0, Σn
0|−1≡Var(ξj,k,0|S−1

j,k )/σ
2
u (J.59)

This is a normalized version of the problem that harmonizes the solution across different parameter
values for optimization over ω̃. Once I have solved this problem for a given set of parameters including
ω̃, I then recover ω=σ2

uB∞ω̃, Σt|t−1=σ
2
uΣ

n
t|t−1 and Σt|t=σ

2
uΣ

n
t|t.
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J.4. Robustness: ARMA Approximation

In this section, I discuss the robustness of the integrated MA truncation approach to an ARMA approx-
imation of the state space representation, as in Maćkowiak et al. (2018). The conclusion is that for the
values of Tu and Tv that I use in the paper, the results of the integrated MA truncation are numerically
identical to an ARMA approximation.

To briefly summarize the robustness of results to this alternative approximation, the maximum
distance between the output and inflation IRFs to a 100 basis points monetary shock, averaged across
all values ofK in the model, are only 0.37 and 0.13 basis points, respectively.70 Figure J.1 also shows
the IRFs of output and inflation for three different values ofK across two methods and confirms visually
that these impulse responses obtained from the two algorithms appear identical.

Furthermore, Tables J.1 to J.3 present the analogs of Tables 4 to 6 in the main text, under this section’s
ARMA approximation. The results are numerically identical to the results of the integrated MA truncation
in Tables 4 to 6. Therefore, the results of the paper are robust to this alternative solution method.

The rest of this section describes the details of the ARMA approximation, presents an algorithm for
solving the model under this approximation, and concludes with a discussion of how this algorithm is
implemented in the replication package of the paper.
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Figure J.1: IRFs under Integrated MA Truncation and ARMA Approximation Solution Methods

Notes: For different values of K under the benchmark calibration of the model, the figure plots the impulse response of output
(top panel) and inflation (bottom panel) to a 1% expansionary monetary policy shock under the integrate MA truncation
of Algorithm 1 (left panel) and the ARMA approximation of Algorithm 2 (right panel).

70This is the average number across sectors with different K. Alternatively, instead of calculating the mean of these
maximum differences across different values of K, we can measure the maximum value of these maximum differences,
which is the total upper bound for the differences between IRFs generated by the two algorithms. For a 100 basis points
monetary shock, this max-max distance is 0.26 basis points for inflation and 0.70 basis points for output.
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Table J.1: Output and Monetary Non-Neutrality Across Models (Robustness to ARMA Approximation)

Variance Persistence
Model var(Y) ×104 amp. factor half-life qtrs amp. factor

(1) (2) (3) (4)
Monopolistic Competition 3.17 1.00 3.41 1.00
Benchmark K∼K̂ 4.07 1.28 3.71 1.09
2-Competitors K=2 4.69 1.48 4.12 1.21
4-Competitors K=4 4.14 1.30 3.79 1.11
8-Competitors K=8 4.00 1.26 3.62 1.06
16-Competitors K=16 3.94 1.24 3.58 1.05
32-Competitors K=32 3.92 1.23 3.56 1.04
∞-Competitors K→∞ 3.89 1.23 3.55 1.04

Notes: The table presents the analog of Table 4 (which was computed using the integrated MA approximation) for monetary
non-neutrality across models with different numbers of competitors under the ARMA approximation of Appendix J.4.
Results are numerically identical across the two tables with minute third digits differences in Columns (3) and (4).

Table J.2: Inflation Across Models (Robustness to ARMA Approximation)

Variance Persistence
Model var(π) ×104 damp. factor half-life qtrs amp. factor

(1) (2) (3) (4)
Monopolistic Competition 1.47 1.00 4.42 1.00
Benchmark K∼K̂ 1.37 0.94 4.66 1.05
2-Competitors K=2 1.28 0.87 4.83 1.09
4-Competitors K=4 1.36 0.93 4.68 1.06
8-Competitors K=8 1.39 0.95 4.64 1.05
16-Competitors K=16 1.40 0.95 4.62 1.05
32-Competitors K=32 1.41 0.96 4.62 1.05
∞-Competitors K→∞ 1.41 0.96 4.61 1.04

Notes: The table presents the analog of Table 5 (which was computed using the integrated MA approximation) for inflation
response across models with different numbers of competitors under the ARMA approximation of Appendix J.4. Results
are numerically identical across the two tables.

Table J.3: Strategic Inattention vs. Real Rigidities (Robustness to ARMA Approximation)
Percentage change

in variance of
output inflation

(1) (2)
Total Change (percent) 18.6 -9.7
Due to Str. Inattention (ppt) 78.6 -19.8
Due to Real Rigidities (ppt) -60.0 10.1

Notes: The table presents the analog of Table 6 (which was computed using the integrated MA approximation) for the
decomposition of the effects of the strategic inattention and real rigidity channels for the change in volatility of output
(monetary non-neutrality) and inflation conditional on monetary shocks under the ARMA approximation of Appendix J.4.
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Solving the Model using an ARMA Approximation. To briefly discuss the main concern that leads to
this exercise, note that if inflation or output have very persistent responses, the integrated MA truncation
approach could possibly fail to capture these persistent effects. A solution for this, as proposed in
Maćkowiak et al. (2018), is to approximate the implied IRFs of the inflation and output process with
an ARMA process rather than an MA process to allow for such potential persistent effects to be captured
by the AR coefficients.

To do so, I construct the following alternative state space representation. First, recall from Equa-
tion (J.43) that:

p∗j,k,t=x
u
Kj ,t

+xvj,k,t (J.60)

where xuKj ,t
and xvj,k,t are the projection of firm j,k’s ideal price on the monetary and mistake shocks,

respectively. The main issue, as discussed in the previous section, is that xuKj ,t
has a unit root and we

want to have a state space representation that approximates this process properly. To do so, we start by
doing an ARMA approximation of ∆xuKj ,t

. Since xuKj ,t
has exactly one unit root (as discussed above),

∆xuKj ,t
is a stationary process and can be approximated arbitrarily well with an ARMA(p,q) process

(Han et al., 2022; Maćkowiak et al., 2018):

∆xuKj ,t
≈

p∑
i=1

ϕj,i∆x
u
Kj ,t−i+

q∑
i=0

θj,iut−i ⇐⇒∆xuKj ,t
≈(1−

p∑
i=1

ϕj,iL
i)−1

q∑
i=0

θj,iL
iut (J.61)

To implement this into Algorithm 1, I use the state-space representation for ARMA(p,q) processes
proposed by (Hamilton, 1994, Ch. 13, p. 375, Equations 13.1.21-23) whose dimension is given by
r=max{p,q+1}. In particular, (Hamilton, 1994, Ch. 13) defines:

ξj,t≡(1−
p∑

i=1

ϕj,iL
i)−1ut =⇒ (1−

p∑
i=1

ϕj,iL
i)ξj,t=ut (J.62)

which implies that

∆xuKj ,t
=

q∑
i=0

θj,iL
iξj,t=

q∑
i=0

θj,iξj,t−i (J.63)

Now, in matrix form, following note that ξj,t can be represented by defining:

ξ⃗j,t≡



ϕj,1 ϕj,2 ϕj,3 ... ϕj,r

1 0 0 ... 0

0 1 0 ... 0
...

... . . . . . . 0

0 0 0 1 0


ξ⃗j,t−1+



1

0

0
...
0


ut (J.64)

and noticing that

∆xuKj ,t
=(θj,0,θj,1,...,θj,r)·ξ⃗j,t (J.65)

where we interpret ϕj,i=0 for i>p and θj,i=0 for i>q.
Finally, note that the rational inattention problem requires a state space representation for xuj,t and
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not ∆xuj,t, but note that once we have a ARMA(p,q) state space representation for the former, we can
derive an ARIMA(p,1,q) state space representation for the latter using the following modification:

(1−
r∑

i=1

ϕj,iL
i)∆xuj,t=

q∑
i=0

θj,iut =⇒ (1−
r∑

i=1

ϕj,iL
i)(1−L)xuj,t=

q∑
i=0

θj,iL
iut (J.66)

=⇒ (1−(1+ϕj,1)L−
p−1∑
i=2

(ϕj,i−ϕj,i−1)L
i+ϕj,iL

i+1)xuj,t=

q∑
i=0

θj,iL
iut

(J.67)

or, in matrix form, if we define Ξu
j,t as:

Ξu
j,t≡



1+ϕj,1 ϕj,2−ϕj,1 ... ϕj,r−ϕj,r−1 −ϕj,r

1 0 ... 0 0

0 1 ... 0 0
...

... . . . ... 0

0 0 0 1 0


︸ ︷︷ ︸

Aj,u

Ξj,t−1+



1

0

0
...
0


︸ ︷︷ ︸

Qu

ut (J.68)

where I have indexedAj with j to emphasize that the coefficients ϕj,i depend on the lag polynomials
of sector j’s prices and will vary withKj . Moreover, once we have this state space representation, we
can recover xuKj ,t

as:

xuKj ,t
=(θ0,θ1,...,θr)︸ ︷︷ ︸

≡Hj,u

·Ξu
j,t (J.69)

where θj,i ≡ 0 for i > q. This also implies once we adopt the (Hamilton, 1994, Ch. 13) state space
representation for ∆xuKj ,t

and fix the dimension of the state vector Ξj,t, which is max{p+1,q+1}, we
can set r=p=q to take the most advantage of the ARMA approximation (i.e., for a given choice of r=p,
if we set q<p then we are forcing some MA coefficients to be 0, whereas they could help with a better
fit if we leave them unrestricted.)

Finally, as for the projection of ideal prices on other firms’ mistakes, noting that xvj,k,t is already a
stationary process that is transitory due to the i.i.d. nature of signal noises, we can continue to approx-
imate it with an MA(Tv) process as in Equation (J.50). Thus, the state space representation of the model
(under an AR(I)MA approximation of the monetary block) is given by:

U t
j,k≡

[
Ξj,t

V t
j,−k

]
=

[
Aj,u 0(r+1)×Tv

0Tv×(r+1) Av

]
︸ ︷︷ ︸

≡Aj

U t−1
j,k +

[
Qu 0(r+1)×1

0Tv×1 Qv

]
︸ ︷︷ ︸

≡Q

[
ut

vj,−k,t

]
(J.70)

with the following implied approximation for p∗j,k,t:

p∗j,k,t=H
′
jU

t
j,k whereH ′

j=(θj,0,θj,1,...,θj,r,αjψKj ,v,0,...,αjψKj ,v,Tv) (J.71)

Thus, we can modify Algorithm 1 to solve the model with AR(I)MA approximation of the state space
representation as follows:
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Algorithm 2 (Solving the Model with ARMA Approximation). For a givenK∈Supp(K):
1. Start with a guess for (∆ψK,u,τ )

Tu
τ=0,(ψK,v,τ )

Tv
τ=0 (at iteration 0, set them equal to their values

under rational expectations with full information: ∆ψK,u,τ = ρτ and ψK,v,τ =0). Compared to
Algorithm 1, choose Tu to be large.71

2. Approximate (∆ψK,u,τ )
Tu
τ=0 with an ARMA(r,r) process (here I use the ’z-Tran’ package of Tan

and Wu (2023) to do so, which I describe in more detail below). Choose r to be large enough that
the approximation is accurate (I find r=5 is more than sufficient and use this value).

3. Given the ARMA approximation from the previous step, form the state space representation
for xuj,t and xvj,k,t from Equations (J.50) and (J.68). Then, form matrices Aj , Q, and Hj using
Equations (J.70) and (J.71). Solve the rational inattention problem of the firm in Equation (J.19)
using the method in Afrouzi and Yang (2019).

4. Using the solution to the dynamic rational inattention problem, find the stationary pair (Σj,−1,Σj,0)

and the implied Yj , Λj , and σ2
e,j , construct the time-invariant IRFs of a firm’s optimal price with

respect to shocks in Equations (J.27) and (J.28).
5. Use fixed point Equations (J.38) and (J.39) to derive the implied (ψK,u,τ )

Tu
τ=0,(ψK,v,τ )

Tv
τ=0.

6. Update the guess for (∆ψK,u,τ )
Tu
τ=0,(ψK,v,τ )

Tv
τ=0 using the implied values from Step 5 and repeat

the process in Steps 1 to 6 until convergence.
7. Once the fixed point is found for all K ∈ Supp(K), construct the aggregate IRFs of prices and

output using Equations (J.41) and (J.42).

Implementation of Algorithm 2 in the Replication Package. The file solve_model_arima.m in
./matlab/codes/ folder solves the model for a given set of parameters using Algorithm 2 and is
called by ./codes/matlab/solve_model_arima.m, which takes an array of values ofK ∈Supp(K)

as well as other parameters (e.g., multiple values of ω) and dispatches multiple instances of the first
file for parallel computation. ./codes/matlab/solve_model_arima.m has a similar structure to
./codes/matlab/solve_model_int_ma.m, with the exception that when constructing the state space,
instead of the integrated MA state space, it calls another internal function, arima_approx.m, that
performs the ARMA(r,r) approximation described above, and constructs the ARIMA representation
in Equation (J.68). It then returns the matrices Aj,u,Hj,u and Qu. The matrices are then augmented
according to Equation (J.71) after which the rest of the algorithm proceeds as in Algorithm 2 to solve
the rational inattention problem using the DRIPs.m package of Afrouzi and Yang (2019).

As for the ARMA(r,r) approximation, I use the ’z-Tran’ package of Tan and Wu (2023) that is
based on theoretical results from Han et al. (2022), which shows that ARMA processes are dense among
stationary processes of the type that we seek to approximate and offers an approximation result. Within
arima.m, ’z-Tran’ is called through its ’eval’ and ’varma.fit’ functions, which take as input a

71For this algorithm, I choose Tu=100 quarters, thus conjecturing that any effects of monetary policy shocks on inflation
and output should die out and converge to zero within 25 years. I confirm this is true in the solution of the calibrated model:
the IRFs of inflation and output are zero after around 12 to 15 quarters (3 to 4 years), as shown in Figure A.5.
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vector of coefficients of the lag polynomials (IRFs) of the process and returns the coefficients of the
approximated ARMA process.

K Analytical Decomposition of Strategic Inattention vs. Real Rigidities in
the Static Model

The analytical framework of the static model with endogenous capacity in Section 2.4 provides an
appropriate framework to discuss the interaction of the strategic complementarity channel with the
strategic inattention channel. In particular, recall from Equation (5) that in a symmetric equilibrium, the
average price across oligopolies withK competitors, pK , is given by δKq where

δK=
(1−αK)λK
1−αKλK

(K.1)

where we have now indexed δ, α and λwithK to emphasize that in the micro-founded model, all three
of these objects vary with the number of firms in the oligopoly: αK depends onK through the demand
structure, as derived in Equation (24), while λK depends onK both through the micro-foundations of
the curvature of the profit functionBK , as in Equation (28), as well as through the equilibrium forces
as shown in Proposition 4.

Now, defining output of sectors withK competitors as the difference between nominal demand and
their average price, yK=q−pK , it follows that the response of output to the monetary shock q is given
by 1−δK . Thus,

∂yK/∂q=1−δK=
1−λK

1−αKλK
(K.2)

Therefore, the question of how monetary non-neutrality changes withK maps to how 1−δK varies with
K. In particular, differentiating Equation (K.2) with respect to K formalizes the role of the strategic
complementarity and the strategic inattention channels in determining the response of output to monetary
policy:

∂K(∂yK/∂q)=
(1−λK)λK
(1−αKλK)2

∂KαK︸ ︷︷ ︸
Channel A: Strategic Complementarity

− 1−αK

(1−αKλK)2
∂KλK︸ ︷︷ ︸

Channel B: Strategic Inattention

(K.3)

This decomposition shows that (a) fixing λK , a higher αK increases monetary non-neutrality (Channel
A), and (b) fixing αK , a higher λK decreases monetary non-neutrality (Channel B). Thus, the question
of how monetary non-neutrality is affected byK boils down to how αK and λK vary withK.

Elasticities of αK and λK with respect to K. The question of how αK moves with K is related to
how demand elasticities vary with firms’ market shares, as discussed in Section 4.2 and Equation (24)
(See also Appendix F.2 for how αK and BK depend on the curvature of a general profit function, or
Appendix G for the form of αK under a Kimball aggregator).

How λK moves withK, however, is more complex because it depends on the endogenous attention
strategy of firms. As discussed in Section 2.4 and in particular Equations (9) and (10), in a symmetric
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equilibrium with strictly positive capacity,

λK=λK(ω/BK ,V
∗
K)=1− ω

BKV ∗
K

(K.4)

where V ∗
K=V ∗(ω/BK ,αK ,K) itself depends on parametersK,BK and λK . Thus,

∂KλK=(1−λK)(∂ln(BK)+∂K ln(V
∗
K)) (K.5)

where the first term is the direct effect of how the curvature of firms’ profit function changes withK. As
shown in Equation (28) and derived in Appendix F.2, for a general demand structure, this term depends
on the demand elasticity εKD and on the pass-through 1−αK : BK =

εKD
1−αK

where εKD is the demand
elasticity of a firm with K competitors. Note that the curvature of the profit function, BK , increases
with the demand elasticity and the degree of strategic complementarity itself. Thus, independent of its
direct effect on firms’ prices, strategic complementarity also has an impact on firms’ strategic inattention
through the curvature of their profit functions:

∂K ln(BK)= ∂K ln(ε
K
D)︸ ︷︷ ︸

change in elasticity w.r.t. K

+
1

1−αK

∂KαK︸ ︷︷ ︸
change in pass-through w.r.t. K

(K.6)

As for the second term in Equation (K.5), it captures the equilibrium effects ofBK ,αK , andK on the
prior variance of firms’ ideal prices, V ∗, which is characterized in Appendices C.5 and C.6.

Now, plugging Equations (K.5) and (K.6) into Equation (K.3), we get at the following decomposition
for the total effect ofK on monetary non-neutrality through Channels A and B:

∂K(∂yK/∂q)=
(1−λK)λK
(1−αKλK)2

∂KαK︸ ︷︷ ︸
Channel A

−

pass-through on BK︷ ︸︸ ︷
1−λK

(1−αKλK)2
∂KαK−

(1−αK)(1−λK)
(1−αKλK)2

[elasticity on BK︷ ︸︸ ︷
∂K ln(ε

K
D) +

V ∗
K on λK︷ ︸︸ ︷

∂K ln(V
∗
K)
]

︸ ︷︷ ︸
Channel B

(K.7)

To unpack this decomposition,K affects monetary non-neutrality through three objects. First, it affects
results through how αK changes withK, which shows up in both Channels A (the real rigidity channel)
and B (by affecting strategic inattention of firms through the curvature of profit function). Second,K also
affects the results through how it changes the elasticity εKD , which shows up in Channel B by affecting
the curvature of firms’ profit function. Finally,K also affects monetary non-neutrality by changing V ∗

K ,
which is an equilibrium object and itself depends onK,BK and αK .

First-Order Effects ofK on Monetary Non-Neutrality. To investigate Equation (K.7) analytically,
let us do a Taylor expansion of Equation (K.7) around ω/B=0, as discussed in Section 2.4 and derived
in Appendix C.8. In particular, to simplify the expressions above, let us consider the first order effects
of ω by using the results from Appendix C.8 and pluggingBK=

εKD
1−αK

, in which case:

59



∂K(∂yK/∂q)=
ω

εKD(1−αK)
∂KαK︸ ︷︷ ︸

Channel A (first-order effects of ω)

−

pass-through on BK︷ ︸︸ ︷
ω

εKD(1−αK)
∂KαK−

ω

εKD

elasticity on BK︷ ︸︸ ︷
∂K ln(ε

K
D)︸ ︷︷ ︸

Channel B (first-order effects of ω)

+O(∥ ω

BK

∥2) (K.8)

=− ω

εKD
∂K ln(ε

K
D)︸ ︷︷ ︸

total first-order effect

+O(∥ ω

BK

∥2) (K.9)

where O(∥ω∥2) contains the second order terms, including the effect ofK on V ∗
K . It is important to note

that the two effects of αK cancel out up to first order: fixing capacity, a higher αK increases monetary
non-neutrality through the real rigidity channel (Channel A). However, with endogenous capacity, this
effect is offset up to first order as a higher αK also increases the curvature of firms’ profit functions and
motivates firms to pay more attention to the fundamental shocks.

Thus, the total first-order effect of how K affects the response of output to the monetary shocks
depends only on how the demand elasticity changes withK. Everything else, including ∂αK/∂K, is of
higher order in ω, which I discuss more below. As for how demand elasticity changes withK, the theory
predicts that firms with more competitors have higher elasticities, and lower markups. For instance,
Atkeson and Burstein (2008)’s model implies that demand elasticity should decrease with market share
and increase with K (recall that market share in the symmetric equilibrium is 1/K). There is also
empirical evidence for this prediction (for recent evidence, see, e.g., Burstein, Carvalho, & Grassi, 2020;
Burya & Mishra, 2023). Therefore, given the positive sign of ∂K ln(εKD), we arrive at the conclusion that,
for a general demand structure, strategic inattention channel dominates the real rigidity channel up to
first order in ω, and thus monetary non-neutrality decreases withK up to first order in ω.

This result hinges on the fact that while ∂K/αK has first-order effects on both Channels A and B,
these first-order effects are perfectly symmetric and cancel out. This, of course, raises two questions:
(1) why is the effect of αK on monetary non-neutrality second-order? and (2) what would dampen the
effect of Channel B or even make Channel A dominate?

The answer to the first question is that firms’ endogenous capacity is maximally sensitive to changes
in αK . In other words, with a larger αK they increase their information processing capacity so much that
it offsets its real rigidity effects. Thus, to break this result, we would need firms to be less responsive in
their choice of capacity to changes in the curvature of their profit functions. Moreover, since the benefit
of choosing a higher λK is derived under a general demand structure and only assumes differentiability of
demand, the answer to the second question must rely on the structure of the cost of attention. In particular,
the extent to which λK responds to the higher curvature introduced byαK is regulated by the assumptions
on the curvature of the cost of attention. The baseline assumption of the rational inattention literature
that the cost of attention is linear is Shannon’s mutual information (i.e., linear in κK), which is the cost
function in this paper as well. This is therefore the key assumption that delivers the strong response of
λK to an increase in αK . Thus, to eliminate the dominance or generally dampen the strength of Channel
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B, one needs to introduce convexity to the cost of information function to dampen the responsiveness
of firms to changes in the benefits of information acquisition.

Theoretical and empirical research on the convexity of information costs in rational inattention
models is sparse. Nonetheless, the little evidence that we have suggests that the linear cost seems to be
a better fit to the data than convex costs. For instance, (Afrouzi & Yang, 2021) show that in a dynamic
problem, higher convexity of the cost function in Shannon’s mutual information translates to more
“smoothing” of Kalman gains over time. However, in the New Zealand survey, learning is lumpy as firms
do not acquire information until they need it, indicating that the linear cost fits better with the evidence.

L Dynamic Model with Atkeson and Burstein (2008) Preferences
In this section, I solve the dynamic model where strategic complementarity decreases with K. In
particular, I adopt the following preferences based on Atkeson and Burstein (2008):

Ct≡
(
J−1
∑

j∈JC
σ−1
σ

j,t

) σ
σ−1

, Cj,t≡
(
K−1

j

∑
k∈Kj

C
η−1
η

j,k,t

) η
η−1

(L.1)

where σ<η so that goods within oligopolies are closer substitutes than goods across oligopolies. The
preferences in the benchmark model correspond to the special case where σ ↓ 1. It follows that the
demand elasticity of firm j,k is given by

εDj,k,t=σmj,k,t+η(1−mj,k,t) (L.2)

wheremj,k,t is the market share of firm j,k in period twithin oligopoly j as in Equation (22). To obtain
the expression for strategic complementarity in this case, we can again differentiate the best response
of the firm, similar to Equation (23), to get

αγ=0
j,k,t=

(1−η−1)mj,k,t

σ−1
η−σ

(1+mj,k,t+
σ
η

m2
j,k,t

1−mj,k,t
)+1

(L.3)

We can then proceed to derive the equivalent of the approximate rational inattention problem of the firms
(Equation (26)) in this setting as:

max{κj,k,t,Sj,k,t,pj,k,t(S
t
j,k)}t≥0

−rsjE
[∑∞

t=0β
t
(1
2
Bj(pj,k,t(S

t
j,k)−p∗j,k,t)2︸ ︷︷ ︸

loss from mispricing

+ ωκj,k,t︸ ︷︷ ︸
cost of capacity

|S−1
j,k

)]
(L.4)

s.t. p∗j,k,t≡(1−αj)qt+αjpj,−k,t(Sj,−k,t)

I
(
Sj,k,t,(qτ ,pl,m,τ (S

τ
l,m))

(l,m)̸=(j,k)
0≤τ≤t

)
≤κj,k,t, St

j,k=S
t−1
j,k ∪Sj,k,t, S−1

j,k given.

where

αj=
(1−η−1)K−1

j

σ−1
η−σ

(1+K−1
j + σ

η

K−2
j

1−K−1
j

)+1
, Bj=

εDj
1−αj

=
(η−σ)(η−1)(1−K−1

j )K−1
j

σ−1+(η−σ)(1−K−1
j )

+η−(η−σ)K−1
j

(L.5)
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Having characterized this problem, we can then use the same solution method to solve the model and
obtain the equilibrium processes for the prices of all sectors. As before we let pk,t =Ej[pj,t|Kj = k]

denote the average log-price implied by this solution across sectors with k competitors. The only
difference is how we would compute the output of sectors since the elasticity of substitution across
sectors (σ) is now potentially larger than 1. To do this, we only need to use the total demand function
of sectors which for any j is given by:

Yj,t=Yt(Pj,t/Pt)
−σ⇒yj,t=yt−σ(pj,t−pt) (L.6)

where Yt is the aggregate output, Pt is the aggregate price index and small letters denote log deviations
from the steady state. Using the fact thatQt=PtYt we can then calculate the average output of sectors
with k competitors as:

yk,t≡Ej[yj,t|Kj=k]=qt+(σ−1)pt−σpk,t=σ(qt−pk,t)−(σ−1)yt (L.7)

To calibrate the values of η and σ in the model, I use the following relationship between markups
and the number of competitors in the model:

µK=
η−(η−σ)K−1

η−1−(η−σ)K−1
⇒1/(µK−1)=σ−1+(η−σ)(1−K−1) (L.8)

I then use the survey question that asks firms about their average markups (see the discussion of Table I.1)
as well as the survey question that asks about the number of their competitors to generate the variables
1/(µi−1) and 1−K−1

i where i denotes a firm in the survey. I then regress 1/(µi−1) on 1−K−1
i . Ac-

cording to the relationship derived from the model, the constant of this regression in Column (2)—which
is 1.74—should give us σ−1 and the coefficient on 1−K−1

i —which is 3.4—should give us (η−σ) as
shown in Table L.1. The resulting values are σ=2.74 and η=6.14. Moreover, to ensure that strategic
complementarity is decreasing inK, I assume that γ=0. Given these values of σ, η, and γ, the strategic
complementarity in this model decreases withK from 0.22 atK=2 to 0 asK→∞.72 As for the other
parameters, I calibrate them to the same moments in Table 3. In particular, I choose ω in each model
to match the coefficient in Table A.2.

Table L.2 shows the results from this exercise for output and inflation responses. Column (2) shows
monetary non-neutrality decreases withK even though αK decreases withK. For instance, the output
response is 2.06 times larger in duopolies relative to the monopolistic competition benchmark and this
amplification factor declines as K increases. Consistently, Column (6) shows that inflation is more
responsive to monetary shocks asK increases. This is consistent with the analytical decomposition in
Equation (34), which showed that monetary non-neutrality should decrease withK, independent of the
sign of ∂KαK , as long as demand elasticities are decreasing inK, which is the case in this model.

Moreover, even though decreasing αK dampens the response of information processing capacity by
reducing the curvature of firms’ profit functions, Figure L.1 shows that it is still the case that firms with

72As discussed in Section 4.2, with γ=0, the model cannot match the levels of strategic complementarity documented
in the survey data. However, since our goal is to compare output responses in different sectors with different values of K,
the key feature of interest is to parameterize the model such that strategic complementarity decreases with K.
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Table L.1: Calibration of η and σ

(1) (2)
1/(µ−1) 1/(µ−1)

1−K−1 2.629 (0.337) 3.405 (0.335)
Manufacturing -1.046 (0.183)
Professional and Financial Services -2.315 (0.181)
Trade -0.599 (0.189)
Other 0.578 (1.220)
Constant 1.126 (0.303) 1.746 (0.309)
Observations 3152 3152
Standard errors in parentheses

Notes: Column (1) of the table shows the results of the regression of 1/(µi−1) on 1−K−1
i in the first wave of the survey

from Coibion et al. (2018). Column (2) reports the result of the same regression while controlling for industry fixed effects
shown in the table. The constant of the regression corresponds to σ− 1 in the model while the coefficient on 1−K−1

i

corresponds (η−σ).

largerK produce more capacity and allocate more of it towards aggregates. However, the slope of the
increase is much smaller than the benchmark model. Again, the analytical decomposition of the response
of capacity in Equation (33) sheds light on this result. The curvature of the profit function is affected by
both the sign of ∂KαK and the sign of ∂K ln(εKD). Even though a negative ∂KαK reduces capacity withK,
this effect is dominated by the increase in the curvature of the profit function due to a positive ∂K ln(εKD).

Moreover, Table L.3 shows the decomposition of the change in monetary non-neutrality to the
strategic inattention and real rigidity channels as derived in Equation (31). This table shows that (1) with
decreasing strategic complementarities, both channels move in the same direction and reduce monetary
non-neutrality and (2) the share of the strategic inattention channel is smaller because the decreasing
strategic complementarities dampen the curvature of the profit function and reduce the response of
capacity to monetary shocks. This also can be seen analytically in the static model and in particular in
the discussion of Equation (34).

It is also worth pointing out why the amplification factor of the benchmark model relative to the
monopolistic competition model is so small in this exercise. This happens because due to the assump-
tion of γ=0, which is made to generate the decreasing strategic complementarities in the model, the
level of strategic complementarities are small on average across sectors (average α in the benchmark
and monopolistic competition model is 0.087 as opposed to 0.817 in the calibrated model matched to
survey data). Because the model misses this moment in this calibration, comparing the benchmark and
monopolistic competition models is not very informative. Instead, the main value of this exercise is its
predictions for the amplification factors across sectors with differentK. Nonetheless, I have included
this comparison for consistency and completeness.

Finally, to check the robustness of these results to the calibration of η and σ, I redo the analysis
while keeping η at its original calibration of 12, and fixing σ=6, which is a common calibration of this
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parameter in monetary models. In this case, strategic complementarity declines from 0.186 whenK=2

to 0 as K→∞. The results are presented in Tables L.4 and L.5 and Figure L.2 and are qualitatively
similar to the results discussed above. Quantitatively, the amplification factors are larger and more
dispersed because with higher elasticities of substitution, small differences in responsiveness of prices
translate to stronger reallocation of demand across sectors.

64



Table L.2: Robustness — Atkeson and Burstein (2008) Preferences

Output Inflation
Variance Persistence Variance Persistence

Model var(Y) ×104
amp.
factor half-life qtrs

amp.
factor var(π) ×104

damp.
factor half-life qtrs

amp.
factor

(1) (2) (3) (4) (5) (6) (7) (8)
Monopolistic Competition 1.40 1.00 3.45 1.00 1.60 1.00 3.88 1.00
Benchmark K∼K̂ 1.42 1.01 3.47 1.01 1.59 1.00 3.89 1.00
2-Competitors K=2 2.88 2.06 3.86 1.12 1.52 0.95 4.06 1.05
4-Competitors K=4 1.69 1.21 3.55 1.03 1.58 0.99 3.93 1.01
8-Competitors K=8 1.25 0.89 3.38 0.98 1.60 1.00 3.87 1.00
16-Competitors K=16 1.07 0.76 3.30 0.96 1.62 1.01 3.84 0.99
32-Competitors K=32 0.98 0.70 3.25 0.94 1.62 1.02 3.83 0.99
∞-Competitors K→∞ 0.91 0.65 3.21 0.93 1.63 1.02 3.81 0.98

Notes: the table shows robustness statistics for output and inflation responses across models with different number of competitors at the micro-level and presents
results for an alternative calibration of the model with constant returns to scale and Atkeson and Burstein (2008) preferences where strategic complementarities decrease
with K. var(.) denotes the variance of output/inflation conditional on monetary shocks. Half-life denotes the length of the time that it takes for inflation/output to
live half of its cumulative response in quarters. Damp. factor (amp. factor) denotes the factor by which the relevant statistic is smaller (larger) in the corresponding
model relative to the model with monopolistic competition.

2 4 8 16 32

0.235

0.24

0.245

0.25

Figure L.1: Information Capacity for DifferentK.

Notes: the figure shows the produced information processing capacity
of a firm as a function of the number of competitors within its sector
in the model with Atkeson and Burstein (2008) with low elasticities
of substitution. Firms with more competitors acquire more information
and allocate more of it toward aggregates.

Table L.3: Decomposition: Strategic Inattention vs. Real Rigidities
Percentage change

in variance of
output inflation

(1) (2)
Total Change (percent) 43.8 -6.8
Due to Str. Inattention (ppt) 5.4 -1.1
Due to Real Rigidities (ppt) 38.5 -5.7

Notes: The table shows the decomposition of the effects of the strategic inattention and
real rigidity channels for the change in volatility of output (monetary non-neutrality)
and inflation conditional on monetary shocks, as derived in Equation (31), under
Atkeson and Burstein (2008) preferences with low elasticities of substitution.
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Table L.4: Robustness — Atkeson and Burstein (2008) Preferences with High Elasticities of Substitution

Output Inflation
Variance Persistence Variance Persistence

Model var(Y) ×104
amp.
factor half-life qtrs

amp.
factor var(π) ×104

damp.
factor half-life qtrs

amp.
factor

(1) (2) (3) (4) (5) (6) (7) (8)
Monopolistic Competition 1.38 1.00 3.45 1.00 1.60 1.00 3.88 1.00
Benchmark K∼K̂ 1.40 1.02 3.47 1.01 1.59 1.00 3.89 1.00
2-Competitors K=2 4.59 3.32 4.05 1.17 1.53 0.96 4.03 1.04
4-Competitors K=4 1.94 1.41 3.61 1.05 1.58 0.99 3.92 1.01
8-Competitors K=8 1.10 0.80 3.29 0.95 1.60 1.00 3.86 0.99
16-Competitors K=16 0.78 0.57 3.08 0.89 1.61 1.01 3.84 0.99
32-Competitors K=32 0.65 0.47 2.95 0.86 1.62 1.01 3.83 0.99
∞-Competitors K→∞ 0.54 0.39 2.81 0.81 1.63 1.02 3.82 0.98

Notes: The table shows robustness statistics for output and inflation responses across models with different numbers of competitors at the micro-level and presents
results for an alternative calibration of the model with constant returns to scale and Atkeson and Burstein (2008) preferences where strategic complementarities
decrease with K. var(.) denotes the variance of output/inflation conditional on monetary shocks in the model. Half-life denotes the length of the time that it takes
for inflation/output to live half of its cumulative response in quarters. Damp. factor (amp. factor) denotes the factor by which the relevant statistic is smaller (larger)
in the corresponding model relative to the model with monopolistic competition.
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Figure L.2: Information Capacity for DifferentK.

Notes: the figure shows the produced information processing capacity
of a firm as a function of the number of competitors within its sector
in the model with Atkeson and Burstein (2008) with high elasticities
of substitution. Firms with more competitors acquire more information
and allocate more of it toward aggregates.

Table L.5: Decomposition: Strategic Inattention vs. Real Rigidities
Percentage change

in variance of
output inflation

(1) (2)
Total Change (percent) 38.2 -5.9
Due to Str. Inattention (ppt) 6.6 -1.2
Due to Real Rigidities (ppt) 31.6 -4.7

Notes: The table shows the decomposition of the effects of the strategic inattention and
real rigidity channels for the change in volatility of output (monetary non-neutrality)
and inflation conditional on monetary shocks, as derived in Equation (31), under
Atkeson and Burstein (2008) preferences with high elasticities of substitution.
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M Additional Robustness Exercises

M.1. Heterogeneity within Sector Market Shares

In the approximate problem that I considered in Section 4.3, all firms have the same market share in
the steady state. One question is how heterogeneity in market shares affects strategic inattention. Is
it the case that with asymmetries in market shares, larger firms ignore the mistakes of smaller firms,
which would potentially dampen strategic inattention? To address this question, I present a simple case
with CES preferences and show that the strategic complementarity of any given firm is equal to their
market share in the steady-state. This means that firms with higher market shares have higher strategic
complementarities and are more likely to pay attention to other firms’ mistakes rather than aggregate
shocks. Thus, heterogeneity in market share is expected to amplify the effects of strategic inattention.

To see this, consider the household’s demand with CES aggregator from Equation 16 with the
following modification:

Ct=
∏
j∈J


∑

k∈Kj

m̄
1
η

j,kC
η−1
η

j,k,t


η

η−1


J−1

(M.1)

where now m̄j,k captures the taste of the consumer for the product of firm k in industry j. Moreover, ∀j
we normalize

∑
km̄j,k=1 so that that these tastes are relative. It is straight forward to show that m̄j,k

shows up as a demand shifter in firm j,k’ demand

Cj,k,t=PtCt

m̄j,kP
−η
j,k,t∑

lm̄j,lP
1−η
j,l,t

(M.2)

On the firm side, this implies that the elasticity of demand for firm j,k at time t is given by

εj,k,t=η−(η−1)
m̄j,kP

1−η
j,k,t∑

lm̄j,lP
1−η
j,l,t

(M.3)

On the firm side, assume constant returns to scale in production (γ=0) and that there is a subsidy for
every firm such that it sets their steady state price equal to the aggregate marginal cost given their optimal
markup (so that there is no price dispersion in the steady state). Then the approximate problem of the
firm, as in Equation 26, is given by

max
{κj,k,t,Sj,k,t,pj,k,t(S

t
j,k)}t≥0

−E

 ∞∑
t=0

βt

η(pj,k,t(St
j,k)−p∗j,k,t)2︸ ︷︷ ︸

loss from mispricing

+ ωκj,k,t︸ ︷︷ ︸
cost of capacity

|S−1
j,k


 (M.4)

s.t. p∗j,k,t≡(1−αj,k)qt−αj,kpj,−k,t(Sj,−k,t) (M.5)

I
(
Sj,k,t,(qτ ,pl,m,τ (S

τ
l,m))

(l,m)̸=(j,k)
0≤τ≤t

)
≤κj,k,t

St
j,k=S

t−1
j,k ∪Sj,k,t, S−1

j,k given.

where we have already imposed that in the case of γ=0, the curvature of the profit function is uniquely
determined by the elasticity of substitution (Bj = η). The only major difference to this problem is
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that now, with heterogeneity in market shares, there is also heterogeneity in the degree of strategic
complementarity within industries. In fact, in this case, the degree of strategic complementarity for every
firm is proportional to their steady-state market share:

αj,k=(1−η−1)m̄j,k (M.6)

Note that, here, m̄j,k is simply the market share of firm k in industry j in the steady-state, and we
can study the impact of heterogeneity in market shares on the attention allocation of firms. Finally, to
make this case even simpler, assume that η→∞.73 Then, taking a second-order approximation around
this steady state, it follows from Equation (23) that the ideal price of firm j,k is given by

p∗j,k,t=(1−m̄j,k)qt+m̄j,k

∑
l ̸=km̄j,lpj,l,t∑

l ̸=km̄j,l

(M.7)

This representation also shows that higher market share leads to higher strategic complementarity
and hence magnifies the degree of strategic inattention.

M.2. Lower Persistence of Nominal Demand Growth

While many of the parameter values calibrated to the New Zealand data are also consistent with their
calibrations for the U.S., one exception is the persistence of the nominal demand growth, ρ. While the
value for this parameter is 0.707 in New Zealand, its value in the US is around a monthly persistence of 0.61
(Midrigan, 2011; Mongey, 2021) (or a quarterly persistence of 0.613=0.23). To compare the results for
this case, I recalibrate the cost of information acquisition and redo the analysis for monetary non-neutrality
for ρ=0.23, as shown in Table M.1a in Appendix A. The main takeaway is that while the amplification
factors are slightly smaller than the case for ρ=0.707, the results are fairly robust. For instance, relative
to the model with monopolistic competition, aggregate output is 23% percent more volatile under the
benchmark calibration for the distribution of competitors—as opposed to 28% with ρ=0.707.

M.3. Alternative Discount Factor

One of the mechanisms in attention allocation within the model is firms’ dynamic incentives. Forward-
looking firms internalize the long-term benefits of learning about more persistent shocks and adjust their
information acquisition accordingly (see, e.g., Afrouzi & Yang, 2019). In the model, this mechanism
dampens monetary non-neutrality because the dynamic incentives are very strong with β = 0.960.25

and mistakes are more transitory than fundamental shocks. To show the strength of this mechanism
in dampening strategic inattention, I recalibrate β and ω by jointly targeting the coefficient in Table 1
in addition to the original moment of calibration from Table A.2 and redo the results for monetary
non-neutrality, shown in Table M.1b in at the end of this section. The main takeaway is that the effects
of strategic inattention is larger in this calibration. The key intuition for these results is that the calibrated

73In this hypothetical example, having η→∞ means that firms’ profit functions are infinitely concave and that the benefit
of information is arbitrarily large given a fixed ω. Therefore, for a fixed ω firms will acquire almost perfect information.
To resolve this, we assume that ω is also proportional to η so that the ratio stays constant as η→∞.
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β is smaller in this case, which leads to firms producing less capacity and allocating more of it towards
the mistakes of their competitors, both of which amplify the effects of strategic inattention.

M.4. The Role of Firm- and Sector-level Idiosyncratic Shocks

In the benchmark model, I have abstracted away from firm- and sector-level idiosyncratic shocks. One
question is how such shocks would interact with firms’ strategic inattention motives.

In terms of firm-level shocks, they should have a similar effect as competitors’ mistakes: firms need
to pay attention to others’ mistakes as well as shocks to their competitors’ costs. Thus, the conjecture is
that such shocks would amplify the incentives of firms with fewer competitors to pay less attention to ag-
gregate shocks and more attention to a weighted average of fundamental cost shocks of their competitors.
However, as the number of competitors increases, for any given firm, the average fundamental cost shock
of their competitors would become smaller due to the law of large numbers which would reduce the
firms’ incentive to pay attention to others’ cost shocks and pay more attention to the aggregate/common
shocks within the oligopoly. Thus, I would expect the presence of firm-level fundamental cost shocks
to amplify the differential incentives across firms and lead to potentially larger differences in attention
allocation across firms with different numbers of competitors.

On the other hand, industry-wide shocks would have a very similar effect as fundamental shocks in
the model, as they would be common to all firms in an oligopoly. In fact, in the problem of firms, q can be
interpreted either as an aggregate shock or an industry-wide shock. It is only in the process of aggregation
that these two differ. To illustrate the effect of such shocks, I have solved a numerical example of the
model with these types of shocks. In this numerical example, keeping all parameters the same as the
benchmark calibration and setting the standard deviation of i.i.d. (over time) idiosyncratic shocks to
twice the standard deviation of fundamental shocks, I have recalibrated the cost of attention to match the
same moment in Table 3. The results are presented in Tables M.2 and M.3 and Figure M.1. The presence
of i.i.d. idiosyncratic shocks increases the amplification factors in monetary non-neutrality across sectors
with differentK. The amplification result stems from the assumption that sector-level shocks are i.i.d.
over time. Now that common shocks are more transitory; firms assign a smaller continuation value to
attending to common shocks, which, fixing ω, reduces their overall attention to q.

Consequently, I believe the model without idiosyncratic shocks provides a conservative benchmark
for the effect of competition on attention as far as these types of cost shocks are concerned.
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Table M.1: Robustness — Output and Inflation Across Models

(a) Alternative persistence for the growth of nominal aggregate demand (ρ=0.23)

Output Inflation
Variance Persistence Variance Persistence

Model var(Y) ×104
amp.
factor half-life qtrs

amp.
factor var(π) ×105

damp.
factor half-life qtrs

amp.
factor

(1) (2) (3) (4) (5) (6) (7) (8)
Monopolistic Competition 2.26 1.00 2.97 1.00 2.48 1.00 3.78 1.00
Benchmark K∼K̂ 2.77 1.23 3.31 1.11 2.15 0.87 4.20 1.11
2-Competitors K=2 3.10 1.37 3.73 1.26 1.94 0.78 4.47 1.18
4-Competitors K=4 2.81 1.25 3.37 1.13 2.12 0.86 4.24 1.12
8-Competitors K=8 2.73 1.21 3.25 1.09 2.19 0.88 4.17 1.10
16-Competitors K=16 2.70 1.20 3.20 1.08 2.22 0.89 4.14 1.10
32-Competitors K=32 2.69 1.19 3.18 1.07 2.23 0.90 4.12 1.09
∞-Competitors K→∞ 2.67 1.18 3.15 1.06 2.25 0.91 4.11 1.09

(b) Alternative discount rate for information (β=0.60)

Output Inflation
Variance Persistence Variance Persistence

Model var(Y) ×104
amp.
factor half-life qtrs

amp.
factor var(π) ×104

damp.
factor half-life qtrs

amp.
factor

(1) (2) (3) (4) (5) (6) (7) (8)
Monopolistic Competition 3.49 1.00 3.07 1.00 1.57 1.00 4.43 1.00
Benchmark K∼K̂ 4.76 1.36 3.41 1.11 1.45 0.92 4.76 1.07
2-Competitors K=2 5.80 1.66 3.87 1.26 1.31 0.83 5.02 1.13
4-Competitors K=4 4.89 1.40 3.48 1.13 1.42 0.91 4.80 1.08
8-Competitors K=8 4.65 1.33 3.34 1.09 1.47 0.94 4.73 1.07
16-Competitors K=16 4.55 1.30 3.28 1.07 1.49 0.95 4.70 1.06
32-Competitors K=32 4.51 1.29 3.26 1.06 1.50 0.96 4.69 1.06
∞-Competitors K→∞ 4.48 1.28 3.23 1.05 1.51 0.96 4.68 1.06

Notes: the table presents robustness statistics for output and inflation responses across models with different number of competitors at the micro-level. Panel (a)
presents results for an alternative calibration of persistence in the growth of nominal demand (ρ=0.23). Panel (b) presents results for an alternative calibration of
discount rate for information (β =0.60). var(.) denotes the variance of output/inflation conditional on monetary shocks. Half-life denotes the length of the time
that it takes for inflation/output to live half of its cumulative response in quarters. Damp. factor (amp. factor) denotes the factor by which the relevant statistic is
smaller (larger) in the corresponding model relative to the model with monopolistic competition.
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Table M.2: Robustness — Model with Idiosyncratic Shocks within Sectors

Output Inflation
Variance Persistence Variance Persistence

Model var(Y) ×104
amp.
factor half-life qtrs

amp.
factor var(π) ×104

damp.
factor half-life qtrs

amp.
factor

(1) (2) (3) (4) (5) (6) (7) (8)
Monopolistic Competition 3.04 1.00 3.39 1.00 1.48 1.00 4.39 1.00
Benchmark K∼K̂ 3.93 1.29 3.70 1.09 1.38 0.94 4.64 1.06
2-Competitors K=2 4.54 1.49 4.12 1.22 1.29 0.88 4.80 1.09
4-Competitors K=4 4.00 1.32 3.76 1.11 1.37 0.93 4.66 1.06
8-Competitors K=8 3.86 1.27 3.63 1.07 1.40 0.95 4.61 1.05
16-Competitors K=16 3.80 1.25 3.58 1.06 1.41 0.96 4.60 1.05
32-Competitors K=32 3.78 1.24 3.55 1.05 1.42 0.96 4.59 1.05
∞-Competitors K→∞ 3.76 1.24 3.53 1.04 1.42 0.96 4.58 1.04

Notes: the table shows robustness statistics for output and inflation responses across models with different number of competitors in the model with sector level
idiosyncratic shocks discussed in Appendix M.4. var(.) denotes the variance of output/inflation conditional on monetary shocks. Half-life denotes the length of
the time that it takes for inflation/output to live half of its cumulative response in quarters. Damp. factor (amp. factor) denotes the factor by which the relevant statistic
is smaller (larger) in the corresponding model relative to the model with monopolistic competition.

2 4 8 16 32

0.25

0.3

0.35

Figure M.1: Information Capacity for DifferentK.

Notes: the figure shows the produced information processing capacity
of a firm as a function of the number of competitors within its sector
in the model with sector-level idiosyncratic shocks in Appendix M.4.
Firms with more competitors acquire more information and allocate
more of it toward aggregates.

Table M.3: Decomposition: Strategic Inattention vs. Real Rigidities
Percentage change

in variance of
output inflation

(1) (2)
Total Change (percent) 18.9 -9.6
Due to Str. Inattention (ppt) 82.0 -19.7
Due to Real Rigidities (ppt) -63.1 10.1

Notes: The table shows the decomposition of the effects of the strategic inattention and
real rigidity channels for the change in volatility of output (monetary non-neutrality)
and inflation conditional on monetary shocks, as derived in Equation (31) in the model
with sector-level idiosyncratic shocks in Appendix M.4.
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